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ABSTRACT 

A robot sensing system is described that uses mul- 
tiple  sources of information to  construct  an  internal 
representation of its environment.  Initially,  object 
models  are used to form the basic representations. 
These  are modified by processes that  operate on 
sequences of sensory information,  obtained  from  sensors 
that  move about in the  environment.  Two  representa- 
tions  are  constructed.  One is a  description of the  spatial 
layout of the  environment,  represented as an  octree, 
while  the  other is an object- and  feature-based represen- 
tation.  The  system  handles  both  expected  and unex- 
pected  objects,  and  attempts  to  register i t s  internal 
representation  with  the  external world using a  variety of 
predictive,  sensory-processing,  and  matching procedures. 

1. Introduction 
A characteristic of robot  applications is that most of the 

system’s  sensory processing time is spent on sensor-guided position 
servoing,  rather  than on object  identification.  This is because 
almost  all of the  sensory  data wi1.h which the robot  deals  are 
encountered  within  a  slowly-changing  historical  context. In this 
respect, the problem  domain is very  similar  to  that of animal sen- 
sory processing. After  objects  are  initially  acquired by the  sensory 
system,  its  principal  job is to provide  continuous  relative position 
information to guide the control  system. 

In our  approach,  an  internal  description of the world is main- 
tained  and  continuously servoed to  the  sensory  data. All  sensory 
information  required by the control  system is obtained from this 
internal  description, which represents  the  system’s  “best guess” 
about  the  external  world. A major  advantage of interposing  such  a 
description  between the sensory and  control  systems is that  it  per- 
mits  a  decoupling of the  two  systems.  The  sensory  system  can 
decide  for itself where  best to use its resources, instead of having to 
attend  to acquiring the specific data required by the  control  system, 
and  the  control  system need not  wait on the sensory  analysis of 
recently  sampled data  to receive the  data i t  needs. In our imple- 
mentation,  there is some low-level servoing that  does  directly rely 
on sensing,  for  example, when approaching  an  object  using  range 
information.  This is necessary to avoid collisions, and to  account 
for rapid  changes in the  environment.  It  can be considered  a  part 
of the  internal  representation  that  changes as fast as the sensors  can 
operate. 

The world model is built using all  available sensory input, 
including  senses  for  external  data,  such as vision,  touch,  and prox- 
imity,  and  senses  for  internal  data,  such as joint  angle  and force. 
Internally  stored knowledge is also  employed. It consists of general 
knowledge about  the  environment  (such as descriptions of classes of 
known objects),  and  particular knowledge, such as the  names  and 
locations of objects which are  expected in the  current  context.  The 
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representation  problem  thus  includes  both  the fusion of information 
from multiple sensory sources,  and  the fusion of these data with 
object models and  other a priori knowledge. 

The  representation  scheme  employed  consists of two,  linked 
rcpresentations.  One of these is a  spatially-indexed  representation of 
occupied  and  empty  space  in  the  working  volume of the  robot. The 
other is a  linked  structure of tables  and lists, indexed by objects 
and  features, which represents  the  system’s knowledge of objects in 
the  working  volume. 

The  spatial  representation is organized as an  octree,  a  regular 
decomposition of a  cube  into  octants ([lo], [13]). Each  octant  may 
be split if i t  is not homogeneous, giving rise to a  tree  representing 
the  workspace. Homogeneous nodes in the  tree, called leaves,  may 
represent  empty  space,  whcre i t  is known that no  objects lie, or 
object  volumes, where it is possible that  an  object  exists, or unk- 
nown regions, where  no  sensory  information is available.  The  spa- 
tial  representation is useful in  computing  free  paths for trajectory 
analysis,  and  for  answering  questions  about the  identities of objects 
or features in given locations.  The  representation is also used to 
simplify the  task of two-dimensional prediction of sensory data by 
explicitly  representing the  spatial  relationships between objects. 

The feature-based  representation is linked to  both  the  octree 
and  the  generic  object modcls. It  has  entries for each  object known 
or hypothesized to be in the  workspace,  including  objects  that  have 
not  yet been recognized. Each  object is associated  with the  set of 
features  that verifies its  identity,  and recognized objects  are  linked 
to  their  geometric models. 

