
SUB-OPTIMAL ALGORITHMS FOR FORCE DISTRIBUTION 
IN  MULTIFINGERED  GRIPPERS 

* 
Vi j a y  Kumar - Kenneth J .  Waldron 

* - Graduate  Research  Associate 

** 

** - The John B .  Nordholt   Professor 

The Department  of  Mechanical  Engineering 
The Ohio S ta te   Univers i ty  

206 West 18th Avenue 
Columbus. OH 43210 

ABSTRACT 

The work descr ibed   in   th i s   paper  
addresses  the  problem  of  determination of t h e  
a p p r o p r i a t e   d i s t r i b u t i o n  of f o r c e s  between t h e  
f i n g e r s  o f  a multif ingered  gripper  grasping an 
objec t .  The system i s   s t a t i c a l l y   i n d e t e r m i n a t e  
and an opt imal   so lu t ion   for  this probiem i s  
des i r ed   fo r   fo rce   con t ro l .  A f a s t  and e f f i c i e n t  
sub-optimal method f o r  computing the  grasping 
f o r c e s  i s  presented.   This  method i s  based on  t h e  
superpos i t ion   o f   f inger - in te rac t ion   forces  on  
e q u i l i b r a t i n g   f o r c e s .  An  i n t e r a c t i o n   f o r c e   i s  
de f ined   a s   t he  component of the   vec tor   d i f fe rence  
of t h e   f i n g e r   c o n t a c t   f o r c e s   a t  any two f i n g e r s  
along the l i n e   j o i n i n g   t h e  two contac t  p o i n t s .  
They a r e  computed based on the assumption  that  
t he   no rma l s   a t   t he   po in t  of  contact  pass t h r o u g h  
t he   cen t ro id  of t he   con tac t   po in t s  and a r e  
therefore  independent  of  the  actual  geometry  of 
t he   ob jec t .  The c o n t a c t   i n t e r a c t i o n   i s  model 1 ed 
a s  a p o i n t  contac t .  The problems  associated  with 
making the  algorithm  independent of t h e   o b j e c t  
geometry a re   explored .  

1. Introduct ion 

Dextrous,   mult i f ingered  gr ippers  have been 
the   ob jec t  of considerable  research  [1]-[4].  The 
kinematics  and  force  control  problems  engendered 
by these   devices  have been analyzed  in  [5]-[8]. 
Force  control  of  such a system  requires   the 
s p e c i f i c a t i o n  of   contact   forces  between t h e  
f i n g e r s  and the   g r ipped   ob jec t .  The gr ipper -  
object  system  has a high  degree  of s t a t i c  
indeterminacy  [6],   [8],   [9]  and  the  interaction 
between the   g r ippe r  and t h e   o b j e c t   i s   s i m i l a r   t o  
t h e   i n t e r a c t i o n  of a legged  locomotion  system 
with  the  ground  [lo]-[12].  This  paper  outlines a 
method of  computing the   g rasp ing   forces   for  a 
general   object .  

I n  a legged  locomotion  system or a walking 
machine i t   i s   e s s e n t i a l  t o  compute the   suppor t  
f o r c e s   r e q u i r e d   a t   t h e   f e e t   t o   m a i n t a i n  
equi l ibr ium w i t h  t h e   f o r c e  of  gravity and t h e  
i n e r t i a l   f o r c e s  [lo], [12]. I n  t he   g r ippe r -ob jec t  
system,  in  addition  to  computing  the  contact 
forces   requi red  t o  maintain  the  object   in  
e q u i l i b r i u m   ( e q u i l i b r a t i n g   f o r c e s ) ,   i t   i s  
necessary t o  de te rmine   the   f inger - in te rac t ion  
f o r c e s   t o   e n s u r e   t h a t   t h e   f r i c t i o n   a n g l e   a t  each 
con tac t   po in t   i s   w i th in   a l lowab le   l imi t s .  The 
in t e rac t ion   fo rce  between two f i n g e r s   i s   d e f i n e d  

