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ABSTRACT 

This  paper  describes  an  algorithm  for per- 
forming  arbitrary  translations  and  rotations of 
objects  represented by octrees. Given an  octree 
in a standard  position  and  a  transformation, 
the  algorithm  builds a new tree  in a top  down 
fashion,  visiting  each node in  the new tree  only 
once,  and  constructing  only  those nodes that 
appear  in  the final tree.  It works  by projecting 
the  transformed  space  over  the original tree, 
and  labeling  the new nodes  according to  the 
labels of the  nodes  in  the  underlying 
untransformed  tree. 

1. Introduction 
Octrees  are finding applications  in a number of 

areas of computer  graphics  and  robot vision because of 
the  ease  with  which  certain  operations  can be per- 
formed (for example,  rendering  and  hidden  surface 
removal in graphics [3, 5, 81, and collision avoidance 
and  path  planning in robotics[2, 6, lo]). The  advan- 
tages of the  octree  arise  because  it is a true  volumetric 
representation,  and  yet  can be stored  in a compact 
form. 

An  octree [7, 81 is a recursive  decomposition of a 
cubic  space  into  subcubes.  Initially,  the whole space  is 
represented  by a single  node  in the  tree,  called  the 
root node. If the  cubic volume is homogeneous (full or 
empty),  then  the  root  is  not decomposed at all, and 
comprises  the  complete  description of the  space.  Oth- 
erwise, it  is  split  into  eight  equal  subcubes  (octants), 
which  become the  children of the  root.  This process 
continues  until all the nodes are homogeneous, or until 
some resolution limit is reached. Nodes corresponding 
to cubic regions that  are  completely full are  called 
object (or full) leaf nodes.  Nodes corresponding to 
empty regions are  called  background (or empty) leaf 
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nodes, and nodes  corresponding to mixed regions 
(non-leaf nodes)  are  called  non-terminal (or gray) 
nodes. 

The  octree  has  advantages  over  other  volumetric 
representations  because of the  speed  with  which 
volume elements  can be located  and  their  relative 
positions  established.  Octrees, however, suffer  from 
two  major  disadvantages. First, they  do  not  provide 
an  exact  representation for objects,  and,  second,  the 
size of the  tree  representing  an  object  depends  criti- 
cally  on  the  position of the  object in the  space.  Thus, 
translating or rotating  an  object  can  dramatically 
increase or decrease  the size of the  tree.  This  paper 
provides a n  algorithm  for  computing  such a new octree 
resulting  from an  arbitrary  translation  and  rotation of 
an  initial  tree (or trees),  which  attempts to minimize 
the effects of these  disadvantages. 

For  static  objects, a compact  representation  can 
be constructed  by choosing a favorable  orientation 
and origin for the  object  when building the  tree.  It is 
advantageous to use such a representation  in  the algo- 
rithm,  because  the  computation  time  depends  on  the 
size of the  source  tree.  Because of the finite resolution 
of the  octree  representation, a transformation  that 
moves and  reorients  an  object is not  guaranteed to 
preserve the  shape of the  object  exactly. Successive 
transformations will, in  general, deform the  shape 
more and more. It  is  thus  preferable  to  maintain a 
single, master  tree to represent  the  object,  and to per- 
form all transformations  on  that  tree. Successive 
transformations  are  then  performed  by  keeping  track 
of the  current  position of the  object,  and  constructing 
a new transformation as the  composition of this posi- 
tion  and  the  desired  motion.  Applying  the new 
transformsl$ion to the  master  tree  each  time minimizes 
the  errors  introduced  into  the new tree [2]). 

Nevertheless,  errors  are  introduced  into  the new 
tree,  and  must  be  controlled.  The errors manifest 
themselves as fluctuations in the  shape of the boun- 
dary of the  object.  These  should be kept as small as 
possible, and  their  cumulative effect on  the volume of 
the  object  should be bounded.  The  transformation 
must also maintain  the  topology of the  object.  That 
is,  holes should  not be introduced or filled in,  and  the 
object  should  not become disconnected.  Meeting  these 
constraints  requires  significant  computation. To 
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achieve  reasonable  performance,  the  algorithm  first 
applies a set of fast tests to weed  out  simple cases, 
and  then  applies a complete  screening to those nodes 
tha t  remain. 

The  next  section  describes  the  algorithm.  It is fol- 
lowed by  a discussion, examples of the  implementa- 
tion,  and conclusions. 

