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Time-Optimal Control for a Robotic Contour 
Following Problem 

Abstract-A robotic contour following problem, defined by a unilater- 
ally constrained manipulator, is presented. Our approach explicitly takes 
into account inequality constraints and resulting contact forces as part of 
the system dynamics. Possible impact at an entry time is also discussed. A 
phase plane technique is applied to the time-optimal motion planning 
problem subject to conditions of impact avoidance. The contact force is 
incorporated into the optimal planning problem. Finally, an example 
robotic contour following task performed by a planar Cartesian robot is 
used to illustrate the ideas developed in the paper. 

I. INTRODUCTION 
NUMBER of robot or manipulator tasks can be A characterized as contour following tasks, including 

scribing, writing, and possibly debumng and grinding. A 
specific contour following problem can be stated as follows: 
assume the end effector of the manipulator is not initially in 
contact with a constraint surface S (see Fig. l), then 

1) move the end effector from its initial position a to point b 
in surface S; 

2) move the end effector along a specified curve C in S 
from point b to point c so that it has a given specified 
contact force with S; 

3) move the end effector from point c back to its initial 
position a. 

The motion of the manipulator consists of two parts: an 
unconstrained motion, where the end effector is not in contact 
with the constraint surface S (i.e., from point a to point b and 
from point c to point a in Fig. l), and a constrained motion, 
where the end effector is in contact with the constraint surface 
S (i.e., from point b to point c in Fig. 1). During the 
unconstrained motion, we have an open kinematic chain 
configuration. On the other hand, during the constrained 
motion, where the contact force must be considered, we have a 
closed kinematic chain configuration. For these types of 
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Fig. 1. A contour following problem. 

contour following problems, the open chain manipulator 
dynamics, the constrained path and contact force, and the 
initial and final positions of the manipulator are given. 

Related contour following problems have been studied by 
Whitney and Edsall[9] and by Starr [8]. However, they do not 
explicitly model the contact force in their approaches. In 
addition, they assume the end effector of the manipulator is 
initially on the constrained path; but that is not the usual case. 
In this sense, they have not treated several important features 
of contour following problems. 

The contour following problem poses an interesting point: 
the manipulator end effector cannot move arbitrarily; instead, 
the manipulator motion must satisfy certain path constraints. If 
the path constraint is given by an inequality 

d4P)  2 0 (1) 

where 4:R" + RI, andpER" denotes the position vector of 
the end effector, this path constraint is called a unilateral 
constraint. When the end effector is not in contact with the 
constraint surface, the constraint can be ignored; however, 
when the end effector is in contact with the constraint surface 
there exists a contact force and the constraint must be regarded 
as an intrinsic part of the manipulator dynamics. A manipula- 
tor constrained by the unilateral constraint (1) is called a 
unilaterally constrained manipulator. In this sense, a 
manipulator which performs a contour following task can be 
characterized as a unilaterally constrained manipulator. It is 
clear that the concepts of constrained manipulators and contact 
forces are major issues for contour following problems. 

In this paper, we give a mathematical formulation for the 
time optimal contour following problem. The formulation 
includes a careful development of the manipulator dynamics 
and of conditions for avoidance of impact between the end 
effector and the constraint surface. By apriori specification of 
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the paths for the unconstrained motion segments, a parameter- 
ization approach is used to simplify the optimal control 
formulation, so that solution procedures can be identified. The 
methodology is applied to a simple contour following problem 
for a planar Cartesian manipulator. 

11. MODEL OF UNILATERALLY CONSTRAINED MANIPULATOR 
A unilateral constraint can be used to characterize the 

manipulator motion where the end effector may or may not be 
in contact with a constraint surface. In other words, the 
constraint condition, defined as an inequality, can be active or 
inactive. Several assumptions are made: 

(AI) Any contact between the end effector and the con- 

(A2) It is assumed that the constraint surface is frictionless. 
(A3) Any impact of the manipulator colliding with the 

With the above assumptions, a complete set of equations of 
motion for a unilaterally constrained manipulator has been 
derived in [3] as 

straint surface occurs at a point. 

constraint surface is assumed to be inelastic. 