The  featurebased  representation is especially suited  to 
answering  questions  about  objects or features by name or by 
description.  Some  questions rely on both  the  representations for 
their  answers. For example,  deciding if an  object is occluded from  a 
particular  viewpoint  involves first finding the  entry for the  object in 
the  featurebased  representation,  and  then following the  links  to  the 
spatial  representation  to find the  answer. 

2. Constructing  the Internal  Representations 
The goal of the system is to  construct  and  maintain  an  inter- 

nal representation of the world that is as close as possible a 
reflection of the  actual  situation.  There  are  two  aspects  to  the 
accomplishment of this goal. The first deals  with  verifying  expecta- 
tions, while the second  deals  with  describing  and  representing unex- 
pected  events.  Much of the processing is the  same  for  both  aspects, 
but each  has  some  special  requirements. 

The  assumptions  made  about  the  environment  are BS follows. 
The  robot  operates in a  constrained  environment (a metalworking 
factory  cell, in our  implementation). An outside knowledge base 
supplies CAD descriptions of the  objccts  expected  to  be in the world 
before the  start of each  task.  Instances of these  objects  are 
expected to  appear in specified locations. The sensors  are mobile, 
bcing mounted on the wrist of the  robot,  and  their  positions  can be 
established a t  any  time by reading the  joint  pasitions of the  robot. 
From  an  initial  expectation  about  the  state of the world, the  sensors 
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must confirm or modify hypotheses  about  the  positions  and  identi- 
ties of objects, recognize and  describe  unexpected  objects,  and 
describe the regions of free  space  suitable  for  navigation. 

A collection of algorithms  has been implemented to accom- 
plish these  tasks.  They  are  described below by following the 
sequence of events  during  the  execution of a  task. 

2.1. Initial Processing 
When the  factory  management  system  activates  a cell to 

manufacture  a  particular  set of parts,  it  extracts  the CAD descrip 
tions  of  the  parts from a  database,  and  sends  them to the sensory 
system.  The  descriptions  include  a  representation of each part in 
terms of surfaces, edges, and  vertices,  and an object-centered  octree 
representation of the  volume  occupied by the  part.  Each  descrip 
tion is generic, in that  there  can be many  instances in the world a t  
the  same  time.  The  initial  set of instances  and  their  expected posi- 
tions  and  orientations  are  supplied  to  the  sensory  system  by  a 
materialahandling  workstation  when it delivers the  parts. 

The sensory  system  accepts  the  generic  object  descriptions 
and  specific  expectations  about  instances of the  objects.  Its first 
t,ask is to  set  up i t s  internal  representation of the world. This  has 
two  parts.  It  must  build  the  initial  spatial  representation,  and  the 
initial object  and  fcature-based  representation. 

The initial  octree  representation is set  up  by  projecting  the 
object-centered  octrees  associated  with  each  object-instance  into the 
world octree.  This  involves  an  arbitrary  rotation  and  translation of 
cach  tree. A topdown algorithm  has been developed  for  this pur- 
pose [Si. This  algorithm is used extensively  throughout the task. 
Each  time  a new position  and  orientation of an  object is established 
through  sensory  feedback,  a new prqjection is performed.  The algo- 
rithm works by projecting  a  rotated  and  translated version of the 
octree  back onto  the  untransformed  object  tree,  and  labeling  nodes 
in the  transformed  tree  according  to  those  in  the  underlying, 
untransformed  tree. An example of the  operation of this  algorithm 
is shown in Figure 1. 

Construction of the  initial  object-based  representation is rela- 
tively simple. A row  in the  table is constructed  for  each  object 
instance.  Each  instance is given a  unique  name, which is cross 
indexed to  the octree.  Columns in the  table  are  created  for 
significant  feature  types.  Currently only boundary  features,  such as 
corners,  and holes in surfaces  are  implemented.  We  are  considering 
cxtending  this set to include  the  cranks,  beaks,  and  ends described 
in [2], and  the  shapes of surface  patches. 

2.2. Processing  Sequences of Sensory Data 
Once  the  initial  representation is set up, the sensory system 

has a  current  best  guess  about  the world. It can  immediately use 
this to respond to questions  from  the  control  system  that  guides  the 
robot in performing the  task. 

