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ABSTRACT 

This paper presents a new systematic algorithm to 
symbolically derive the full nonlinear dynamic equa­
tions of motion of multi-link flexible manipulators. 
Lagrange's-Assumed modes method is the basis of the 
new algorithm and adapted in a way suitable for 
symbolic manipulation by digital computers. It is 
aaplied to model a two-link fleXIble arm via a 
commercially available symbolic manipulation 
program. The advantages of the algorithm and simu­
lation results are discussed. 

I. Introduction : 

Dynamics of a typical industrial manipulator, with 
six degrees of freedom, is governed by coupled 
highly nonlinear ordinary differential equations. 
These equations present a very complicated problem 
in ~ontrol system design, mainly because the knowl­
edge in nonlinear control system theory is very 
limited. Traditionally independent servo 
controllers are designed based on the assumption 
that nonlinear coupling terms are negligible. 
However, this assumption is reasonable and the 
control system performance may be satisfactory only 
if the speed of manipulator is "relatively slow". 
Increasing demand for higher industrial productivity 
requires manipulators that move faster and more 
accurately. As a result, the speed of manipulators 
must increase and the independent linear servo 
controllers, designed based on the slow motion dyna­
mics, will perform unsatisfactorily. 

In recent years there has been considerable progress 
in the adaptive control of robotic manipulators. 
Computed torque based methods are aimed at better 
performance by designing controllers based on more 
accurate models. Ultimately the performance and 
the capabilities of a system, i.e. maximum speeds 
etc., are limited by the initial design of the 
overall system. A control system at best can 
utilize these capabilities in an optimum manner. In 
other words no control law can make the system move 
at speed which can not be afforded by the existing 
actuators. Apparently one way of designing 
manipulators that can move faster is to increase the 
actuator sizes. However, since actuators themselves 
are carried by the other actuators, increasing size 
also increases the effective inertia resulting in a 
very massive structure. Thus this approach can be 
quickly self defeating and is not the ultimate 

answer. The next option is to design light weight 
systems. Light-weight systems could have the 
following advantages: higher speed of operation, 
less overall cost, less energy consumption, smaller 
actuator sizes, higher productivity. The drawback 
of such systems is the structural flexibility which 
deteriorates the accuracy and repeatability. Rigid 
body dynamic analysis will no longer be accurate and 
controllers based on this will not perform satisfac­
torily. Flexibility has to be included in the ana­
lysis. 

Background: 

Modeling and control of a single link flexible arm 
[Fig.3J has been investigated by many authors [1,2,-
3,4J. The system is essentially modeled as 
Bernoulli-Euler beam and vibration coordinates are 
approximated by a finite number of assumed mode 
shapes. This allows the application of the whole 
finite dimensional linear control theory to the 
problem. 

The multi-link flexible manipulator [Fig.I, and 4J 
modelling and control problem has not been research­
ed as much as single -link case. First of all, the 
modelling problem is not a trivial one. Due to 
coupling between links, large configuration changes, 
and high speeds, the system can no longer be accu­
rately represented by simple beam equations. An 
accurate dynamic model of a light. weight arm 
involves highly complicated algebraic manipulations 
and can become impossible to deal with by hand cal­
culations. . Moreover, the possiblity of making 
errors along the way is very high. Making some 
changes in an existing model also requires long 
algebraic calculations. There are two basic methods 
used in the modelling: 1. Lagrange's-Finite Element 
b~sed methods, 2. Lagrange's- Assumed mode based 
methods. The end result of these methods are essen­
tially the same. Many of the finite element based 
works on the analysis of closed chain mechanisms can 
be applied to the dynamic modelling of multi-link 
flexible arms [5,6J. 

In [7,8J the nominal joint variable time histories 
are assumed to be known and the small vibrational 
dynamic model of the manipulators and mechanisms 
about nominal motions are developed. In [9] this 
assumption is removed and full dynamic model is 
derived. The main advantages of this method are : 
a) very systematic, b) Can be applied to complex 
shaped systems, applicable to a very wide class of 
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problems. The disadvatages are: a) requires a 
substantial amount of software organization, b) 
results ·in constrained model, c) does not give much 
insight to the dynamic structure of the system. 
Static deflection modes are included in the modes to 
improve the accuracy of models with limited number 
of mode shapes [6]. Usuro et.al. investigated the 
performance of LQR with prescribed degree of 
stability on a two-link planar arm by digital simu­
lations [10]. 