M ( q M  + F(q,  4 )  = T+ JT(ql f  (2) 

f =DT(P)h  (3) 

P = H ( q )  (4) 

Fig. 2. Three-segment manipulator motion, t ,  = entry time, f2 = exit time. 
(a) Impact occurs at t I .  (b) Impact does not occur at t , .  

always directed toward the feasible region defined by the 
constraint. Equation (7) states that when the constraint is 
inactive, i.e., + ( p )  > 0 so that contact between the end 
effector and the constraint surface is not maintained, then X = 
0 and thus f = 0. Equation (8) gives the impact relation, 
relating the manipulator velocities just before and just after 

where the n-vectors p and q denote the end effector position 
vectors in Cartesian coordinates and joint coordinates; M(q) is 
the n x n inertial matrix; the n-vector function F(q, 4 )  is 
composed of a Coriolis term, a centrifugal term, and a 
gravitational term; the n-vector Tis the input joint torque; the 
m-vector h is the contact force multiplier; the n-vectorfis the 
contact force 

and 

are n x n and n x rn Jacobian matrices, respectively; ti is a 
transition time at which +(p(t)) > 0, ti- I < t < ti; $(p(t)) = 
0,  ti I t I ti+ I ;  t,? and t; denote the right-hand and left-hand 
limits; and E represents the m-vector magnitude of a possible 
impulsive impact force. 

Equation (2) is the dynamic equation of the manipulator; (3) 
is the contact force relation; (4) is the kinematic relation 
between the end effector position and the robot joint vector; 
(5) together with (6)  and (7) are referred to as complementar- 
ity conditions. Equation (6) implies that the contact force is 

( 5 )  impact. 

(6) 

(7) 

The unilaterally constrained manipultor model consists of a 
set of differential equations and algebraic conditions. It has 
several features: i) two types of equations of motion of the 
manipulator system-when the manipulator end effector is not 
in contact with the constraint surface, the equations of motion 
of the manipulator are described by a set of differential 
equations; when the manipulator is in contact with the 
constraint surface, the equations of motion of the manipulator 
are governed by a singular system consisting of a set of 
differential and algebraic equations [2], [4], [5];  ii) transition 
time-at which the manipulator transits from an unconstrained 
segment to a constrained segment, and vice versa: iii) impact 
issues-when the manipulator transits from an unconstrained 
segment to a constrained segment, impact is possible. 

111. IMPACT CONDITIONS AND EXIT TIME 
The entry time is a time at which the inactive constraint 

becomes active, e.g., tI  in Fig. 2 denotes an entry time. When 
the manipulator transits from an unconstrained motion seg- 
ment to a constrained motion segment at an entry time, there 
may exist an impact. 

Assume there exists an impact at an entry time t l .  We can 
derive an expression for the velocity of the end effector after 
impact. Two more assumptions are made: 

(A4) The inertial matrix M(q) is nonsingular. 
(A5) The Jacobian matrices D(H(q)) and J(q)  are full rank. 

Since M(q) is invertible, we can solve for the velocity after 
impact q(t:)  in terms of q ( t ; )  and 5 .  We have 
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Since D(p(tl))fi(t:) = 0 and the scalar A(q), defined by A. Path Planning 

A (4)  = D ( f m ) ) J ( q ) M -  ' ( 4 ) J T ( 4 ) D T W ( 4 ) )  

is nonzero it follows that the magnitude of the impulsive 
impact force is 

4 = - A  -'(4(tl))D(P(tl))J(4(tl))q(t;) 

= - A  -'(4(tl))D(P(tl))P(t ,) .  (10) 

Hence we obtain the following condition for avoidance of 
impact: 

There is no impact (E = 0) i f  and on& i f  

D(P(t l ) ) f i ( t , )  = 0. (1 1) 

Thus an impact is avoided if the end effector of the 
manipulator comes to rest at t l ,  i.e., f i ( t ; )  = 0, or if the path 
of the end effector is tangent to the constraint surface at tl .  
These two cases are considered separately in the subsequent 
formulation of optimal planning problems. 

The exit time is a time at which the active constraint on the 
end effector becomes inactive, e.g., t2 in Fig. 2 denotes an exit 
time. 

IV. THE PLANNING PROBLEM 
Our planning problem for a constrained manipulator is as 

follows: given the desired contact force, determine the joint 
input torques such that the manipulator is driven from a given 
initial configuration to a given final configuration, subject to 
satisfaction of i) constraints on the end effector motion, ii) 
impact avoidance, and iii) input torque constraints. If a cost 
criterion is imposed, then this problem becomes a minimum- 
cost planning problem or a so-called optimal planning prob- 
lem. In general, an optimal planning problem can be formu- 
lated as an optimal control problem with constraints on state 
and control variables. 