a s   t h e  component  of the   d i f fe rence  of t h e   f i n g e r  
c o n t a c t   f o r c e s   a t   t h e  t w o  f ingers   d i rec ted   a long  
t h e   l i n e   j o i n i n g   t h e  two con tac t   po in t s .  (They 
a r e   s i m i l a r  t o  t h e   s c a l a r   i n t e r n a l   f o r c e s  which 
descr ibe  the  pinch between two f i n g e r s  [l], 
[8] ) .   This   p roblem  lends   i t se l f   to   op t imiza t ion  
of t he   con tac t   fo rces   t h rough   l i nea r  programming 
[6] b u t  such  techniques  are  very  expensive  in 
terms of computational  time  and  are  consequently 
unsui tab le   for   rea l - t ime  opera t ion   wi th   cur ren t ly  
a v a i l a b l e  computer  hardware. 

A sub-optimal  solution t o  t h i s  problem i s  
proposed  in   this   paper .   This  method i s   a t t r a c t i v e  
i n   i t s   s p e e d  and ef f ic iency .   Contac ts   a re  
model led  as   point   contacts  [8] ( the   po in t   con tac t  
model i s  accura te  when the   f i nge r   t i p s   a r e   sma l l  
compared to   t he   ob jec t   be ing   he ld )  and i t  i s  
assumed. t h a t   t h e   o b j e c t  is  s ta t ionary   wi th  
respec t  t o  the   g r ipper  - manipulat ion  issues   are  
n o t  in   context   here .  A h e u r i s t i c   i d e a  (based. o n  
this method) fo r   s e l ec t ing   g ra sp ing   pos tu res   i s  
a1 so presented.  

2 .  Formulation 

2 . 1  Coordinate  systems: 

Let XE-YE-ZE be a reference  frame  fixed  with 
r e s p e c t  t o  the   ear th .   Cons ider  a reference  frame 
XB-YB-ZB w i th   t he   o r ig in   a t   t he   g ra sp   cen t ro id ,  

t he   cen t ro id  of t he   suppor t / con tac t   po in t s ,  ( x i ,  

E y i ,  E ~ i )  and the   ZB-ax i s   pa ra l l e l   t o   t he  wrench 
axis   [13] ,  $ ( s e e   f i g u r e  1). 8 i s   t h e   a x i s  of  the 
wrench  which i s   t h e   r e s u l t a n t  o f  the  weight  of 
t h e   o b j e c t  and t h e   i n e r t i a l   f o r c e s  and  moments. 
The l ead ing   supe r sc r ip t s  E and B r e f e r  t o  t h e  
e a r t h  and body (objec t )   f ixed   re ference   f rames  
r e s p e c t i v e l y .  Let ( x $ , ~ Y $ , O )  be t h e   i n t e r s e c t i o n  
of t h e  wrench ax is   wi th   the  X 8 - Y B  p lane.  From 
th is   po in t   on ,   un less   o therwise   spec i f ied ,   a l l  
quan t i t i e s   a r e   desc r ibed   i n   t he  body f ixed  
reference  frame. I n  f i g u r e  1, 

E 

B 

p. i s   t h e   p o s i t i o n  of t he   i t h   con tac t   po in t ,  
n i s   t h e  number of con tac t   po in t s ,  
- F i  is  t h e   c o n t a c t   f o r c e   a t  p i ,  
0 i s   t h e   c e n t r o i d  of t h e  n con tac t   po in t s ,  

1 

and 
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( f , c )  is the force-couple dyname [13] 
associated with the wrench about 8 .  
This problem  can  be decomposed into  two sub- 

problems: 
A. Determination of the forces required  to 

maintain the equilibrium of the  gripped  body 
assuming that the finger interaction forces 
are absent. 

B. Determination of the interaction forces needed 
to produce  the finger forces computed in step 
A without violating  the friction angle 
constraints. 

The following subsections elaborate on procedures 
for A and 8. 

2.2  Force distribution for maintaining 
equilibrium: 

The  force distribution must satisfy the six 
equations of equilibrium enumerated below. 

c F .  = O  

C F  = O  

C Fiz = f ( 1.3 1 

( 1 . 5  1 

1x ( 1.1 1 
( 1.2 1 iY 

C (yiFiz-  ziFiY) 0 ( 1.4 1 
C (ziFiX- x.F. ) = 0 
C (xiFiY-  yiFix) = c ( 1.6 1 

1 12 

There are two ways this force distribution can  be 
arrived at. The first procedure is based  on  the 
zero finger force interaction  principle  but  the 
second method differs slightly in that the 
interaction forces are zero only if  the  points of 
contact are considered  to  be projections o f  the 
actual points of contact on  the XB-YB plane. 

