
Learning a Controller for Soft Robotic Arms and Testing its

Generalization to New Observations, Dynamics, and Tasks

Carlo Alessi1,2, Helmut Hauser3, Alessandro Lucantonio4, and Egidio Falotico1,2 (Member, IEEE)

AbstractÐ Recently, learning-based controllers that leverage
mechanical models of soft robots have shown promising re-
sults. This paper presents a closed-loop controller for dy-
namic trajectory tracking with a pneumatic soft robotic arm
learned via Deep Reinforcement Learning using Proximal Policy
Optimization. The control policy was trained in simulation
leveraging a dynamic Cosserat rod model of the soft robot.
The generalization capabilities of learned controllers are vital
for successful deployment in the real world, especially when the
encountered scenarios differ from the training environment.
We assessed the generalization capabilities of the controller
in silico for four tests. The first test involved the dynamic
tracking of trajectories that differ significantly in shape and
velocity profiles from the training data. Second, we evaluated
the robustness of the controller to perpetual external end-point
forces for dynamic tracking. For tracking tasks, it was also
assessed the generalization to similar materials. Finally, we
transferred the control policy without retraining to intercept a
moving object with the end-effector. The learned control policy
has shown good generalization capabilities in all four tests.

Index TermsÐ Modeling, Control, and Learning for Soft
Robots, Learning and Adaptive Systems, Soft Robot Applica-
tions.

I. INTRODUCTION

The modeling and control of continuum and soft robotic

arms are still challenging problems due to hyper-redundancy,

complex dynamics, and non-linear properties of soft mate-

rials [1], [2]. Researchers have proposed several modeling

techniques [3], which lead to the development of a variety

of model-based and model-free control strategies [4].

The most used approaches for deriving forward dynamics

or kinematics models for continuum and soft robots have

been geometrical models like the piece-wise constant cur-

vature (PCC) approximation [5]. These models were used

within proportional-derivative (PD) control laws for dynamic

task space control of a soft manipulator performing a variety

of real-world tasks [6]. As an alternative [7] described

the shape of a synthetic planar soft robot analytically by

a polynomial curvature model, which was used within an

extended PD regulator to achieve perfect steady state control

in generic curvature conditions. However, the suitability of

*This work was supported by the European Union’s Horizon 2020
Research and Innovation Programme under the Specific Grant Agreement
No. 945539 (Human Brain Project SGA3).

1The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
(email: {c.alessi, e.falotico}@santannapisa.it).

2Department of Excellence in Robotics and AI, Scuola Superiore
Sant’Anna, Pisa, Italy.

3Department of Engineering Mathematics, University of Bristol, Bristol,
UK (email: helmut.hauser@bristol.ac.uk).

4Department of Mechanical and Production Engineering, Aarhus Univer-
sity, Aarhus, Denmark (email: a.lucantonio@mpe.au.dk).

these model approximations degrades when the robot is

subject to non-negligible external forces and unpredictable

interactions with the environment.

Data-driven modeling and control are also viable ap-

proaches [8]. In the context of supervised learning, reservoir

computing was used to emulate the nonlinear dynamics of

a pneumatic soft robotic arm and learning to reproduce

trajectories [9]. Moreover, continual learning was proposed

to tune the weights of a neural network-based controller to

adapt to changes in the dynamics of a soft robotic arm due

to loading conditions without catastrophic forgetting [10].

The success of reinforcement learning (RL) for behavior

generation in rigid robots prompted interest in its application

to continuum and soft robots [11]. The first applications of

RL for soft robot control relied on discretized state-action

spaces. The well-known Q-Learning algorithm was applied

to train a model-free, open-loop, static controller for a multi-

segment planar pneumatic soft arm [12]. The same algorithm

was used to compare control policies learned in simulation

and directly on the real soft robot subject to tip loads

[13]. The SARSA algorithm was applied to obtain a static

controller of position and stiffness for a hybrid soft robotic

arm in a multi-agent setting, which considered the actuators

as individual agents cooperating in a shared environment

[14]. Following the recent advances of Deep RL, now it is

also possible to consider continuous states and actuations.