Optimization problems with equality and/or inequality state 
variable constraints have been extensively studied. These 
types of optimization problems are quite difficult to solve 
because the state variable constraints are infinite dimensional. 
Moreover, it is difficult to determine transition times at which 
constraints change between active and inactive. 

In this paper, the optimization problem is simplified by a 
priori specification of the path of the end effector. We extend 
the method of Bobrow et al. [l] and Shin and McKay [7] to 
our optimal planning problem. Recall that the method of 
Bobrow et al. and Shin and McKay is based on a scalar 
parameterization of the path of the end effector which, in our 
case, is chosen to guarantee satisfaction of the constraints. 
This parameterization method reduces the dimensionality of 
the optimization problem from 2n to 2. 

Our parameterized planning problem consists of three parts: 
1) path planning-select a parameterization function P(s) so 
thatp = P(s) satisfies the state constraints for 0 I s I 1; 2) 
optimal motion planning-find a time optimal motion s = s(t) 
so that p(t)  = P(s(t)) for to I t I tf;  3 )  joint torque 
computation-compute the required joint torques from the 
manipulator dynamic equations. 

We first need to select a suitable geometric path in the 
workspace of the manipulator to satisfy the constraints and 
other imposed requirements. We may regard path planning as 
one kind of spatial planning in the sense that the manipulator 
path is planned in the configuration space and the manipulator 
dynamics are not involved. 

Let P: [0, 11 -, R" be a parameterization function, where 
the variable s is referred to as a path variable. A kinematic 
approach is proposed to choose parameterization functions 
for the path. The kinematic approach is based on the 
satisfaction of the inequality constraint, the impact avoidance 
condition, and the boundary conditions. Recall that there are 
two unconstrained path segments: one is defined on 0 5 s < 
sl, the other on s2 < s 5 1. 

During the constrained motion, the constraint r$(P(s)) = 0 
must be satisfied for s1 I s I s2. Thus a selection of a 
parameterization function P(s), 0 5 s 5 1, should satisfy the 
following conditions: 

W O )  =Po P(s1) =p1 

cp(P(s)) > 0 O I S < S l  (12) 

+(P(s)) = 0 s1 I S  I s2 

P@2)=P2 W ) = P f  

r$(P(s))>O s 2 < s s  1 (14) 

where P(s) is continuous on [O, 11 and is twice continuously 
differentiable except possibly at s1 and s2. 

Let Q: [0, 11 + R" satisfy 

P(s)=H(Q(s)), 0 1 ~ 5  1. (15) 

If the transformation H i s  three times continuously differentia- 
ble, Q(s) possesses the same smoothness properties as P(s). 
Thus we have the parametric representations 

P = P(s) 

4 = Q(s). (16) 

For the first unconstrained path segment, the end effector of 
the manipulator makes contact with the constraint surface 
when s = sl. If 

?Is1 
lies in the tangent space of the constaint surface at s1 then no 
impact occurs at the entry time. This impact avoidance 
condition can be written as 

wYsl))P'(sl) = 0 (17) 

where 

P'(s) = - . 
as 

If condition (17) is not satified, no impact occurs iffi(t;) = 0. 
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B. Optimal Motion Planning 
The second level of a parameterized manipulator planning 

problem is the optimal motion pianning problem. It can be 
stated as follows: given a path and the manipulator dynamics, 
determine the motion so that the manipulator moves along the 
prescribed path from the initial position to the final position in 
the shortest possible time. If a function s: [to, t,] + [O, 11 is 
twice continuously differentiable and satisfies s(to) = 0, s(tf) 
= 1, then s(t) is referred to as a path history. 

In this section, we first derive the equations of motion for a 
constrained manipulator along a parameterized curve. Then, a 
minimum-time planning problem for a constrained manipula- 
tor is formulated in two different ways according to the impact 
avoidance condition; in each case, a phase plane technique can 
be applied for its solution. 

Suppose that the path of a manipulator is given by p = P(s), 
0 5 s 5 1. We would like to derive the equations of motion of 
the manipulator along the prescribed path. 