2.2.1 Method I 
Eauation (1) can  be  decomposed  into two sub- 

problems. Three 'out o f  the 'six equations of 
(1.6) are written equilibrium, (l.l), (1.2), and 

as : 

1 0  1 0  . . .  1 0  

0 1 0  1 . . .  0 1 

-y x -y x 1 1 2 2 . . * - Y n X n  

1 

where Fix and F are  the x and y components of 

Fi and the xi and yi coordinates refer  to  the i th 
iY 

- 

xE 

Figure 1: Reference frames for the gripper-object 
system. 

0 

Figure 2: Finger contact forces at the i 
contact point. 

finger contact point (from this poiqt on, all 
references are to  the  body reference firame and 
the superscript B is  deleted for convpnience). 
The .matrix  equation ( 2 )  represents an 
undetermined set of equations with only 3 
equations in 2n unknowns. There are clearly 2n-3 
degrees of freedom in this system. However in 
accordance with the zero force interaction 
principle [E], the vector difference  between any 
two contact forces should have  no component 
along the line joining the two contact points. 
Mathematically, this condition  is  expressed  as: 

th 

I 
1 

The matrix equation ( 2 )  can now be solved 
subject to the restriction (3) and this yields a 
simple solution given by: 
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n is the number  of contact points. 

The forces on the X-Y plane are thus given by 
equations (4.1) and (4.2) and  it  is  easy  to 
verify by substitution that they satisfy equation 
( 3 ) .  If Fit i s  the resultant of .Eix and Fiy, then 
-it 
position vector and 
F is perpendicular  to the corresponding 

(FixL + F .  d ) .  pi = 0 1Y 

This force field  is analogous to  the velocity 
field of a rigid  body where the velocity of any 
point is perpendicular to  the position vector if 
the  origin  is coincident with the velocity center 
[121. 

If ( 2 )  is  rewritten  as 

Gr = - ( 6 )  

where 5 is the 3x2n coefficient matrix, r is  the 
2nxl unknown force vector  and 8 is a 3x1 load 
vector, then this system of equations can also be 
solved by taking the Moore-Penrose Generalized 
Inverse (or the pseudo-inverse) of 5 [14]. If 5' 
is the pseudo-inverse of 5, then for a full  rank 
matrix (one in which the rank of 5 is the minimum 
o f  p and q), then 

- G + = ST ( ST) 
and r can  be  found from the equation 

(In the event 5 is not of full rank, the pseudo- 
inverse can  still  be  found  by  using the LU 
decomposition scheme or the Householder algorithm 
[14]). The pseudo-inverse can  be analytically 
derived  and  it  is interesting to note that the 
solution thus obtained from equations (7.1) and 
(7.2) is identical  to equations (4.1) and ( 4 . 2 ) .  

This in fact provides a physical 
interpretation of the pseudo-inverse. The null- 
space of the coefficient matrix, 5, consists of 
all possible  interaction force vectors and  the 
row-space of 5 comprises of  all the equilibrating 
force vectors with zero interaction force 
components. The pseudo-inverse seeks the solution 
vector with the least Euclidean  norm (length) and 
hence  the force vector  which lies completely in 
the row-space of the coefficient matrix (which 
has no  interaction force components). 

Having found the finger forces in the x and y 
directions the three remaining equations of 
equilibrium, (1.3), (1.4) and (1.5) can  be 
applied to solve the  second sub-problem : 

This can  be  solved again by using  the pseudo- 
inverse which serves to minimize the norm of the 
F vector. ( A  physical interpretation for the 
pseudo-inverse can  be made in terms of  the 
fingers having  equal compliances in the Z -  
direction). The zero force-interaction principle 
can not used  here as it  would necessitate the 
equality of all the .Eiz components and thus over- 
constrain the problem. The force field 
obtained by the pseudo-inverse is described by a 
planar force distribution. .This completes one 
method for step A. It  should  be  noted that 
equation (2) has  to  be  solved  before  the right 
hand side of equation (8) is  known - the two 
equations are not completely decoupled. 