2. The Algorithm 
The goal of the  algorithm is to  take  an  original, 

master  octree  and  an  arbitrary  translation  and  rota- 
tion  (expressed as a homogeneous matrix in our imple- 
mentation)  and  to  produce a new,  transformed,  octree 
that  represents  the  result of applying  the  transforma- 
tion to the  master  octree. 

The  master  octree is oriented  parallel to the coor- 
dinate axes. This implies that  all the  delimiting  sur- 
faces of cubes  and  subcubes  are  described  by  simple 
equations.  The  transformed  tree  may  have  arbitrarily 
oriented  cubes  with  respect to the  master  tree.  These 
cubes  must, however, be mapped  back  into a tree  with 
cubes  parallel to the  coordinate  axes.  In  this  respect, 
the  problem  is  similar  to  that of geometric  correction 
of images [9]. 

The  algorithm relies on  the  observation  that 
transforming  an  object  by some transformation M pro- 
duces  the  same  representation as transforming  the 
underlying  coordinate  system by M-'. It  performs 
this  inverse  transformation  on a new root  cube, 
expressing the  transformed  octree  in  the  same coordi- 
nate  system  as  the  master  tree.  The new root  cube is 
superimposed  on  the  root of the  master  octree,  and 
the new tree is constructed  in  top-down  order,  building 
new nodes by testing  the new volumes against  the 
volumes  with  which  they  overlap  in  the  old,  master 
octree.  The  algorithm  constructs  only  those nodes 
that  are  needed for the final representation,  and  no 
coalescing of intermediate nodes is required. At  the 
highest  resolution in the  tree (lowest level), special 
processing is carried  out  for  partially filled cubes. 

For every  node,  the  algorithm  attempts  to  set  two 
flags, one  for  an  intersection  with  the  background,  and 
one  for  intersection  with  an  object. If, at  any  time, 
both flags are  set,  the node can  immediately be split, 
without looking at any  further nodes (except at the 
lowest  level, when  no  splitting is possible). This con- 
straint is used to  restrict  the  number of nodes  exam- 
ined at each  stage.  Once  one of the flags has been set, 
no  further nodes of that  type will be examined.  A 
second  constraint  restricts  the nodes to  be examined 
to  those whose volumes  in  the  master  tree  overlap  the 
new node, tha t  is, only neighboring  nodes or parents 
can affect the  value  assigned to a flag. Nodes that 
meet  these  constraints  are  called qualifying nodes or 
cubes. 

In the following algorithm,  the  untransformed 
octree is referred  to as the  master  octree. Nodes  in the 
tree  are  referred  to as cubes  when  their volumes or 
surfaces  are  being discussed. Given a translation  and 

rotation defined  by a homogeneous matrix,  and  a  mas- 
ter  octree to be transformed,  the process works  as fol- 
lows. 
1. Construct a new root for the  transformed  tree by 

applying  the  inverse of the given transformation 
to the  set of planes defining the  root  cube of the 
master  octree.  The inverse is guaranteed to exist 
because  the  transformation is a rigid body 
motion,  There  are six planes to  be transformed, 

(where,  in  the  master  tree, all but  one of the 
ai,bi,ci, are 0 in  each  equation).  Each  plane is 
transformed  to give the new sides of the 
transformed  cube.  Note  that  the  children of this 
cube  have  surface  equations  that  are  simply com- 
puted as known offsets from  these  planes (i.e., 
only  the  values of dl ,  ... d6 change. 

2. We  want  to  establish  that  the  transformed  cube 
intersects  only  with  empty nodes, in  which  case 
it is empty,  or  that  it  intersects  only  with full 
nodes,  in which case  it is full. Otherwise,  the 
cube  must be subdivided. We start  by examining 
the  vertices of the  transformed cube. If any  ver- 
tex  is  outside  the root  node of the  master  octree, 
then  the  transformed  tree is said to intersect  with 
the  background by  definition (we consider the 
region surrounding  the  octree  to be empty - if this 
is not  appropriate for a  particular  application, 
only  minor  changes to  the algorithm will result). 
If we can  establish  that  the cube  also intersects 
with  an  object  node, we can  immediately  subdi- 
vide it,  and recursively examine  its  children in the 
same  way. If a t  least one vertex is inside the mas- 
ter  octree,  and  one is outside,  the  transformed 
tree is immediately  subdivided.  The  tests 
described below are  performed  on all children 
(and  on  the root of the  transformed  tree if it is 
not  yet  subdivided).  For  each child, the  tests 
always begin with  the root of the  master  octree, 
and  work down the  appropriate  subtrees. 