Assume the contact forceflt) is specified so that, according 
to (3), the multiplier A(t) is given by 

In a time optimal problem, minimizing traversal time is 
equivalent to maximizing traversal speed. In fact, the mini- 
mum time solution consists of an accelerating part and a 
decelerating part; hence, limits on the path acceleration must 
be considered. These limits are assumed to be imposed by the 
input joint torques T. For simplicity, the argument t is 
subsequently omitted throughout this subsection. 

Let us consider constraints on the input joint torques of the 
form 

T F ( q ,  q ) s q s T y ( q ,  q), i = l ,  e - . ,  n .  (23) 

Since q is a function of s and q is a function of s and S, the 
torque constraints along the specified curve can be expressed 
in terms of s and 4 as 

T?(s, S)I~IT-(S, S), i = l ,  .-., n. (24) 

Thus after algebraic manipulations, the path acceleration can 
be shown to be constrained by functions of s and S, as 

A(t) = A(s(t))u (S(t)), to I t I tf 
(' 8, that is, the admissible path acceleration is constrained by (25). 

We now obtain a single differential equation expressing s' in where A:[sl, sz] -+ RI is a known scalar function, and 
terms of s, S, and T. From (20) we obtain . .  .~ 

9, B T(s)B(s)s' + B '(s)l?(s)9 + B T(s)M- '(Q(s))F(Q(s), 

T= M(Q (s)) B ( ~ ) s '  + M(Q (s)) B (s)S2 

+ F(Q - J '(Q(s))D 'W(Q (s)))Ns 1 (s) (2 1 1 
or equivalently as 

T(t )  = T(s( t ) ,  S ( t ) ,  S'(t)). (22) 

As long as s(t), S( t ) ,  and i ( t )  are known, the input joint torque 
T(t) can be uniquely determined from (22). 

1 ds 
t f=  1: 1 d t =  - . 

o s  

Thus the cost function for the three-motion-segment problem 
becomes 

In the remainder of this section, we formulate a minimum- 
time motion planning problem; then we extend Bobrow and 
McKay's phase plane method so that it applies to the case of a 
constrained manipulator problem. 

In order to guarantee the continuity of the velocity of the 
end effector at both the entry time and the exit time, additional 
conditions must be satisfied. The impact avoidance condition 
and the tangency condition can be written in parametric form 
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or 

as Case 2: Suppose that the path function is selected so that it is 
differentiable and tangent to the constraint surface at the entry 
time and the exit time; then the impact avoidance condition 
and the tangency condition are automatically satisfied. The 
minimum time motion planning problem in this case becomes 

D (P(s I)) J<Q (si))B (si)$ (ti) = 0 

W'(s2)) J(Q (s2))B (s2)S(t2) = 0. 

(30) 

(31) 

Given (27), the cost function in (29), and constraints (30) 
and (31), we can formulate the minimum time motion planning 
problem as follows. 

General Problem 
Given a path p = P(s) and q = Q(s) satisfying (15) and 
(16), find s(t), to I t I tf, the transition times tl and t2, the 
final tf, and the joint torque T(t),  i = 1 ,  , n which 
minimize tfgiven by (29), subject to (27), the joint torque 
constraints (24), the impact avoidance condition (30), the 
tangency condition (31), and the boundary conditons s (0) 
= 0, S(0) = 0, s(tf) = 1 ,  S(tf> = 0, s(tl) = SI, and s(t2) = 

s2. 

problem 2 
Suppose that s1 and s2 satisfy D(P(sl)J(Q(sl))B(sl) = 0 and 
D(P(s2))J(Q(s2))B(s2) = 0. Given a pathp = P(s) and q = 

Q(s) satisfying (15) and (16), find s(t), to I t I tf9 the 
transition times ti and t2, the final time tf, and the joint 
torque T(t), i = 1 ,  * * , n which minimize tfgiven by (29), 
subject to (27), the joint torque constraints (241, and the 
boundary conditions s(0) = 0, S(0) = 0, s(tf) = 1 , S(tr> = 
o, s(tl) = SI, and s(f2) = s2. 

In this case, the end effector need not stop at the entry time and 
the exit time since the path speed is not constrained at these 
two instants. However, the path must be chosen so that s1 and 
s 2  meet the requirements of (34) and (35). The resulting 
minimum time planning problem for a constrained manipula- 
tor is a tractable minimum time planning problem without 
explicit state constraints. 