For example, Satheeshbabu et al. [15] learns via Deep Q-

Learning transition between way-points in quasi-static con-

ditions with an open-loop position controller for a pneumatic

soft robotic arm capable of bending and twisting that was

trained in simulation, leveraging a Cosserat rod model. The

same authors extended the work by increasing the dexterity

of the soft robotic arm and attaining a closed-loop controller

for precise quasi-static positioning via Deep Deterministic

Policy Gradient approach [16]. The authors validated both

controllers on unseen payloads. Our work presented here,

however, uses a dynamic (not just quasi-static) Cosserat rod

model, subject to pressure-induced stretching and bending.

In a similar work, Centurelli et al. [17] learned a closed-

loop controller for dynamic trajectory tracking for a soft

robotic arm via Trust Region Policy Optimization leverag-

ing an approximation of the robot forward dynamic model

obtained by a recurrent neural network. In Naughton et al.

[18], the authors applied several deep reinforcement learning

algorithms to learn in simulation various control policies

using a synthetic soft arm based on Cosserat theory. All these

approaches confirm that Deep RL algorithms are suitable

candidates for generating control policies for soft robots.20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
t R

ob
ot

ic
s (

Ro
bo

So
ft

) |
 9

79
-8

-3
50

3-
32

22
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RO
BO

SO
FT

55
89

5.
20

23
.1

01
21

98
8

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on July 14,2023 at 15:58:17 UTC from IEEE Xplore. Restrictions apply.

However, these works do not explore common problems

for RL-based controllers: the abilities to generalize to new

observations, environment dynamics, and tasks [19]. In this

work, we adopt an approach similar to [17], [18]. We propose

a closed-loop controller for dynamic trajectory tracking tasks

using a pneumatic soft robotic arm trained via deep rein-

forcement learning using Proximal Policy Optimization. The

control policy is learned in simulation leveraging a dynamic

Cosserat rod model of the soft robot. However, we diversify

the validation producing different target velocities profiles

to investigate in silico the generalization capabilities and

limitations of the controller in various conditions and tasks.

Specifically, we evaluate the generalization capabilities of

the controller in silico on four tests: (i) tracking trajectories

of different geometries and velocities; (ii) tracking trajecto-

ries subject to constant external forces applied to the end-

effector; (iii) tracking trajectories using different material

properties; and (iv) intercepting an object moving at various

velocities towards the workspace. Note that all of them are

carried out without retraining. The rest of the paper is as

follows. Section II describes the soft robotic platform, the

Cosserat rod model, and the training process to solve the

control problem of dynamic tracking. Section III reports

and discusses the results obtained for the four generalization

tests. Section IV concludes with an insight into future works.

II. MATERIALS AND METHODS

A. Robotic Platform: The AM I-Support

The AM I-Support is a 3D-printed soft robotic arm with

three elliptical pneumatic chambers that can generate large

movements by combining stretching and bending [20]. As

shown in Fig. 1a, two terminal plates (top and bottom)

confine the modules, six rings distributed along the body

constrain the chambers, while nuts and bolts assemble the

parts. The soft robotic arm is characterized by a cross-

section of radius 30 mm, an overall length of ∼202 mm, and

∼183 g overall weight. The pneumatic chambers are ∼180

mm long, while the top and bottom terminal are ∼20 mm

and ∼5 mm long, respectively. The actuators are distributed

axially, at a radial distance of 20 mm from the cross-section

centroid, and equally spaced by 120◦ around the centre.

The arm was fabricated using the soft material thermoplastic

polyurethane with 80 Shore A hardness (TPU 80 A LF, by

BASFTM), which is characterized by 17 MPa tensile strength

and elongation at break of 471%.