The Lagrangian - Assumed modes method is used in the 
modeling of a two-link robotic manipulator in [11]. 
Distributed frequency domain analysis of non-planar 
manipulators using transfer-matrices has been devel­
oped in [12]. A recursive method using homogeneous 
transformation matrices to generate full coupled 
nonlinear dynamics of multi-link flexible manipula­
tors is presented at [13]. 

It was experienced by the authors that the 
application of this technique to multi-link manipu­
lators works well, but with an important drawback: 
Algebraic complexity of intermediate steps. When 
carried out by hand the length of expressions 
becomes very large and very time consuming. In 
addition, the possibility of making algebraic errors 
was quite high. On the other hand modelling method 
is easy to understand, recursive, does not require 
any dedicated special software anq derives the full 
~onlinear dynamic model. 

The symbolic manipulation programs are the answer to 
eliminate the major drawback of the method. 
Symbolic modelling allows one to model systems with 
larg~ orders in a very short time, check the 
elements of the dynamic equations in explicit forms 
and manipulate them very conveniently. 

The remaining part of this paper is organized as 
follows: 
Section II summarizes the Lagrangian - Assumed Modes 
method. Section III presents a new algorithm which 
adapts this method to a form suitable for symbolic 
manipulation by digital computer. At section IV, 
the algorithm is applied to a two-link flexible arm 
example. Application details and simulation results 
are discussed. 

II. Lagrangian - Assumed Modes Method : 

Kinematics: The first step in dynamic modelling of 
any mechanical system is to establish the 
kinematical relationships and be able to define 
fundamental vector quantities: position, velocity 
and acceleration. Consider the kinematic structure 
shown in [Fig.1] representing a· manipulator with 
serial links and joints. Let the coordinate systems 
used for kinematics of the system be; 

°oXYZ - Fixed to base ( Global Coordinate Frame ) 

°ixyz - Fixed to the base of the link i 
I 

° i XYz Fixed to the end of link i 
I 

If arms are rigid then 0i xyz coordinates are not 

needed The position vector of any point on link i 
can be expressed with respect to 0ixyz as ; 

[x.,O,O,l]T 
1 

. T 
+ [w (x.,t),w (x.,t),w (x.,t),Oj 

x 1 y 1 Z 1 

where, w (x.,t), w (x.,t),w (x.,t) are 
x 1 y 1 ~ I 

(2.1) 

displacements of the flexible arm due to flexibility 
in respective directions. The dependence of w's on 
the spatial coordinates makes the system infinite 
dimensional, leading to coupled Ordinary and Partial 
differential equations of motion. In general these 
are approximated by finite series consisting of 
spatial variable dependent functions multiplied by 
time-dependent generalized coordinates. Once the 
number of generalized coordinates to be used to 
represent the distributed flexibility of each link 
has been decided on, w's can be approximated as; 

n. 
1 

w~(Xi,t)= E ~~j(xi) 
j=1 

o . (t) 
J 

x,y,z (2.2) 

where ni is the number of assumed mode shapes used 

for link i for the wQ ' ~Q'(x.) are assumed mode 
,., ,.,J 1 

shape functions from an admissable class, o.(t) are 
the· generalized coordinates of approximatiort, 

ih(x.) is uniquely defined. Next we need to be able 
1 

to transfer this position vector with respect to 
global coordinate frame to pbtain absolute position 
vector. Let oW. be the homogeneous matrix 
transformation from 1 moving coordinate frame O.xyz to 
fixed inertial frame ° XYZ. Then the aBsolute 
position vector, [Fig.2] 0 

(2.3) 

It is clear that the transformation Ow consists of 
i 

two parts: joint variables and flexible deflections. 
More clearly, [Fig.1] 

~~e I 

Ai - the transformation between 0ixyz and ° i_1xyz -

join transformation 
Ei - 1 - the transformation from the end of the link 

coordinates to link base coordinates. 
o Wi - 1 - the total transformation to the base 

coordinates. 
The form of these transformation matrices are 

jw. = 

[ 
jR. x. component of 0. 