This formulation guarantees that no impact occurs at the entry 
time, and that the end effector leaves the constraint surface 
tangentially at the exit time. As mentioned earlier, there are 
two ways to satisfy the impact avoidance condition and the 
tangency condition; they are to require that either 

S(tl) = 0 (32) 

S(t2) = 0 (33) 

(34) D (P(si)) J(Q (si))B (SI) = 0 

o(P(sz))J(Q(s2))B(sz) = 0 (35) 
where s1 = s(tl) and s2 = s(t2). Therefore, the minimum time 
motion planning problem can be reformulated in two different 
ways in terms of these two cases. 

Case I: Suppose it is required that the end effector stops at 
the cntry time and the exit time so that S(tl) = 0, Q(t2) = 0. 
The impact avoidance condition and the tangency condition 
are automatically satisfied. The minimum time planning 
problem becomes 

C. Phase Plane Technique of Minimum Time Problem 

In the previous subsection, we have shown that the 
minimum time motion planning problem for a constrained 
manipulator can be reformulated as an equivalent minimum 
time motion planning problem without state variable con- 
straints by properly choosing the parameterization function 
and including the desired contact force. The phase plane 
technique proposed by Bobrow [l] and McKay [6] can be 
directly applied to these cases. We summarize that technique. 

The phase plane technique is based on the observation that 
to achieve minimum time control, the path acceleration 3 
always takes its largest or its smallest possible values subject 
to satisfaction of (28). That is, finding the optimal time 
amounts to finding the times, or locations, at which s switches 
between maximum acceleration and maximum deceleration. 
The details have been given in [l], [6]. 

Now, we indicate how this phase plane technique can be 
applied to solve the optimal problems that have been devel- 
oped. In Case 1 ,  the minimum-time motion planning problem 
is divided into three uncoupled subproblems. Each subprob- 
lem is solved using the phase plane technique independently; 
then the results of the complete problem are obtained by 
piecing the results of the three subproblems together. In Case 
2, the motion planning problem cannot be divided into several 
subproblems; it must be solved as a whole. The unconstrained 
motion segment and the constrained motion segment are 
governed by two different sets of equations of motion. When 
the phase plane technique is applied to this case, there likely 
occur discontinuities (e.g., cusps) in the boundary curve of the 
admissible region. Also the admissible region may become 
very complicated. These two features make application of the 
methodology more difficult, but the methodology discussed in 
[l], [6] is still applicable to solve the minimum-time motion 

Problem I 
Given a path p = P(S) and 4 = Q(s) satisfying (15) and 
(161, find s(t), to I t 5 tf, the transition times tl and t 2 ,  the 
final time t f ,  and the joint torque Ti (0, i = 1 ,  * - - , n which 
minimize tf given by (2% subject to (271, the Joint torque 
constraints (241, and the boundary conditions s(0) = 0, S(0) 
= 0, s<tf) = 1 S(tf) = 0, s(tl) = SI, = 0, df2) = s2 ,  
and S(t2) = 0. 

Since the time optimal trajectory must satisfy S(tJ = 0 and 
S(t2) = 0 at the entry time and the exit time, respectively, we 
have the following result: The time optimal trajectory of 
Problem I can be accomplished by minimzing each motion 
segment independently. 

Thus the total minimum traversal time of Problem 1 is equal 
to 

tf= 71 + 72 + 73 
where T ~ ,  72, and 73 are the minimum times of the consecutive 
motion segments, respectively. planning problem. 
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V. EXAMPLE CONTOUR FOLLOWING TASK problem description, we have 

0.1303 A simple two degree-of-freedom Cartesian robot, such as a 
used SIGMA to illustrate robot manufactured the contour by following the Italian task. company Olivetti, is 

coordinates is denoted by p = (x, v ) ~ .  For simplicity, we 

[;]=[2]=[:::] [::]=[1.0173] 
The position vector of the end effector in planar workspace 

assume that each link of the robot has a unit mass, and that [ ;] = [ 0.37163 1.1654 (3 9) 

gravitational, centrifugal, and Coriolis effects can be ne- 
glected. Thus the open chain manipulator dynamics are given 

x= F, 

j = F y  (36) 

by 

where F, and Fy are input joint forces. Assume the manipula- 
tor is to perform a contour following task on a constraint circle 
defined by 

+ ( p )  = x 2 +  (U- 1.5)2-0.25 2 0 .  (37) 

Consequently, the complete set of equations of motion used to 
describe the contour following task is obtained as and 

2 = F,+ 2xX 

As mentioned previously, the path can be chosen to satisfy the 
impact avoidance condition. Two different choices of the path 
function are considered. 