B. Cosserat Rod Model

The soft robotic arm was modeled as a Cosserat rod with

constant cross-section and homogeneous material properties

by extending the Cosserat theory introduced in [21] to

account for the pneumatic actuation. A rod is described by

a center-line x̄(s, t) ∈ R
3 and orthogonal rotation matrix

Q(s, t) = {d̄1, d̄2, d̄3}
−1. Here, t is time and s ∈ [0, L] is

the material coordinate of a rod of length L. Q transforms

vectors from global frame to the local frame via x = Qx̄,

and vice versa x̄ = Q⊺x. If the rod is unsheared, (d̄1, d̄2)
spans the normal-binormal plane of the cross-section, and

(a) (b)

Fig. 1: Robotic platform. (a) AM I-Support. (b) Rendering

of the used computational model.

d̄3 points along the center-line tangent (∂sx̄ = x̄s). The

deformations that the rod can undergo are expressed by the

shear/stretch vector σ(s, t) and the bend/twist vector κ(s, t).
Shearing and stretching deviate d3 from x̄s, σ = Q(x̄s −
d̄3) = Qx̄s − d3 in the local frame. The curvature vector

κ encodes Q’s rotation rate along the material coordinate

∂sdj = κ × dj , while angular velocity ω is defined by

∂tdj = ω × dj . The rod dynamics is then governed by the

following set of nonlinear differential equations:

ρA · ∂2
t x̄ = ∂s

(

Q⊺Sσ

e

)

+ ef̄ (1)

ρI

e
· ∂tω = ∂s

(

Bκ

e3

)

+
κ×Bκ

e3
+

(

Q
x̄s

e
× Sσ

)

+
(

ρI ·
ω

e

)

× ω +
ρIω

e2
· ∂te+ ec, (2)

where B is the bend/twist stiffness matrix, S is the

shear/stretch stiffness matrix, ρ is the constant material

density, A is the cross-sectional area, I is the second area

moment of inertia, f̄ is the external force, c is the external

couple, and e = |x̄s| is the local stretching.

The pressurization of the pneumatic chambers of the AM

I-Support produces an internal force along d3 normal to

the rod cross-section and a bending moment. To describe

the deformations of the robot, we modeled pressure-induced

strains as spontaneous stretching and bending, modifying the

rest configuration of the arm dynamically. The rod is subject

to gravity, viscous forces, viscous torques, and external

forces applied to the free-end which can be integrated into

body dynamics via f̄ and c in (1)-(2). The rest length of

the rod and the cross-section radius were directly measured

from the physical prototype [20]. We computed the effective

cross-sectional area and the second area moment of inertia

considering the actuator geometry. The material density was

taken from the TPU datasheet, the Young Modulus was fitted

from experimental stretching data, and the damping coeffi-

cients were optimized on dynamic stretching and bending

data. This computational environment was used for training

and testing the controller.

C. Control Architecture

To solve a trajectory tracking task using this soft robotic arm,

we adopt the closed-loop control scheme shown in Fig. 2.

An arbitrary trajectory generator provides reference positions

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on July 14,2023 at 15:58:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Control scheme with z−1 discrete time delay operator.

xtar
t+1 ∈ R

3, i.e., the desired position in Cartesian coordinates

of the robot end-effector for the next time step t+1. The

controller is implemented as a feed-forward neural network

with two hidden layers, each with 64 neurons with tanh
activation function. The output layer has a linear activation

function. The controller takes as input

xt =
[

dt, et,x
tip
t ,xtip

t−1,x
tip
t−2

]

∈ R
15, (3)

where dt = xtar
t+1−x

tip
t is the distance vector between the

current desired position and the current free-end position of

the arm x
tip
t measured before the actuation, et = xtar

t −x
tip
t

is the current tracking error, and x
tip
t−1 and x

tip
t−2 are the two

previous positions of the robot end-effector. The vector dt

therefore provides the controller with a minimal prediction

of the future target position. The error vector et measures

how well the tracking proceeds in line with standard closed-

loop controllers. Finally, x
tip
t , x

tip
t−1, and x

tip
t−2 provide the

controller with a simple short-term memory that allows it to

infer the velocity and acceleration of the soft robotic arm.

The controller outputs three pressure commands for the three

chambers pt = [p1, p2, p3] limited between 0 and 3.5 bar.

The initial values are d0 = xtar
1 − x

tip
0 , e0 = 0, and

x
tip
0 = x

tip
−1 = x

tip
−2 = [0, 0,−L]. The control loop operates

at 10 Hz frequency, actuating the robot every ∆t=0.1 s.