3. For  each qualifying cube a t  a given resolution 
level in  the  master  tree  (initially  the root cube), 
find  the  centers of the  master  cube  and  the 
transformed  cube  (in  the  master  coordinate 
frame).  Compute  the  radii of the inscribed 
spheres  for  each  cube,  and of their enclosing 
spheres.  Find  the  smaller of the  cubes,  and see if 
its  center is inside the  larger  cube. If it  is,  they 
intersect  (Figure 1). 

4. If the  distance  between  the  centers of the  cubes is 
less than  the  sum of the  radii of the  inscribed 
spheres,  then  the  cubes  intersect  (Figure 2). If 
the  distance is greater  than  the  sum of the  radii 
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of the enclosing spheres,  the  cubes  do  not  inter- 
sect  (Figure 3). Otherwise,  the  intersection region 
lies in  the shell between  the  two  spheres  (Figure 
4), and a more  detailed  examination  must be 
made to determine  whether or not  the  cubes 
intersect.  This  is  done as follows. 
Intersect  each edge  in the  master  cube  with  each 
surface  in  the  transformed cube. The  intersection 
tests  are  easy  because  each edge is parallel to one 
of the  three  coordinate axes. Any  intersection 
must lie both  within  the  area  bounded by the 
edges of the  surface  and  within  the  endpoints of 
the edge not  including  the  endpoints  themselves 
(Figure 5). The  endpoints  are  excluded  because, 
for an  intersection,  the edges are  required to 
pierce  the  surface  rather  than  simply  touch it. 
The  same  intersection  tests  must be done  using 
the  edges  from  the  transformed  cube  and  the  sur- 
faces  from  the  master  cube to account  for  cases 
such as tha t  in Figure 6 .  In  this  case, as opposed 
to  the previous  one,  the  surface  equations  are 
simple, while the edge equations  are  not. 

5. If a  cube  intersects  with  an  empty  node,  a flag for 
empty  intersection is set. If it  intersects  with a 
full node,  this is also flagged. If both flags are  set, 
the  cube  can  immediately be split,  and its chil- 
dren  recursively  tested,  because  the node cannot 
be a leaf  node. A node that  totally  contains  a 
gray node is also  split. If only one flag is set   at  
any  resolution level, after  examining all  qualifying 
nodes at tha t  level, the new node is a leaf node of 
the  appropriate  type. 

6. At  the lowest level in  the  tree  (highest  resolution) 
nodes that  are  not homogeneous require  special 
treatment.  We  compute  an  estimate of the 
amount of the total volume of the node that is 
occupied  by  the  object.  This  can be thresholded, 
or kept  for  later processing. The  estimate is com- 
puted  by  artificially  subdividing  the nodes into 8 
regions. The  center of each  resulting  cube is 
transformed  and, if it  falls  within  a full  node  in 
the  master  tree,  the  subcube is said to be  full. A 
count of the  number of full subcubes is used as an  
estimate of the  occupied volume of the  terminal 
cubes.  In  the  examples  presented below, this 
value  was  thresholded  to decide whether or not 
the  node  should be displayed. 

3. Discussion 
For each  node in the new tree,  the  algorithm 

traverses a subtree of the  master  tree to the level of 
the new node. As soon as the node is found to inter- 
sect  with  both a background  and  an  object  node,  the 
node is split, a new gray node is created,  and  the algo- 
rithm  is  repeated  on  the  children.  Only in the  case 
that   the  node is a leaf is a complete  traversal of the 
subtree  required to the level in the  master  tree at 

which  the new node overlays  only  nodes of one color. 
In  this  case,  no  children  are  generated.  We  note  that 
child nodes need  only be intersected  with nodes in  the 
master  tree  starting at the level of their  parents, 
because  the decision to split  the  parent implies that  
the  necessary  information  for  labelling  its  children lies 
below it in the  tree.  Thus,  for  each new node  in the 
transformed  tree, a narrow cone is examined,  starting 
at the  parent level, and ending a t   the  level at which 
the  label of the node is determined (possibly the 
highest  resolution level in  the  master  tree).  The 
breadith of the cone is limited to  the  set of nodes in 
the  master  tree  that  intersect  the new node's volume 
(in practice,  the  parent  node,  its  neighbors,  and  their 
descendents). 