Path with Discontinuous Slopes at the Entry and the 
Exit Time: In this case, the path is chosen to satisfy the 
boundary conditions WO, YO), ( X I ,  YI), (XZ,  YZ),  (xf, ur); the 
normality condition [x’(s)]’ + Iy’(s)]* - 1 = 0,O I s I 1; 
and the constraint x2(s) + Iy(s) - 1.512 - 0.25 1 0, O r  s 
r 1; where 

j;=Fy+2(y- 1.5)h 
We can adjust sI and sz so that the normality condition is 
satisfied. After some computation, the path is obtained as 
follows: 

A20 

x2 + (U - 1 .5)2 - 0.25 2 0 

X[X*+(Y- 1.5)2-0.25] = O  
x(s)  = al s + a2 

y (s) = a3s + a4, (40) 0 5 s < s, 

X(t’) = a @ : )  +2X(ti)I X ( S )  = 0.5 COS (2s - 2) 

Y(t,?) = j ( t17 )  + 2[y( t j )  - 1.5][ (38) y(s)= 1.5+0.5 sin (2~7-2)~ SISSSSZ (41) 

where X is the contact force, ti is the entry time, and is the 
magnitude of the possible impulsive impact force. Now a 
contour following task can be stated as follows: 

The end effector of the manipulator is initially at rest at 
position (x, y) = (0.4, 0.8). With the manipulator dynamics 
defined in (38), the end effector is to move from the initial 
position (x,  y )  = (0.4, 0.8) and contact the constraint at 
position (x,  y) = (0.1303, 1.0173). Then, the end effector is 
to follow the constraint in the counter clockwise direction with 
a specified constant contact force, X = 1 ,  to another point on 
the constraint (x, y )  = (0.3716, 1.1654). Finally, the end 
effector leaves the constraint and moves back to the starting 
point. 

Given this example contour following problem, path plan- 
ning and time optimal motion planning issues are discussed in 
the next subsection. 

A. Path Planning 

Let PT(s) = [x(s), y(s)] denote the parameterization 

= [xf, yf] denote the initial point, the entry point, the exit 
point, and the final point, respectively. According to the 

function, and P; = B o ,  Yo19 P; = [XI, A I ,  Pz’ = 1x2, yd, P; 

x(s)  = CIS+ c2 

y(s)=c3s+c4, S Z < S I  1 (42) 

where 

S I  = 0.3464 ~2 = 0.6335 

al = - 0.7788 

a3 = 0.6273 

a2 = 0.4 

a4 = 0.8 

CI = 0.0776 CZ = 0.3224 

~ 3 =  -0.997 ~ 4 =  1.797. (43) 

The desired path and constraint are shown in Fig. 3. Points 
(xo, yo), ( X I ,  U]), and (x2, y2) denote the initial point, the entry 
point, and the exit point, respectively. The slope of the path is 
discontinuous at the entry point and the exit point. 

Path with Continuous Slope: In this case, the path is 
chosen to satisfy the boundary conditions (XO, YO), (XI, V I ) ,  ( X Z ,  
y2), (xf, yf ) ;  the impact avoidance condition at sl, x(sl)x’ (sl) 
+ [y(s,) - 1.5 ]U’ (sI) = 0; the tangency condition at s2, 
x(s2)x’ (s2) + [y(s2) - 1.5]y’(s2) = 0; and the constraint 
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Fig. 3. Path with discontinuous slopes at the entry and exit times. Fig. 4. Path with continuous slopes at the entry and exit times. 

x2(s) + [y(s) - 1.512 - 0.25 1 0, 0 I s 5 1 .  In order that 
the path is tangent to the constraint at the entry time and the 
exit time, two more conditions must be satisfied: 

and 

After some computation, the path is obtained as follows: 