The  next  step is to use the sensors to register the  internal 
representation  with  the  world.  This  involves first generating predic- 
tions  from the  internal  representations  about  what  each  sensor 
should  observe,  and  then  matching the predictions  with the  actual 
data.  Predictions  are  generated first in 3D world coordinates using 
the position of the  sensor  and  its field of view to  locate  significant 
features  that should be visible. Only  those  small regions of the field 
of view that  contain  the  predicted  features need be processed, and  a 
complete  prediction of the sensor’s response is not necessary. 

The selected  features are screened  for  visibility  in  two passes. 
First,  they  are  examined  for self-occlusion, and  then  for occlusion 
by other  objects in the world. Features  associated  with  surfaces  or 
scts of surfaces  that  point  away  from  the  sensor  are  pruned first. 
Next,  the  remaining  features  are  checked to  see if a  ray  from  the 
sensor to  the  feature  intersects  another  part of the  object before it 
reaches  the  feature.  Finally,  the  remaining  features  are checked for 

occlusion by other  objects.  This is done by projecting  rays  through 
the  octree  from  the  scnsor  to  each  feature.  Hidden  features  are  once 
again  removed. 

The remaining  features  are  projected  into the sensor’s image 
plane,  and  become  the  predictions.  Each  feature is enclosed in  a 
window indicating  the  uncertainty of i t s  position,  and  has an associ- 
ated label giving i t s  name  and  the  name of the  object  instance to 
which it belongs. This  makes  later  matching at the 2D level very 
simple. 

Sensory processing involves  extracting  the  expected  feature 
types  within  the  predicted windows, and  matching  them  with  the 
expectations.  When  a  match is found, it is trivially  labeled  from  the 
prediction, but  its position is established  from  the  sensory  data,  and 
will be used to  update  the  internal  representation of the  object’s 
position. 

It is also necessary to deal  with  unexpected  objects, that is, 
with sensed data  that were  not  predicted.  Currently,  this is done by 
performing  a  connected-components  analysis  on the whole image, 
and  treating as unexpected  those  components that  do  not intersect 
with  any of the predicted windows. These  components  are processed 
generically to  extract a  standard  set of features,  each of which is 
given a unique label.  Substantial processing involving  multiple 
images from different  viewpoints is necessary to describe  these unex- 
pected  objects. 

A prototype  objectbased  table  representation is also con- 
structed,  with rows for  each  expected  and  unexpected  object,  and 
columns  containing  the  extracted  features.  Errors in the predictions 
are  sent  to  the prediction processes to  supply  feedback to  improve 
later  predictions. 

Included in the 2D predictor is a  tracking  algorithm  for unex- 
pected features.  It is important  to be able to retain  the  identity of a 
reature  across a sequence of images if 3D information is to  be 
cxtracted.  The  tracker uses the motion of the sensor, and  past  esti- 
mates of the  motions of features to predict  their  next positions. I t  
construct  predictions on this  basis,  and uses the  error  feedback to 
refine its  estimates in the  absence of 3D information. 

The 2D matches  and  unexpected  features  are  also  sent to a 3D 
matching  procedure.  For  expected  objects,  this  procedure u r n  a 
leastsquares  technique  to  register  the  models  with  the labeled 
reatures,  resulting in updated position and  orientation  information 
:about each  object.  This  information is used in the octree to reposi- 
tion the  objects, using the  translation  and  rotation  algorithm,  and 
in the  table  to  updak  the positions of the features. 

For  unexpected  features,  the  main tool for  description is con- 
sistency  across  frames of data.  For example, a. point  feature  in  one 
view is constrained to lie on a vector  projecting  from the position of 
the  sensor  towards  the  feature.  When  the  sensor  moves to  another 
position, a second vector  can  be  drawn, given that  the  feature  can 
be tracked  and  put  into  correspondence  with its earlier  manifesta- 
tion.  The  intersection of these  vectors is an  estimate of the 3D 
location of the point.  Naturally,  there is a  lot of error in this esti- 
mate, so it is desirable to track poinks across  many  frames,  and use 
R pseudo-intersection of all the  vectors as an  estimate of the  true 
position. 