1 
1 1 J component of O~ ; (2.5) Yj 

0'1' 
z. component of O~ 

J 1 
1 

jR. is (3x3) matrix of direction cosines, OT (lx3) ; 
1 

1 ° ° 1. ° -8 zij 8 yij x .. 
1 1J 

o 1 0 ° 
n. 8 0 -8 Y ij 1 zij xij E.= + 1: o .. (t) 

1 0 0 0 j=l 1J -8 8 0 yij xij z .. 
1J 

0 0 ° 1 0 ° ° 0 

(2.6) 
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where 9".. 's are rotation componp.nts of 1 ink i ,lUf1 
"lJ 

to mode j, assuming small rotations due to flexible 
deflections, and 1. is the length of the link i. 

" lo 
Once the kinematic description of the" system is set 
up, the process of obtaining the equations of motion 
is as follows: 

1. Pick generalized coordinates (natural 
choices are joint variables and a finite number of 
assumed modes series approximation for every 
flexible element) 

2. Form the kinetic, and potential energy, and 
virtual work for the system 

3. Take the necessary derivatives of the 
Lagrangian Equations and assemble the equations. 

If system has N. number of joints with single 
degree of freedomJ and Nl number of flexible 
elements with n

i 
modal coordinate for each element, 

the dynamic model of the system will be governed by 

Nl 
N

j 
+ E 

i=l 
n. lo 

(2.7) 

set of coupled 
equations. 

second order ordinary differential 

III. Symbolic Implementation of Lagrangian- Assumed 
Modes Method: 

Although Lagrangian Assumed modes method is 
theoretically very well understood and documented 
[13], it is not quite in a form suitable for 
symbolic implementation on a digital computer, i.e. 
insufficient memory problems are likely to occur. 
Here the modelling method is adapted to overcome 
this difficulty. Let us first specify some desired 
features of a modelling algorithm. First, the mode 
shapes and the mode shape dependent parameters 
should be easily varied by the analyst. The 
selection of "appropriate" or "best" mode shapes 
[Fig.5] for a given flexible system is not a 
clearly answered problem [12]. One should be able 
to easily simulate the effect of different mode 
shapes on the system behavior. For the case of a 
simple beam under bending vibrations the mode shapes 
effectively determine the natural frequencies of the 
system. Effective mass and spring matrix elements 
are functions of mode shapes as; (with simple 
boundary conditions ) 

1. lo 
m .• f p A(x) $. (x) $. (x) dx 

loJ 
0 

lo J 
(3.1) 

1. 
" " k .. = flo E I(x) $i (x) $j (x) dx 

loJ 
0 

(3.2) 

If mode shapes are orthonormalized such that m.. = 1 
2 loJ 

for i=j and 0 , for i~j, then kij = w i for i=j, 0 

for i~j. The most accurate way is to update the 
mode shapes as the boundary conditions of the links 
vary as function of controller action. 
Second, a recursive algorithm would be very 
desirable. For instance, when the number of modal 
coordinates increased or additional links included, 

t-h£' tlvlI'1mi c: mor1ell i np, fl'"O(,£''''''' "'houl r1 lIot h£' '""1''''1 t"ri 
allover. 

The equations governing the dynamics·of the system 
are given by; 

d 

dt 

where; 

E KE 
N 
E(KE). N: total number of discrete 

i=l lo 

element in the system ( joints, links, payload ). 

N 
EPE = E ( PE). + (PE). (3.5) 

i=l lo gravitational lo elastic 

qi's are the generalized coordinates which are joint 

variables and flexible generalized coordinates of 
flexible elements. 
Kinetic energies for rotary joints, if considered as 
mass with rotarty inertia about the axis of rotation 

(KE;)joint i = 1/2 m. V .2 + 1/2 H .. W. 
lo glo glo lo 

(3.6) 

where mlo' is the mass of joint i, V. is the speed 
gJ. 

of joint i mass center, H . is angular momentum 
glo 

vector of joint 
w. is the total 

lo 
joint. 

with respect to its center of mass, 
angular velocity vector of the 

Kinetic energy of the flexible links; 

li ~ ~ 
( KE ). = 1/2 f p. (x) ( r. . r. ) dx 

lo lo lo lo 
(3.7) 

o 

If all the modal coordinates and associated mode 
shapes were given, then the integration over the 
spatial variable could be evaluated. However since 
the mode shapes and dependent parameters are desired 
to be inputed by the user for analysis purposes, we 
identify all possible elements that are function of 
spatial variable and assign them parametric names. 
From (2.3) 