D. Reinforcement Learning Algorithm

We solve the control problem using deep Reinforcement

Learning. In general, in RL an agent receives at each time

step t an observation ot from the environment, which is a

subset of the full environment state st. The agent acts ac-

cording to a policy π mapping states/observations to actions,

which can be deterministic or stochastic. The agent receives a

scalar reward r(s, a) indicating the current task performance.

Let the return Gt =
∑T

i=t γ
i−tr(si, ai) be the discounted

sum of future rewards, with discount factor γ ∈ [0, 1]. The

agent aims to maximize the expected return Eπ [G0|s0]. The

state-value function is defined as Vπ(s) = Eπ [Gt|st]. The

action-value function is defined as Qπ(s, a) = Eπ [Gt|st, at].
The advantage value function Aπ(s, a) = Qπ(s, a)− Vπ(s)
expresses whether the action a is better or worse than an

average action the policy π takes in the state s.

In our setting, the agent is the controller implemented as

a neural network, and the environment is the soft robotic

arm modeled as a Cosserat rod. Therefore, the agent receives

observations st = xt and outputs actions at = pt (see Fig.

2). State and action spaces are each normalized between -1

and 1 to increase numerical stability of the training process.

The reward is defined as

rt =

{

−10 if NaN

−et + b(et) otherwise,
(4)

where the penalty term of -10 was applied to discourage

actions that would cause numerical instabilities as proposed

by [18], et = ||et|| is the norm of the tracking error, and an

inductive bias b(·) is provided as incentive to explore

b(e) =











0.05 0.03 < e ≤ 0.05

0.1 0.01 < e ≤ 0.03

0.2 e ≤ 0.01.

(5)

1) Proximal Policy Optimization: The controller is

learned via Proximal Policy Optimization (PPO), a policy-

gradient method appropriate for continuous control tasks

[22]. In particular, we adopt the reliable implementation

provided by [23]. The algorithm jointly optimizes a stochas-

tic policy π(a|s) and a value-function approximator. PPO

alternates between sampling data from the policy through

interaction with the environment and performing optimiza-

tion on the sampled data using stochastic gradient descent

(SGD) to maximize the objective

E

[

min
(

ρt(π) · Ât, clip(ρt(π), 1− ϵ, 1 + ϵ) · Ât

)]

, (6)

where ρt(π) = π(at|st)
πold(at|st)

is the ratio of the probability

of selecting an action under the current policy π and the

probability of taking it with the policy πold that collected

the current batch of data, ϵ=0.2 is the clipping parameter,

and Â is an estimator of the advantage function. This loss

encourages the policy to select actions with a positive advan-

tage while discouraging large policy updates via clipping.

E. Training Process

The control policy was optimized using PPO. For each

episode, a random trajectory was produced. The starting

point was the resting tip position x
tip
0 and two additional

way-points were uniformly sampled from 512 positions in

the workspace. Target trajectory xtar was then produced

through interpolation of these three points using a cubic

spline (see Fig. 3b). This was redone for each training

episode. This ensured that the controller visited different

parts of the workspace. The duration of the training episode

was fixed at T=10 s for each target trajectory. Note that

since the space traveled in these 10s depended on how far

apart the sampled way-points were, the training trajecto-

ries had different velocity profiles. This approach ensured

that the controller experienced a wide range of velocities

∆xtar. Through this process, we obtained learning data

points with velocities in the range [0, 0.10] m/s with a

mean of 0.025±0.016 m/s (see also Fig. 5a orange curve).

Each episode starts with the robot at rest facing vertically

downward (see Fig. 1). The episode terminated when the

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on July 14,2023 at 15:58:17 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 3: Example of target trajectories. The starting point is the resting tip position x
tip
0 . Additional waypoints are sampled

uniformly from the workspace. Target trajectories xtar are generated by interpolating x
tip
0 and the waypoints using a cubic

spline. (a) 3D straight lines (1 waypoint, T=10 s); (b) 3D curves (2 waypoints, T=10 s); (c) 3D curves (3 waypoints, T=15
s). The controller was trained on curves with two waypoints and tested on straight lines and curves with three waypoints.

Fig. 4: Learning curve showing cumulative episode reward.

entire target trajectory was done (i.e., the time limit of 10s

was reached) or when numerical problems occurred.