-Z 

2.2.2 Method I1  
This method decouples the sub-problems of 

finding forces parallel  to  the xB-yB plane  and 
forces parallel  to the wrench axis completely. 
This time, equations (1.1) through (1.5) are  used 
to solve for F i x  and Fiy. 

r 1 0 1 0  . . .  1 0 -  

0 1 0 1  . . .  0 1  

-y x  -y  x 1 1  2 2 '  ' .-'nXn 
zlo z20 . . . Z n O  

0 z l o  z 2 .  . . O 'n 

F 1Y 

F2x 

F2Y 

Fnx 
F 
nY 

Once again, the pseudo-inverse is  used  as a 
tool to  keep  the magnitude of  the forces small. 
With some algebraic manipulation this can  be 
solved and  an  analytical  expression for the 
forces can  be found. 

F .= c  x (-y.T2 + ziE) 
x1 1 

-2 -2  -2 
n(Iz - yz - xz ) 

F .= c  x (xi;' - ziz) 

n(Iz - yz - xz ) 

Y1 
-2  -2 -2 

where, z - - C z -2- 1 n 2  
l=r  

- l n  
xz= - z (X.Z.), 

n . i' 

n 1 1  i =1 

and E= ; l n  C (yizi). 
i =1 
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Now t h e  z-components o f   t h e   f o r c e s   a r e   f o u n d  
b y   w r i t i n g   e q u a t i o n s   ( 1 . 3 )   t h r o u g h   ( 1 . 5 )   t o   g e t  
equat ion ( 8 ) ,  b u t  now the  terms CziFix and cziFiY 

are   zero   because  o f   the  way t h e  Fix and F were 

f o u n d .   T h i s   t i m e   a n a l y t i c a l   i n v e r s i o n   f o r  
equat ion (8)  i s   n o t  as cumbersome and t h e  L z  a re  

g iven  by :  

i Y  

Fizz ( f / D )  X (1 - A (xi- X ) - B ( y i -   y $ ) )   ( 1 2 )  
$ 

where, 
x != ( x . - x  ) ,  

1 1 8  
Y;= (Y i -Y$ ) ,  

A = c x {  e y, - e x l y :  c y f  

Equat ions (10)  and (11) do n o t   d e s c r i b e  a 
f o r c e   f i e l d   w i t h   z e r o   i n t e r a c t i o n   f o r c e s  
(equa t ion  ( 5 )  does n o t   h o l d )  - un less   the   con tac t  
p o i n t s   a r e   a l l  on t h e  X-Y p lane.   But ,  on t h e  
other   hand,   the  complete  decoupl ing  o f   the 
equat ions ( 9 )  and ( 1 2 )   w h i c h   a r e   r e q u i r e d   t o   f i n d  
t h e   f o r c e s   i s  an advantage. It i s   d i f f i c u l t   t o  
say  which o f   t h e  two  methods i s   b e t t e r  as i n  
e i t h e r   c a s e ,   t h e   s o l u t i o n   i s   s u b - o p t i m a l .  
However,  method I i n v o l v e s   l l n + 1 6   m u l t i p l i c a t i o n s  
and l l n + 5   a d d i t i o n s  and  method I 1  needs  15n+13 
m u l t i p l i c a t i o n s  and  16n-3  addi t ions.  I f p a r a l l e l  
process ing i s   a v a i l a b l e   t h e n  method I 1   c u t s   t h e  
t i m e   r e q u i r e m e n t   t o   t h a t  needed f o r  9n+3 
m u l t i p l i c a t i o n s  and  7n-4 a d d i t i o n s .   C l e a r l y ,  
method I 1   i s   s u p e r i o r   i n  a p a r a l l e l   p r o c e s s i n g  
environment ( i t  takes 15-20 X l e s s   t i m e )   b u t  
otherwise,  method I i s   f a s t e r .  