(3.8) 

. T . T '. .' T T" 
lohi (x) °W

i 
°W

i 
lohi(x) + lohi (x) °W

i 
°W

i 
lohi(x)+ 

ih.T(x) °W. T oW. ih.(x) + ih.T(x) °W. T oW. ih.(x) 
lo lo lo lo 1 1 lo lo 

(3.9) 
where; 

[x + E$ .• (x) Ii .. (t), E$ .• (x) Ii .. (t), 
XloJ XloJ yloJ yloJ 

E$zij (x) lizij (t), 1 1 
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E.zij(X) 6zij (t) ,OJ 
(3.10) 

Elements of the transformations oW. and oW. are 
1 1 

functions of the generalized coordinates and parame­
teres of the links k<i, such as {8

i
, 8

i
8

k
(t), 

.~kj(lk)' 6~kj(t), 8k(t), where k=1, •. i-1, ~:x,y,z}, 

lk i~·the lenght of link k. 

In general for serial link robotic manipulators, the 
kinetic energy of link i will have the following 
form; (.) is used to indicate the possible exis­
tence of terms that are independent of spatial 
variable x. At this point, from symbolic modeling 
point of view it is not important what these (.) 
terms are. But what is important is to extract all 
the possible combination of spatial-variable depen­
dent terms and replace them with symbolic names so 
that the first objective of the modeling is 
accomplished. 

(K.E).=(.)! p(x) dx+(.)! p(x) x dX+(.) ! p(x) x2 dx 
1 

+ E E ! p(x) .~ij(x) .~ik(x) dx • 

[(.) 6~ij 6~ik +(.) 6~ij 6~ik +(.) 6~ij 6~ik I + 

E E ! p(x) .~ij(x) x dx [(.) 6~ij +(.) 6~ij I + 

E E.! p(x) .~ij(x) dx [(.) 6~ij +(.) 6~ij I 
(3.11) 

where; ~ and ~ : X,y,z , j=l, ... mi . At the calcu 

lation of absolute velocity of differential element 
of a flexible member, the parameters which are 
function of spatial variable can be extracted and be 
given symbolic names by the symbolic manipulation 
program very easily. These parameters represent the 
elements in the dynamic' model which are function of 
mode shapes, and link length, and mass distribution 
of the flexible element. 
Replace in (3.9) 

nm~~ij ~ .~ij(x) .~ij(x) , 

nq~ij ~ .~ij (x) 

nw~ij ~ .Q"(x) x 
p1J 

m. ~ 1 ., m. 1./2 ~ x , 
1 1 1 J . 

01 

2 
~ X· (3.12) 

and in the simulation level evaluate these terms by 
multiplying with p(x) and integrating over the link 
length. 

nm~~ij = ! p(x) .Q" (x) ." .. (x) dx p1J .,1J 

nw~ij ! p(x) .Q' .(x) x dx , nq~ij p1J 

m. = ! p(x) dx 
1 

J . = ! p(x) x2 dx 
01 

(3.13) 

There are six basic parameters' related to the 
inertia properties of the flexible element and with 

t.h~it· use then! is no .longC'r spntinl [lC'pC'n<icncc in 
the kinetic energy expressions. With this appro.:lr..:h 
one can see more explicitly the effect of mode 
shapes and system parameters on the dynamic model, 
leading to a better understanding of the dynnmics, 
which is not offered by numerical or other modelling 
methods. Notice that if the mode shapes associated 
with a coordinate (i.e. y) are chosen to be ort­
honormal with respect to distributed mass and 
flexibility many of the above terms will be zero, 
such as nm~~ij = 1 if i=j, 0 if i~j . 