The 3D unrecognized  features are  sent to a  special  recognition 
module that uses a  graph-matching  algorithm  to  try to identify 
groups of features  with  parts of objects whose models are in the 
database.  This is not  a  real-time process, but, when it succeeds, it  
sends i t s  results to the 3D prediction  module, which can  then  create 
more  accurate  predictions,  and  to  the  octree  and  table  representa- 
tions to update  the  understanding of the world. 

Even  without  recognition,  however,  the  features  must be 
described,  and  predictions  made  about  their  appearance in later sen: 
dory data.  The 2D tracker  can  accomplish  some of this  but, as the 
3D positions of features  become  better  established, 3D predictions 
are  made as well. In the case of unexpected  features,  the world 
octree is used exclusively in  determining  the  visibility of features. 
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Thus,  there  are  two  feedback loops that serve to update  the 
internal  representation as sequences of sensory data  are processed. 
The first uses the results of 2D matches  and  tracking  to  predict new 
feature positions. i t  works  very fast because the sensory processing 
is restricted  to  small windows, and  the  matching is straightforward. 
The second  involves the  recomputation of the  positions  and  orienta- 
tions of objects,  based on matching  features  with models. This 
takes  longer  than  the 2D process, but provides  more useful informa- 
tion and allows better 2D predictions  for  further processing. I t  also 
builds  up  consistent  descriptions of unexpected  objects allowing 
them to  be  manipulated as single  objects. 

2.3. Updating the Octree 
In parallel  with  the  above processing is a second process that 

operates to update  the  octree  representation.  It works directly  from 
images of the world,  taken  from known positions. The 2D 
silhouettes of objects in the images are projected  into  the world 
octree as cones. When an object is seen from  several  viewpoints, 
the intersections of the cones  constr;rin  the position and  size of the 
object  (Figure 2). After  several views, the  representation begins to 
resemble the  true  shape of the  object.  At  all  times,  the  representa- 
tion of an  object occupies a  volume a t  least as large as the  object. 
This is important because the  octree is used for  path  planning as 
well as spatial  representation 171, so the free  space  represented  must 
be guaranteed  to be empty.  The  algorithm used for the projection 
is described in [9]. An example of its use is shown in Figure 3. 

The two paths  to  constructing  the  spatial  representation com- 
plement  each  other. If a  cone  intersects  with  a known object,  the 
generic  object  octree is used to refine the  resulting  occupied volume. 
For unexpected  objects, the volume  provides  evidence  for  the 
existence of single  objects or multiple  discrete  objects.  Feature  that 
intersect  with  a  volume  can  be  grouped  for  the  purposes of recogni- 
lion. If it  is  discovered that  an  obj  ct  must be split,  the  octree  can 
help in dividing the  features  among  the  newly-created  sub-objects. 
The  octree is also  essential to  the hidden-feature  analysis,  and for 
path  planning. 

3. Implementation 
The  system is implemented  in a network of microprocessors, 

nperating  asynchronously,  and  communicating  through common 
memory. This allows each  module to work at  its own pace. There 
is one  module for each  major processing step  (Figure 4) .  Informa- 
tion is passed when  it is ready. If a  module is not  ready to receive 
it, it may  queue i t  for later processing, or ignore  it,  and receive 
more u p b d a t e  information  later.  This is useful if some processes 
run much  faster  than  others,  and if the slower processes do  not need 
to be updated  very  frequently. An example of a process that 
requires frequent  updating is the 2D tracker, which must process 
data fast enough to  ensure  that  features  do  not  disappear  or merge. 
A slower process, like the 3D matcher  can afford to miss some  data, 
because very closely spaced data points do  not  significantly  improve 
its  position  and  orientation  estimates. 

Sensors that  are  currently  supported  are  a  camera,  providing 
rull-field images,  and  a  structured-lighl sensor that  projects  two 
planes of light  into  the world and uses triangulation  to  measure 
range and  orientation of visible  surfaces [l]. The  octree  projection 
algorithm uses only the  camera  data  (although it could be modified 
to use range  information). The  structured  light  data  are used to 
good effect by the 3D matching  routines. The 3D matching  routines 
for structured  light  data use models of the  objects, which they 
attempt  to  rotate  and  translate to fit over  the  actual  data.  This is 
done using a  steepest  descent  method,  minimizing  an  error  function 
that  measures  the  distance  between  surfaces in the model and  sur- 
faces in the  data.  The  technique  separates  out  the  rotational  and 
translational  components  and solves them  separately ([14], see also 
i51). 