We trained a stochastic policy to solicit exploration in

the environment. After training, we used a deterministic

and greedy policy to exploit the best actions learned. After

an empirical model selection and hyper-parameter tuning,

the learning took place over 1.2 million time steps (i.e.,

∼10k episodes), equivalent to about 33 hours of learning

experience in silico. The training episodes were collected

using N=8 parallel agents interacting with the environment

for M=64 time steps per policy update. At each iteration,

the policy was optimized on the current N ·M samples with

SGD for ten epochs using four mini-batches and a learning

rate of 0.00025. The training lasted about 14 hours on a

standard laptop (Intel i7-7500U Processor, 8 GB RAM).

The learning curve in Fig. 4 shows the sum of the rewards

the agent received in each training episode. The light blue

curve is noisy because of the intrinsic explorative behavior

of training a stochastic policy and the fact that each episode

generates a new target trajectory xtar. Nonetheless, the trend

of the exponential moving average (dark blue) is increasing.

III. RESULTS AND DISCUSSION

After learning the stochastic policy, we evaluated its greedy

(deterministic) version. We conducted four tests to inves-

(a) (b)

Fig. 5: Statistics for the trajectory tracking tasks. (a) Distribu-

tion of target velocities for each task. (b) Error distribution

for each task. The control policy trained on 3D curves (2

waypoints) generalizes to different trajectories and velocities.

TABLE I: Tip error e/L (%) on dynamic trajectory tracking.

Trajectory mean ± std (%) IQR (%)

3D curves (2 waypoints) 8.86 ± 6.22 5.60

3D lines (1 waypoint) 6.56 ± 4.03 5.11
3D curves (3 waypoints) 9.61 ± 6.61 6.56

tigate its generalization abilities. In particular, first, we

tested how the controller could track trajectories of different

geometries and velocities profiles. Second, we assessed the

robustness of the controller to external forces of various

magnitudes and directions applied to the robot’s end-effector

during trajectory tracking. Third, we evaluated the gener-

alization of the policy to different material stiffnesses for

dynamic tracking. As a performance metric, we adopted the

mean and standard deviation of the normalized tip error e/L,

i.e., the error in percentage of the robot length L. In addition,

we measured the spread of the normalized tip error using the

interquartile range (IQR), which is robust to extreme outliers.

Finally, we deployed the controller to make the soft robot tip

intercept the trajectory of a moving object.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on July 14,2023 at 15:58:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Controller evaluation on three sample trajectories: (left) straight line (1 waypoint); (center) curve (2 waypoints); (right)

curve (3 waypoints). The controller outputs various pressure profiles to track target trajectories geometrically different.

A. Generalization to Trajectory Tracking Tasks

We tested the control policy trained on trajectories generated

from two waypoints on three different sets of 100 generated

tracking tasks (see Fig. 3).

As a baseline, we assessed the performance on trajectories

sampled from the same distribution as the ones used for

training, i.e., 3D curves (two way-points, with the same

starting point, duration T=10 s). The velocities for this task

ranged in [0, 0.10] m/s with a mean of 0.025±0.016 m/s.

On this set of trajectories, the controller achieved a mean tip

error of 8.86±6.22%L and 5.60%L IQR, see Table I.

For the first test of generalization capabilities, we em-

ployed trajectories that differed from the training set in

geometry and velocity profile (see Fig. 5a). The first group

of testing trajectories included 3D straight lines (1 way-

point, T=10 s) with velocities in the range [0, 0.019] m/s

with a mean of 0.01±0.004 m/s. The second group included

3D curves (3 way-points, T=15 s) with velocities in the

range [0, 0.178] m/s with a mean of 0.031±0.02 m/s. The

mean tip error performance attained on these tasks were

6.56±4.03%L, and 9.61±6.61% respectively (see Table I

for a comparison). The controller tracked 3D straight lines

better than the baseline (i.e., 3D curves with two way-points)

and performed slightly worse on tracking 3D curves with

three way-points. Fig. 5b shows the distributions of the tip

errors for each task. The controller achieved good results in

tracking trajectories that differed not only geometrically (e.g.,

lines and curves) but also in the velocity profile required

to follow them. The hypothesis is that the learned policy

has generalized to different tracking tasks. This was verified

quantitatively by conducting a Kolmogorov-Smirnov statis-

tical test [24] on the velocity distributions (see Fig. 5a). The

TABLE II: Tip error e/L (%) for trajectory tracking subject

to random perpetual external endpoint forces.