~ ( ~ ) = d l s ~ + d z s + d 3  

Y ( S )  = d4s2 + d 5 ~  + d6, O S S < S ~  (44) 

x ( s ) = O . ~  COS (2s-2) 

y(s)=1.5+0.5 sin (2s-2), s l ~ s ~ s 2  (45) 

x(s)  = eIs2 + e2s + e3 

y(s) = e4s2 + e5s+ e6, s2<sc 1 (46) 

where 

SI = 0.3464 

dl = 5.036 d2= -2.5231 d3=0.4 

~2 = 0.6335 

d4= - 1.0589 ds = 0.994 d6 = 0.8 

el = - 1 A14 

e4 = - 4.7475 e5 = 6.758 e6= - 1.2104. (47) 

e2 = 2.7139 e3 = - 0.7 

The desired path and constraint circle are shown in Fig. 4. 
Points (xo, yo), (xl ,  yl), and (xz, y2) denote the initial point, the 

entry point, and the exit point, respectively. The slope of the 
path is continuous at the entry point and the exit point. 

B. Optimal Motion Planning 
The optimal motion planning can be formulated in two ways 

according to satisfaction of the impact avoidance conditions: 
1) the end effector comes to rest at both the entry time and the 
exit time, 2) the path is tangent to the constraint at both the 
entry time and the exit time. In each case, a minimum-time 
motion planning is discussed. 

Case I: S(t) = 0 and S(t2) = 0: In this case, the end effector 
comes to rest at both the entry time and the exit time. Hence, 
no impact occurs at the entry time tl .  Equations (40) and (43) 
are used to generate the desired path for motion planning. 
With the above information, the joint forces F, and Fy can be 
obtained by 

F,=als 

Fy=a3s, O I S < S ~  (48) 

F,= - sin (2s - 2)s’- 2S2 cos (2s - 2) - cos (2s - 2) 

Fy = cos (2s - 2)s’- 2S2 sin (2s - 2) - sin (2s - 2), 

SI 5 s 5 s 2  (49) 

F,= CIS 

FY=c~S, S ~ < S S  1 (50) 

where ai, ci, and SI, s2 are given in (43). 
In this minimum-time approach, the entry time t l ,  the exit 

time t2, the final time tf,  the path history s(t), and the joint 
forces F,, Fy are to be determined so that the boundary 
conditions s(0) = 0, S(0) = 0 ,  s(tl) = sl, S(tl) = 0,  s(t2) = 
s2, S(t2) = 0, s(t’) = 1 ,  S( t f )  = 0 are satisfied, and the 
following joint force constraints: 

- 1 IF,,  FyS 1 (51) 
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Fig. 5. Phase plan plot of minimum-time approach with Fig. 3 path. 

are satisfied and tf is a minimum. The single equation for s' is 
obtained as 

alF,+ a3Fy, 0 5 S < S l  

CIF,+ c3Fy, s2<s51 
s= -sin (2s-2)FX+cos (2s-2)Fy, sl-Csls2 

(52) 

t 
where relations a: + 4 = 1 and c: + c$ = 1 ,  are used; a l ,  
a3, cI, c3, SI, s2, are given in (43). From the discussion in 
Section IV, the minimum-time motion planning problem for 
this case can be divided into three subproblems. The phase 
plane technique can be used to solve these three subproblems; 
we obtain 

71 = 1.0383 s 72~2.4333 s 73= 1.2014 s 

where 71 denotes the cost function of the minimum-time 
. . -  - - . "  

subproblem for U I s < sl, 72 for s1 I s I s2, and 73 tor s2 < 
s I 1 .  The complete phase plane trajectory and inadmissible 
region are shown in Fig. 5 .  The trajectory passes through 
points (0.3464,O) and (0.6335,O). This shows that the end 
effector comes to rest at the entry time and the exit time. Note 
that an inadmissible region exists only for the constrained 
motion; there are no inadmissible regions for the uncon- 
strained motion segments; there are no inadmissible regions 
for the unconstrained motion segments for this particular 
example. In addition, the phase plane trajectory never touches 
the inadmissible region. There is only one switching point for 
each motion segment. The optimal joint forces F, and Fy are 
shown in Fig. 6 .  The joint forces are discontinuous not only at 
the entry time and the exit time but also at each switching 
point. 