4. Diecussion 
The  ability  to  describe  scene  contents,  irrespective of the abil- 

ity  to  name  things, is fundamental  to  a sensory system  intended  for 
sensory-servoed robot  guidance. An understanding of the  spatial 
and  temporal  structure of the  environment is basic to  the ability to 
physically act in it.  It is only when the physical structure of the 
environment is understood that  the  system  can  act  on  information 
gained by recognition of objects. 

Dealing  with unrecognized objects is also of crucial impor- 
tance.  The  robot  must  avoid collision with unrecognized objects 
and  maneuver  around  them.  Additionally,  it will usually need to 
inspect  unknown  objects in an  attempt to identify  them,  and  this 
may involve actually  manipulating  them. Unrecognizable objects 
may have to be removed from  the  workspace or relocated  within  it. 

For guiding  a  manipulator,  a model of the  spatial  and  tem- 
poral  structure of the  environment is necessary. A  representation 
that explicitly  represents  space  and  the  relationships between the 
objects it contains is essential.  In  our  system  this is accomplished 
with  the  octree  representation of the  workspace.  The  nodes of the 
octree  indicate  whether  the  volume  that  each  represents is occupied, 
empty, or unexamined,  and,  via  pointers to the table-based 
representation,  by  what it is occupied. 

While  there  has been substantial  earlier work on  constructing 
representations  from  multiple views (for example, [3], [4], 161, [9], 
[ll],  [12], [lS]), previous  research  has  usually  involved  subsets of the 
current goals. We  are  attempting  to  build, in real-time,  both  spa- 
tial  and  objectrbased  representations of a complex environment, 
containing  many  objects,  some of which are unexpected.  In  addi- 
tion,  these  representations  must be available  for  answering  ques- 
tions  about  the world posed by a robot  control  system, so must 
always  contain  valid  information.  The  problem  has  been  attacked 
by dividing i t  into  a  number of modules, each of which is  an  expert 
a t  a  particular  task.  Heavy use is made of prediction to reduce  the 
amount of computation,  and  even  unexpected  objects  can  give rise 
to predictions  after  they  have been observed  across  several  frames 
of data. 

The  methods  also lend themselves to the use of multiple  sen- 
sors, so long as conflicts in readings  (for  example, diKerent ranges to 
the  same  surface from different sensors) can be resolved. Mast of the 
rnatching is independent of the sensory  modality, so long as labels 
can be  attached to features,  and  the  same  feature  always receives 
the  same  label. Unless it is of importance,  the  internal  representa- 
tion need not  even  maintain  a record of how a piece of information 
was obtained. 

The initial  implementation, while including  all  the described 
modules, is impoverished in a  number of ways. It would benefit 
rrom using  more  feature  types  and  more sensor types. There is 
currently  little  control  over the goals of the  system.  A  supervisor 
module is being constructed  that will examine  the  internal represen- 
tation  and  decide  where  the  system resources would best be spent, 
given'the  task  specification.  The  octree  can help in deciding  where 
t.o point  the  sensors,  because i t  explicitly  represents unseen space, 
but  deciding which scnsor will provide the most useful information 
t t  any  time is an  open  problem. It would also be useful to be able 
to  automatically  generate  an  optimal  set of features  to  extract  for  a 
:iven  mix of parts so that processing could be minimized.  These 
problems are  the  subject of ongoing research. 
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Figure 1. Three  transformed  instances of an  I-shaped  object. 
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D 
Figure 2. The effect of intersecting  the  cones arising from 
two  views of an object. 

Figure 3. Two views of an object  (a),  the cone8 resulting 
from these  views (b), and the  intersection of their volumes (c). 
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Figure 4. A schematic  representation of the  sensory  system.  The  circular  icons  represent 
processors, while the  rectangular icons represent  the  internal  representations. 
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