Similiarly for the elastic potential energy of the 
link i ( gravitational potential energy is omited 
here to save space ) 

Similiarly 

li II II 

k~ijk ! EI~(x) .~ij (x) .~ik(x) dx ; 
0 

li ~ : y,z and j,k=1,n. 
I I . 1 

kxijk = ! EA(x) ·xij(x) ·xik(x) dx 
0 

1/2 EEl k~ijk 6~ij(t) 6~ik(t) + 

kxijk 6 .. (t) 6 'k(t) I (3.15) X1J X1 

Now the next important topic is the development of 
a recursive method which will not run into memory 
problems as the system dimension get large. Moreover 
once a model is developed, some variations of the 
model should be possible without repeating the whole 
modelling process. As the system dimension gets 
larger, carrying out the derivations using total 
energy expressions can easily run into memory 
problems. Thus 

d a ( 1. KE.) a ( E KE. ) + (EPE. ) = Q. 
dt aqi J aqi J aqi J 1 

(3.16) 

( d a a (KE. ) a (PE. ) ) E -- (KE.) - + Qi 
dt a' J aqi J aqi J 

qi 
(3.17) 

Due to serial nature of manipulator arm ; 

~--(KE. ) a (KE. ) 
a 

(PE. ) = O. for i > j 
a' J aqi J aqi J 
qi (3.18) 

The equations of motion of the system are found to 
be; 

N d 
E (---

j=l dt 
(KE. ) 

J 

for i= 1 to j 

(KE.) + -~-(PE.» = Q. 
a :J a J 1 qi qi 

(3.19) 
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Algorithm 

For j 1 to N 
For i=l, to j 

Find and store KE. 
] 

d (-~-(KE.)) . ] 

Next i 
Next j 

dt aqi 

(3.11) and (3.15) , PE
j 

-L(KE. ) 
] 

aqi 

--~-(PE.) 
] 

aqi 

Given all the non-zero derivatives substitute these 
to ~quation (3.19) and assemble the equations in a 
convenient form for simulations and analysis 
pu~poses. After the equations are assembled, it is 
very easy to program them in one of the standard 
scientific programming languages using the capabili­
ties of the commercial symbolic manipulation 
packages. 

Let us assume that after modelling a manipulator , 
it is desired to add another link to the model with 
n i degrees of freedom. Based on the above algorithm 
one must evaluate 

For i=l, to N + n. 
J. 

d a a 
KE N+1) -~-( PE N+1) ----(KE ) ,----( 

dt a' N+l 
aqi aqi qi 

(3.20) Next i 

Let us assume previous model was assembled in the 
form; 

[ M ] q f Q (3.21) 

where the inertia matrix dimension is (NxN) , q 
f '. Q vector dimensions are (Nxl), N is the total 
number of generalized coordinates up to that point. 

The result of additional link ·contribution is of 
form 

~~!}±1 J l ~!!!}±LJ 
n+1 qn+l 

+ l : ~!}± 1 J l- ~!!!!± 1 J 
n+1 Qn+1 

(3.22) 

where the inertia matrix is of dimension (N+n i ) x 

(N+n.) and the vector quantities are of (N+n.) x 1 
J. J. 

Partition of the equation (3.22) is made such that 
it would clearly reflect the increase in the dimen­
sion of the system compared to one step before. 
Total equation of motion is obtained by the addition 
of (3.22) to (3.21), where (3.21) is extended to 
(3.22) dimensions by addition of zeros at 
appropriate dimensions. 

The implementation adapted here has the following 
advantages: a) Memory problems are not likely to 
occur, b) all unnecessary derivatives avoided, c) 
It is recursive, and d) Mode shape and dependent 
parameters can be easily varied. 

VLAppli cation and D i seuss ion of S imu) al.ion RC!sul t.~: 

Here the described modeling method is applied to a 
two-link planar fl~xible arm, with rotary joints and 
payload. Two mode shapes for each link are 
considered to represent the structural flexibili­
ties. As noted earlier, mode shapes can be input 
into the simulation program and the effect of 

different mode shapes on the dynamic response and 
the accuracy of modes can be checked. Joints and 
payload are considered as mass with rotary inertia. 
These inertial parameters can be set to zero as well 
[Fig.4] 

System input parameters for simulation 

Joint 1 mass and rotary inertia about its center of 
mass mjl' jjl and similiarly for joint 2 ; 

mj2' jj2 ' and for payload; mp , jp 

For link 1 and 2 mass per unit length, link 
lengths, flexural rigidity constants 

pAl' pA2 ,11' 12 ' Ell' EI2 

Assumed mode shapes and gravity vector 
4111 (x) , 4112(x) , 4121 (x) '. 4122(x) ; gx ' gy , gz 