Case 2: S ( t l )  # 0 and S(t2) # 0: In this case, the path is 
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Fig. 6. Joint force plot of minimum-time approach with Fig. 3 path. 

chosen to satisfy the impact avoidance condition so that no 
impact occurs at the entry time t l .  Equations (44) and (47) are 
used to generate the desired path for motion planning. With 
the above information, the joint forces F, and Fy can be 
obtained by 

FX=(2dls+d2)S+2dlS2 

Fy = (2d4s + d5)s'+ 2d4S2, 0 Is<s~ 

F, = - sin (2s - 2)3 - 2S2 cos (2s - 2) - cos (2s - 2) 

Fy = cos (2s - 2)3- 2S2 sin (2s - 2) - sin (2s - 2), 

(53) 

S , I S I S 2  (54) 

F,=(2els+e2)3+2elS2 

Fy=(2e4s+e5)3+2e4S2, s2<sC 1 ( 5 5 )  

where di, ei, and SI, 52 are given in (47). 
In this minimum-the approach, the entry time t l ,  the exit 

time tz, the final time tf, the path history s(t), and the joint 
forces F,, Fy are to be determined so that the boundary 
conditions s(0) = 0, S(0) = 0, s(tl) = sl, s(t2) = s2, s(tf) = 
1, S( t f )  = 0, and the joint force constraints (51) are satisfied 
and tf is a minimum. The single equation for s' is obtained as 

(2d1s+ dZ)(F,- 2d1S2) + (2d4s+ d5)(Fy - 2d4S2) 

O I S < S ,  

~1 I S  I ~2 (56) 

(2dIs + d2)2 + (2d4s + d J 2  9 

- sin (2s - 2)F, + cos (2s - 2)F,, 

(2els + e&F, - 2elS2) + (2e4s + e5)(F, - 2e4S2) 
(2els + e2)2 + (2e4s + e5)2 

9 

S 2 < S I 1  
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Fig. 7. Phase plane plot of minimum-time approach with Fig. 4 path. 

where di, ei, sl, and s2 are given in (47). From the discussion 
in Section IV, the minimum-time motion planning problem for 
this case must be treated as a whole. The phase plane 
technique can be applied to solve this problem, resulting in 

tfz3.992 s tlz1.4285 s t2=2.492 s 

where s(tJ = s1 = 0.3464, and s(t2) = s2 = 0.6335. The 
complete phase plane trajectory and inadmissible region are 
shown in Fig. 7. The boundary curve is denoted in dashed 
line. There are two cusps and two jumps in the boundary 
curve. The resulting trajectory has six switching points. The 
joint forces F, and Fy are shown in Fig. 8. 

C. Remarks 
If the end effector comes to rest at the entry time and the exit 

time, the total minimum traversal time (Case 1) is 4.673 s. On 
the other hand, if the end effector does not stop at the entry 
time and the exit time, the minimum traversal time (Case 2) is 
reduced to 3.992 s. 

VI. CONCLUSION 
A robotic contour following problem, defined by a unilater- 

ally constrained manipulator, has been presented. Our ap- 
proach differs from previous approaches in that our approach 
explicitly takes into account inequality constraints and result- 
ing contact forces as part of the system dynamics. Possible 
impact at an entry time is also discussed. A parameterization 
approach to select a suitable path function has been applied to 
planning for the contour following problem. The minimum- 
time motion planning problem has been reformulated so that a 
phase plane technique can be applied. The desired contact 
force is incorporated in the optimal planning scheme. 

Finally, an example contour following task has been used to 
illustrate the ideas developed in this paper. The results are 

-1.000 

Fx  - 
F,, - - -  

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ,  

/-- 
I 

0.000 .79w 1.597 2.395 3.1911 3.992 

T i m e  

Joint force plot of minimum-time appraoch with Fig. 4 path. Fig. 8. 

quite satisfactory. Although the manipulator used in the 
example is a simple Cartesian robot, the devloped theory is, in 
principle, applicable to other robot configurations and other 
constraints. 

In this paper, friction on the constraint surface and multiple 
inequality constraints have not been discussed. The contact 
force and the path of the end effector in the optimal planning 
formulation have been specified a priori rather than deter- 
mined by the optimal planning procedure. These assumptions 
are very important. The extensions are nontrivial. This paper 
should provide a basis for further developments for con- 
strained manipulators and robotic contour following problems. 
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