Trajectory fext (N) mean ± std (%) IQR (%)

3D curves (2 waypoints) 0.0 8.25 ± 5.64 5.23

3D curves (2 waypoints) 0.1 8.31 ± 5.73 5.16
3D curves (2 waypoints) 0.5 8.75 ± 6.30 5.42
3D curves (2 waypoints) 1.0 9.89 ± 7.59 5.80

test confirmed that the distributions are pair-wise different.

In particular, the p-value was 0 for the three tests, rejecting

the null hypothesis that the distributions are identical. Fig. 6

shows examples of actuation, dimension-wise tracking, and

tracking error for each trajectory type.

B. Generalization to External Forces

External forces applied to soft robots can significantly alter

their dynamics. In this experiment, we evaluate the robust-

ness of the controller to perpetual external forces applied

to the end-effector in dynamic trajectory tracking tasks.

The force fext = [fx, fy, fz] includes the special case of

a standard payload in which fx=fy=0. After sampling the

force vector components from a normal distribution, fext

was scaled to the desired magnitude. We investigated three

different magnitudes, i.e., fext ∈ {0.1, 0.5, 1.0} N. When the

soft arm was at rest, the force caused an average deflection

in the direction of fext of 1.16±0.32%L, 5.82±1.56%L, and

11.65±3.06%L, respectively. The controller did not have any

explicit information about the perturbations. The controller

evaluated on 100 random trajectories for each of the three

magnitudes, each with a different endpoint force, shows

comparable performance with the no-force case (see Table

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on July 14,2023 at 15:58:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Controller generalization to a range of Young Moduli.

II). Despite the wide range of force magnitudes, i.e., between

fext=0.1 N and fext=1.0 N, the tip error increased only by

around 1%L. Therefore, the control policy trained without

disturbances generalized well to perpetual external forces

applied to the end-effector post-training.

C. Generalization to Material Properties

Materials play a crucial role in soft robotics. Factors like

temperature changes or material degradation could nonlin-

early modify the stiffness of soft robots. Similarly, soft robots

with equal geometries but different material properties could

attain significantly different deformations that affect the

reachable workspace. Therefore, it is interesting to evaluate

the generalization of a controller to diverse materials. In

particular, we tested how the control policy generalized to

different Young Moduli of the Cosserat rod for tracking

trajectories. The calibrated value of the Young modulus of

the rod used to train the controller was E=1.65 MPa. The

learned controller was tested on Young Moduli ranging from

0.49 MPa to 6.59 MPa in steps of ∆E=0.1E, respectively

0.3 and four times the calibrated value. This range is reason-

able for soft robotics applications. For each value of E, we

averaged the normalized tip errors over 100 target trajectories

sampled from two waypoints and T=10 s. As shown in

Fig. 7, the controller generalized fairly well for values

of E that deviated moderately from the calibrated value.

However, the mean and standard deviation of the normalized

tip error increased with ∆E. Notice how the error curve was

asymmetric to the calibrated stiffness. For lower values of the

Young Modulus, the tracking error increased faster than for

higher values. This could be because softer materials undergo

larger deformations under the same applied pressure, making

them harder to control. Conversely, stiffer materials reduced

the reachable workspace. As a result, the controller could

not track all the points along the generated trajectories as

effectively. In summary, the controller generalized well (e.g.,

average tip error less than 9%L) to similar materials, having

Young Modulus in the range [0.9E, 1.4E].

D. Generalization to Trajectory Interception Tasks

After assessing that the control policy can generalize to

track different trajectories at various speeds, we deployed the

controller to intercept a moving object. Again, the control

policy was not retrained for solving the new task. The

TABLE III: Accuracy of trajectory interception task.