2 .3   I n te rac t i on   Fo rces :  

The f o r c e s  computed  by e i t h e r   o f   t h e  two 
methods   desc r ibed   ea r l i e r   a re  Fiz ( i  1, ..., n) 

w h i c h   a r e   p a r a l l e l   t o   t h e  wrench a x i s ,  $ and Fix, 

Fiy ( i = l ,  . . . ,  n)  which l i e  on p lanes   perpend icu la r  

t o   t h e  wrench  ax is .  It i s  assumed t h a t  method I 
i s  used  and  the   resu l tan t  o f  t h e   f o r c e s  Fix and 

Fiy i s   p e r p e n d i c u l a r   t o   t h e   v e c t o r   ( s e e   f i g u r e  

2 ) .  L e t   t h e   t o t a l   i n t e r a c t i o n   f o r c e   e x e r t e d   b y  

t h e  ith f i n g e r  on t h e   o b j e c t  be F i I .  Then 

n 

i =1 
n 

c q l =  0 

The r e s u l t a n t   o f   t h e   i n t e r a c t i o n   f o r c e s  has t o  be 
z e r o   f o r   e q u i l i b r i u m   t o  be main ta ined  (equat ion  
( 1 3 ) ) .  The g e o m e t r i c   s i g n i f i c a n c e   o f   ( 1 4 )   i s   t h a t  
t h e   l i n e s  o f  a c t i o n  o f  fiI have t o  pass  through a 

p o i n t  o f  concu r rence .   I n  an i d e a l   s i t u a t i o n ,   t h e  
l i n e s   o f   a c t i o n   w o u l d  be a l o n g   t h e   n o r m a l s   t o   t h e  
s u r f a c e   o f   t h e   g r i p p e d   o b j e c t   a t   t h e   c o n t a c t  
p o i n t s .   I n  a p r a c t i c a l   s i t u a t i o n ,   t h e   n o r m a l s   a t  
t h e   c o n t a c t   p o i n t s   a r e  unknown  and, i n   g e n e r a l ,  
t hey   a re   no t   concu r ren t .  It i s  p roposed   tha t   t he  
p o i n t   o f   c o n c u r r e n c e  be chosen  as t h e   c e n t r o i d   o f  
t h e   c o n t a c t   o f   p o i n t s ,   n a m e l y   t h e   o r i g i n .   T h i s  
choice i s  mere ly  a convenience  and i n   p r i n c i p l e ,  
any   o ther   po in t   cou ld  be  chosen. The reader  i s  
reques ted   t o   bea r   w i th   t h i s   g ross   assumpt ion  - 
i t s   v a l i d i t y   i s   d i s c u s s e d   l a t e r .  Now t h e   u n i t  
normals, e . ,  a t   a l l   t h e  n c o n t a c t   p o i n t s   a r e  
g iven  by 

1 

eix= xi/di, eiy= yi/di,  and eiz= zi/di (15)  

where di= / ( x .+  2 2 2  y . +  z . ) .  
1 1 1  

Equation  (13)  can be r e w r i t t e n   a s :  

F 0 
111 

F2 I = [ o  
0 

Fn I- 

For  n=3,  equat ions  (16)  comprises  of   three 
homogeneous l i n e a r   e q u a t i o n s   i n  3 unknowns, t h e  
o n l y   s o l u t i o n  seems t o  be a t r i v i a l  one. T h i s   i s  
n o t   t h e   c a s e   s i n c e   t h e   r a n k   o f   t h e   s y s t e m   o f  3 
equat ions i n  (16)  i s   o n l y  2 .   Th is  i s  because  any 
th ree   po in ts   a re   cop lana r ,   and   t he   de te rm inan t   o f  
t h e   c o e f f i c i e n t   m a t r i x   f o r m e d   b y   t h e   s i ' s   i s  

a lways   ze ro   f o r  n=3.  Thus, (16)   has  on ly  one 
degree o f  freedom. I f  n=4  there   a re  3 independent 
e q u a t i o n s   ( i n   g e n e r a l   t h e -   p o i n t s   a r e   n o t  
c o p l a n a r ,   u n l e s s   t h e   g r i p   i s   p l a n a r ,  and the   rank  
i s  3 )  and  again  there i s  one  degree o f  freedom. 
For n 2 4 there   a re   n -3   degrees   o f   f reedom.   In  
f i g u r e  2 ,   t he   ne t   con tac t   f o rce ,  Fi i s   g i v e n   b y  