Initialization procedures 

Time independent parameters are calculated at the 
initialization of the program only once per session. 
If mode shapes are up dated as function of changing 
boundary conditions, than these parameters need to 
be reevaluated. These parameters are ; 

nmll, nm12, nm2l, nm22, nwll, nw12, nw21, nw22, 

nqll, nq12, nq2l, nq22, kwll, kw12, kw21, kw22 

4111 (11) , 41 12(11) , 41 21 (11), 41 22 (12) 

_L(41 ) 1 a -~-(41 )1 _L(41 ) 1 , ---(4112) 1 ' 
ax 11 ax x=l1 ax 21 ax 22 x=12 

Here the objectives are a's follows : 
1. Verify that the model generated by the above 

algorithm is correct. 
2. Analyze the effect of different mode shapes on 

the dynamic characteristics of the system. 

1. Model verification will be done by comparing 
the response of flexible arm model with those of 
rigid arm, which has the same corrosponding parame­
ters. Cleary as the flexural rigidity, EI(x), of 
the links increases, joint variable responses of 
flexible model should converge to those of rigid 
model response. Figures (6a) and (6c) clearly 
shows that joint variable responses converges to 
those of rigid arm case, as flexural rigidity, EI , 
of links is increased. Same test simulation is done 
with clamped-clamped mode shapes for the first link. 
Only one case result is given at figure (6d) since 
it is sufficient to illustrate the point here. For 

2 this case, when EI is set to 100 Nt m , the joint 
variable response were almost the same as rigid 
case. The reason for faster convergence for the 
clamped-clamped case than the cLamped-free case is 
that clamped-clamped mode shapes result in a stiffer 
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system. However, clamped-free case is a morG 
accurate prediction of the system response than the 
clamped-clamped case, as discussed below. In 
addition to that, as EI(x) increases the frequencies 
assciciated with structural flexiblity should 
increase, for the simple beam case natural 
frequencies are fuctions of EI as; 

2 
w = (Y 4 /1) i . 

(EI/pA)1/2 (4.1) 

Even though in two link arm case, we are considering 
hGre, (4.1) does not hold exactly, it is still valid 
il\ principle and gives a quantitative idea about 
what to expect. Given the fact that for these simu­
lation conditions, nonlinear effects should not be 
very important, Rayleigh's energy principle also 
supports this expectation. Figures (7) (8) 
confirm these expectations. 

2. Modelling method cleary reveals that mode shllpes 
are important parameters of the system dynamics 
(e.g. Eqn (3.12)). What assumed mode shapes should 
be used and would it make an important difference in 
the system characteristics? Theoretically, the 
only constraint on the assumed mode shapes is that 
they must satisfy the geometric boundary conditions, 
but not neccessarily the natural boundary conditions 
nor the governing differential equations. The 
governing differential equations and natural 
boundary conditions are results of the functional 
vllriation of the Hamiltonian and are approximately 
satisfied in any case. The controlled end of each 
link, driven by a high gain feedback controller, 
behaves more like a clamped end [1]. The other end 
condition of the intermediate, links should 'be 
approximated by a mass with rotary inertia due to 
other links of the serial structure and payload. 
However, for different structures and even for 
diffrent payloads the resultant simple beam analysis 
will give different mode shapes, Given the fact 
that these are natural boundary conditions and will 
be approximately satisfied even if assumed mode 
shapes do not satisfy them, a'clamped-free simple 
beam mode shape would be an appropriate choice for 
the assumed modes used in the model. For curiosity, 
model is also simulated for clamped-clamped mode 
shapes for the first link. Clamped-clamped case 
results in a stiffer system. As a result, joint 
variable response converges to rigid arm response 
faster than clamped-free case as function of 
flexural rigidity, frequency of flexible vibrations 
are higher than those of clamped-free case for the 
same parameters and conditions. 

V.Conclusion : 

From the modeling technique point of view, it has 
been shown that Lagrangian Assumed modes method 
can be effectively used for multi-link flexible 
arms. The availability of general purpose symbolic 
manipulation programs overcomes the algebraic comp­
lexity of derivation steps, and allows the 
researchers to obtain more complete models in very 
short time, in spite of their complexity. A new 
systematic algorithm based on Lagrangian-Assumed 
mode method is presented suitable for symbolic 
manipulation by digital computers. The algorithm is 
applied to a two link flexible arm. Simulation 

) 

n~s\1lts are discussed Ilnd shown !:hllt the metho{\ 
worked very well for this example case. 
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