T (s) 3D lines 3D curves

10 85% 95%
5 74% 90%
2 46% 64%
1 33% 52%

0.5 18% 27%

object was a sphere of radius Robj=25 mm identified by its

centroid xtar travelling a path towards the workspace. The

object’s initial position xtar
0 was uniformly sampled outside

the workspace from a sphere of radius 0.3 m centered at the

resting position of the free-end of the robot, i.e., x
tip
0 . Then

one or two additional way-points were sampled uniformly

from the workspace and interpolated with a cubic spline to

generate the object trajectories, i.e., 3D straight lines or 3D

curves. The task was successful if the end-effector contacted

the object intercepting its trajectory.

We evaluated the accuracy of trajectory interception for

different object velocities to understand the complexity of

the interception task (see Table III). The average velocity

of the object ranged from 0.03 m/s (T=10 s) up to 0.51

m/s (T=0.5 s) for the linear trajectories, and from 0.05

m/s (T=10 s) up to 0.63 m/s (T=0.5 s) for the curvilinear

trajectories. As expected, the percentage of successful inter-

ceptions decreased for objects moving at higher velocities

for both trajectory types. This was because the average

object trajectory in the interception task was up to 25 times

faster (for T=0.5 s) than the average training trajectory.

Mechanical limitations of the soft robot also play a role.

Interestingly, the success rate for the curvilinear trajectories

was higher than for the straight lines despite the higher

velocities of the former. This could be because the curves

stay inside the learned workspace for longer, increasing the

probability of interception. Overall, the learned controller

performed the object interception satisfactorily, suggesting

that the knowledge learned for dynamic path following is

transferrable to other tasks. Fig. 8 shows a rendering of a

successful trajectory interception trial for T=5 s. From Fig.

9, observe that the object started from a remote position

and quickly moved toward the workspace. The controller

smoothly tracked the trajectory contributing with all three

chambers reducing the tracking error.

IV. CONCLUSION

In this paper, we leveraged a dynamic Cosserat rod model of

a soft robotic arm and trained a control policy for dynamic

trajectory tracking using Proximal Policy Optimization, a

deep reinforcement learning algorithm. We investigated how

well the learned control policy generalized to new observa-

tions, including tracking trajectories of different geometry

and velocity profiles. Moreover, the controller generalized

to new environmental dynamics imposed as perpetual end-

point forces of different magnitudes in any direction. We

also tested new dynamics for various material stiffnesses

in trajectory tracking. Finally, the policy also generalized

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on July 14,2023 at 15:58:17 UTC from IEEE Xplore. Restrictions apply.

(a) 0/4 (b) 1/4 (c) 2/4 (d) 3/4 (e) 4/4

Fig. 8: Rendering of object interception with a soft robotic arm. Episode lasts 3.3 seconds, max T=5 s.

Fig. 9: Successful trajectory interception example, T=5 s.

to the new task of intercepting with the end-effector a

moving object (zero-shot transfer). While, as expected, the

performance dropped slightly for these new scenarios, the

learned model was surprisingly robust. Cosserat rod models

of soft robots are promising for learning complex control

policies in simulation. Extensions to this work include the

sim-to-real transfer of the controller to multi-section soft

robotic arms, orientation tracking, using recurrent networks,

and learning the trajectory interception policy.

REFERENCES

[1] C. Laschi and M. Cianchetti, ªSoft robotics: new perspectives for robot
bodyware and control,º Frontiers in bioengineering and biotechnology,
vol. 2, p. 3, 2014.

[2] D. Rus and M. T. Tolley, ªDesign, fabrication and control of soft
robots,º Nature, vol. 521, no. 7553, pp. 467±475, 2015.

[3] C. Armanini, F. Boyer, A. T. Mathew, C. Duriez, and F. Renda,
ªSoft robots modeling: A structured overview,º IEEE Transactions on

Robotics, 2023.

[4] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, ªControl
strategies for soft robotic manipulators: A survey,º Soft robotics, vol. 5,
no. 2, pp. 149±163, 2018.

[5] R. J. Webster III and B. A. Jones, ªDesign and kinematic modeling
of constant curvature continuum robots: A review,º The International

Journal of Robotics Research, vol. 29, no. 13, pp. 1661±1683, 2010.

[6] O. Fischer, Y. Toshimitsu, A. Kazemipour, and R. K. Katzschmann,
ªDynamic task space control enables soft manipulators to perform
real-world tasks,º Advanced Intelligent Systems, p. 2200024, 2022.