Weng  and  Ahuja [ll] describe an  algorithm to 
perform  arbitrary  rotations  and  translations  on  octrees 
tha t  works  in  a  manner different from  the  one we 
describe  here.  Their  approach is to project  the  object 
nodes in  the  master  tree  into  the new tree,  and to con- 
struct  the  necessary new nodes  by  traversing  the new 
tree.  While  their  approach  has  the  same  computa- 
tional  complexity as ours  (described below), it suffers 
from  some  disadvantages.  These  arise  because of the 
local nature of projecting  the  individual  object  nodes, 
as  opposed to  the global  projection of the new tree 
over hhe old.  Each  object node projected  into  the new 
tree  interacts  only  with  the  partially  constructed new 
tree. . 4 s  a result,  it is possible for  subtrees to  be gen- 
erated  that  will later be merged  into leaf nodes  when 
adjac,ent  object  nodes  are  projected.  These  subtrees 
may have to  be traversed  many  times before  finally 
being deleted.  In  contrast,  our  method  never  creates 
extra  nodes,  and  traverses  the  master  tree, which is 
usually  compact,  and  contains all the  necessary infor- 
mation  for  informed decisions. 

The  local  nature of Weng  and  Ahuja's  approach 
also affects  the  treatment of partially filled nodes a t  
the  highest  resolution level. Their  approach is to 
declare a node to be an  object leaf if its centroid is 
inside or on  the  boundary of a projected  object node. 
If two  adjacent  projected  nodes  that  do  not  meet  this 
condition would nevertheless  together fill the new 
node,  this  cannot be taken  into  account.  Our  method 
computes  the  label  for  the node based  on  the percen- 
tage (of the node tha t  is full,  from  whatever  source. 
This  has a small  practical benefit due to  potential 
inaccuracies  arising  from  arithmetic roundoff errors  in 
the  projection  computations,  which  might  perturb  the 
boundary of a node  enough to place  the  centroid  out- 
side t'wo projecting  nodes,  which  together cover the 
new node. 

Other  previous  work  has  dealt  with  special  cases 
of the  transformation  problem.  Several  authors  have 
treated  the  case of pure  translation  and  rotations by 
multiples of 90 degrees [I, 4, 7, 81. The  reason  for 
these  restrictions  has been the desire to maintain  an 
exact  representation.  Arbitrary  transformations  suffer 
from a disadvantage,  in  that  applying  their  inverse 
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does not  necessarily  result in the original octree. If B 
sequence of transformations is to be applied, for  exam- 
ple,  in  moving an  object  through  a region of space, 
something  must be done to prevent  the  shape of the 
object  from  changing  radically  as  the  transformations 
are  applied.  Our  solution,  and  that of Boaz and  Roach 
121, and  Weng  and  Ahuja [ll], has been to  maintain a 
cumulative  transformation  from a standard  position, 
and  always  perform  the  resultant  transformation  on  a 
standard  representation of the  object.  This  reduces 
the  errors  to  those  incurred in constructing  the  cumu- 
lative  transformation,  which gives rise to  an  error in 
position,  rather  than  one in shape.  Because of floating 
point  arithmetic,  this  has, in general,  a  much  smaller 
effect on  the  results  than successive transformations 
would have if applied  directly to successive octrees, 
which are defined in  a  discrete  space. 

Dealing  with  the  limited  resolution is the  major' 
difficulty with  the  octree  representation.  For some 
applications,  such  as  robot  path  planning,  it is desir- 
able to  declare all highest  resolution leaf nodes to be 
full if they  intersect  with  any  part of an  object.  This 
is less costly than  the  approach  taken by Boaz and 
Roach [2], in which a shell of nodes around  each 
object  node is projected  into  the  octree,  and  intersec- 
tions  with  these  are  considered to  be Med.  Care  must 
be taken in other  applications,  such  as  rendering of 
fine line features,  that lines are  not lost or broken. 

The  complexity  analysis of t,he algorithm  can be 
sketched  by  analogy  with  that of Weng  and Whuja as 
follows. Let n be the  side  length of the  master root 
cube.  Then  the  depth of the  tree is O(!ogn). Let K be 
the  number of nodes in  the new tree.  In  generating  the 
new tree, we might a t  worst  have to  traverse  the mas- 
ter  tree  to  its full depth for each new node created, 
requiring S ( 4 ' O g " )  operations, (see [ll]). Under  the 
assumption  that  the  number of black nodes at a level 
in  the  tree is proportional  to  the  total  number of 
nodes possible a t   that  level, it follows by analogy  with 
the  algorithm of Weng  and  Ahuja [ll] that  the  aver- 
age time  complexity of the  algorithm is bounded by 
O(1ilogn). 

4. Implementation 
The  algorithm  was  implemented in the "C" pro- 

gramming  language  on  a VAX-11/780 computer.  Mas- 
ter  octrees were built  for a number of simple objects. 
No effort was  made to construct  the most compact 
possible master  trees,  but  the  largest  surfaces of the 
objects were aligned  with  the  coordinate  axes of the 
space  (except in the  case of the  cylinder,  where  this is 
not possible). Figures 7, 8, and  9 show the  results of 
several  experiments.  In  each  image,  three views of an  
object  are  shown,  projected  into  the  same  octree.  The 
transformations used are  shown  in  Figure 10. Note 
that  the  final  octree  represents  the  projection all three 
instances of the  object,  and is not  a composite image 
constructed  from  three  trees  for  display  purposes.  The 
times given in  Table I are for the total construction of 

the  complete  tree (all three  objects).  They  are in CPU 
seconds  on a loaded VAX. It is clear that  in  some 
cases,  many more  nodes are  required  to  represent  the 
objects in their new positions than in the  master  tree, 
and  that  most of the new nodes appear  at  the boun- 
daries of the  objects. For all the  objects, nodes at the 
highest  resolution  are  displayed  as  object nodes if they 
were  half or more filled after  transformation. 

5. CQIldUSiQnS 
An  algorithm  has been  described  for  performing 

arbitrary  rotations  and  translations  on  objects 
represented  as  octrees.  The  algorithm  constructs  only 
those nodes that  appear in the final tree,  and  makes 
decisions about  splitting nodes at  the highest possible 
level. By traversing  the  master  tree  instead of the 
transformed  tree,  advantage  can be taken of compact 
coding of that  tree.  The  algorithm  attempts  to minim- 
ize errors  in  the  transformation by always working 
from  the  master  tree,  and  maintains  the topology of 
objects to   the limit of its  resolution. 
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Figure 1. If the  center of the  smaller  cube  is 
within  the  larger  cube,  the  cubes  intersect. 

Figure 2. When  the  distance  between  the 
centers of the  cubes is less than  the  sum of the 
radii of the  inscribed  spheres,  the  cubes  intersect. 

Figure 3. When  the  distance  between  the 
centers of the  cubes  is  greater  than  the  sum of 
the  radii of the enclosing spheres,  the  cubes  do 
not  intersect. 

Figure 5. When  an  edge of a node in  the  master 
tree  (small  node)  intersects a surface  in  the 
transformed  tree,  the  transformed node must be 
split. 

Figure 6. Even if no edge in  the node from  the 
master  tree  intersects a surface  in  the 
transformed  tree,  the  nodes  can  intersect. 

/'I 
/ 
/' 

, V 

Figure 7. Three views of a rectangular  paral- 
lelepiped  (box)  projected  into  the  same  octree. 
The  transformations  are  T,,T2,andT,  from  Figure 
10. For the display,  the  tree  was  expanded to 
level 6. 
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1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

1 0 0 270 
0 1 0 256 
0 0 1  0 
0 0 0  1 

Figure 8. Three views of an  L-shape  projected 
into  the  same  octree.  The  transformations  are 
Tl,T4,andT5  from  Figure 10. For the  display,  the 
tree was expanded to level 6. 

0 0.7071  0.7071 0 
-1 0 0 384 
0 -0.7071  0.7071 384 
0 0  0 1  

1 0 0 256 
0 1 0 270 
0 0 1  0 
0 0 0  1 

0 -0.9848  -0.1736 128 
1 0  0 256 
0 0.1736 0.9848 256 
0 0  0 1  

0 0 1  0 
0 1 0 256 

-1 0 0 384 
0 0 0  1 

Figure 9. Three views of a cylinder  projected Figure 10. The homogeneous transformations 
into  the  same  octree.  The  transformations  are used for  the  examples of Figure 7, 8,  and 9. From 
T1,T4,andT,  from  Figure 10. For  the  display,  the top to  bottom,  they  are Tl,T2,T3,T4,T5,T6. 
tree  was  expanded to level 7.  

Object Time  Per Time  For Nodes in  Nodes  in 
(Transformation) Node Transformation Transformed  Tree  Master  Tree 

box (T,bT&T,) 0.011 6.25 545 25 
L-shape (T,bT,bT,) 

0.057 127.4 2233 969 cylinder (T,8T46T,l 
0.011 8.05 713 25 

Table 1. 
Examples of the  times  required  for  transforming  various  objects. 
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