[7] C. Della Santina and D. Rus, ªControl oriented modeling of soft
robots: the polynomial curvature case,º IEEE Robotics and Automation

Letters, vol. 5, no. 2, pp. 290±298, 2019.
[8] D. Kim, S.-H. Kim, T. Kim, B. B. Kang, M. Lee, W. Park, S. Ku,

D. Kim, J. Kwon, H. Lee et al., ªReview of machine learning methods
in soft robotics,º Plos one, vol. 16, no. 2, p. e0246102, 2021.

[9] M. Eder, F. Hisch, and H. Hauser, ªMorphological computation-
based control of a modular, pneumatically driven, soft robotic arm,º
Advanced Robotics, vol. 32, no. 7, pp. 375±385, 2018.

[10] F. PiquÂe, H. T. Kalidindi, L. Fruzzetti, C. Laschi, A. Menciassi, and
E. Falotico, ªControlling soft robotic arms using continual learning,º
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5469±5476,
2022.

[11] J. Kober, J. A. Bagnell, and J. Peters, ªReinforcement learning in
robotics: A survey,º The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238±1274, 2013.

[12] X. You, Y. Zhang, X. Chen, X. Liu, Z. Wang, H. Jiang, and X. Chen,
ªModel-free control for soft manipulators based on reinforcement
learning,º in 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2017, pp. 2909±2915.
[13] H. Zhang, R. Cao, S. Zilberstein, F. Wu, and X. Chen, ªToward ef-

fective soft robot control via reinforcement learning,º in International

Conference on Intelligent Robotics and Applications. Springer, 2017,
pp. 173±184.

[14] Y. Ansari, M. Manti, E. Falotico, M. Cianchetti, and C. Laschi,
ªMultiobjective optimization for stiffness and position control in a
soft robot arm module,º IEEE Robotics and Automation Letters, vol. 3,
no. 1, pp. 108±115, 2017.

[15] S. Satheeshbabu, N. K. Uppalapati, G. Chowdhary, and G. Krishnan,
ªOpen loop position control of soft continuum arm using deep
reinforcement learning,º in 2019 International Conference on Robotics

and Automation (ICRA). IEEE, 2019, pp. 5133±5139.
[16] S. Satheeshbabu, N. K. Uppalapati, T. Fu, and G. Krishnan, ªCon-

tinuous control of a soft continuum arm using deep reinforcement
learning,º in 2020 3rd IEEE International Conference on Soft Robotics

(RoboSoft). IEEE, 2020, pp. 497±503.
[17] A. Centurelli, L. Arleo, A. Rizzo, S. Tolu, C. Laschi, and E. Falotico,

ªClosed-loop dynamic control of a soft manipulator using deep rein-
forcement learning,º IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 4741±4748, 2022.

[18] N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary,
and M. Gazzola, ªElastica: A compliant mechanics environment for
soft robotic control,º IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3389±3396, 2021.

[19] R. Kirk, A. Zhang, E. Grefenstette, and T. RocktÈaschel, ªA survey
of generalisation in deep reinforcement learning,º arXiv preprint

arXiv:2111.09794, 2021.
[20] L. Arleo, G. Stano, G. Percoco, and M. Cianchetti, ªI-support soft

arm for assistance tasks: a new manufacturing approach based on 3d
printing and characterization,º Progress in Additive Manufacturing,
vol. 6, no. 2, pp. 243±256, 2021.

[21] M. Gazzola, L. Dudte, A. McCormick, and L. Mahadevan, ªForward
and inverse problems in the mechanics of soft filaments,º Royal Society

open science, vol. 5, no. 6, p. 171628, 2018.
[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

ªProximal policy optimization algorithms,º arXiv preprint

arXiv:1707.06347, 2017.
[23] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, and Y. Wu, ªStable baselines,º
https://github.com/hill-a/stable-baselines, 2018.

[24] J. L. Hodges, ªThe significance probability of the smirnov two-sample
test,º Arkiv för Matematik, vol. 3, no. 5, pp. 469±486, 1958.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on July 14,2023 at 15:58:17 UTC from IEEE Xplore. Restrictions apply.