-1 F. = Fit+ fi z+Ei I 

and  can  be resolved  a long  the  normal  ei 
(postu la ted  normal  ) t o   g e t  Fin and  on t o   t h e  

p lane   pe rpend icu la r   t o   t he   no rma l   t o   ge t  Fif. L e t  

qi be the  angle  between Fiz and si ( i . e .   c o s  q i = 
eiz). Then, 

Fin = F.  11 - FiZcos q i (17)  

Fif = J(Fizsin rli+ Fit) 2 2  2 (18) 
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and the friction angle, $i, at the ith contact 
point is defined as 

tan @i= (F4q/ Fin) (19)  

In order to  prevent the finger from slipping, 
it is essential that the friction angle be within 
a prescribed limit. If pi is the coefficient of 

friction between the ith finger and  the surface 
of  the object then the maximum value of is 

tan pi. This yields n inequality constraints: -1 

The interaction forces should be made  as low as 
possible  to minimize the isometric work and  to 
prevent crushing the object. The interaction 
forces can be determined by minimizing the 
largest of the FiI satisfying the equalities in 
(16) and the inequalities in (20) --- this is a 
classic linear programming  exercise. The problem 
is  easily  solved this way  but clearly this method 
is not viable for a real-time control algorithm. 
An alternative faster algorithm  is  presented 
bel ow. 

n = 2 is a trivial case where ElI=  -F  For 
n = 3 or 4 there is generally only one degree of 
freedom in equation (16). Setting FII= 1 the 
other interaction forces can  be  found. Then the 
FiI are scaled with  the smallest multiplicative 
factor which satisfies the constraints in (20). 
In general  if  the  rank of the coefficient matrix 
in (16) is k, then if n-k=l the FiI can  be  found 
by elimination followed by the scaling process. 
For n-k > 1, if FII i s  set to 1, the other FiI 
can  be obtained by-  using the pseudo-inverse 
technique (instead  of Gaussian elimination). 
However, unlike the other instances (equations 
(9) and (12)), an analytical inverse is not as 
simple. An alternative method is proposed  to suit 
a parallel-processing environment. With  any (n- 
k) of the  interaction forces set to their minimum 
values (as  defined in equation (20)) the 
remaining interaction forces can be found from eq 
(16)  by elimination. This process  can  be  repeated 
for all possible pairs of interaction forces to 
obtain Cn-k possible solution vectors. Not of 
a1 1 of these will satisfy the constraint in 
equation (20). From  the  valid solutions, the 
solution with the smallest maximum interaction 
force is selected as a 'best' solution. A1 1 the 
n Cn-k solutions can  be  computed independently 
thus facilitating implementation on  parallel 
processors. 

For n = 3, the  process of determining 
interaction forces requires 38 multiplications, 
20 additions and 6 square root operations and 
these figures are 58,  32 and 8 for n = 4. These 
numbers have  to be added  to those obtained for 
calculating equilibrating forces to arrive at the 

-21. 

n 

total  computational cost for the algorithm - 87 
multiplications, 58 additions and 6 square roots 
for n = 3 and 118 multiplications, 81 additions 
and 8 square roots for n = 4 (using  method I on a 
single processor). 

3. Exampl e s  

Example  (a): Hex-nut ( s e e  figure 3 (a)) 

No. of  fingers: 3 
Coordinates of : 1 - ( 0.0216,-0.0125,0.0) 
contact points 2 - (-0.0216,-0.0125,0.0) 
(in meters) 3 - (0.0000, 0.0250,O.O) 

Load force ( N )  : 1Ok applied at (0.0, 0.0, 0.0) 
Load  couple  (N-m): lk 
Equilibrating forces : El= 6.661+11.55;i+3.33k 

F2= 6.661-11.551+3.33k 
F3=  -13.33L+3.33k 

( N )  - 
- 

Interaction forces : Eli= -47.611+27.48i 
F 47.611+27.48i -2 I 
-3 I 

(N) 
F = -54.98~ 

Predicted friction angle : pl= u = p = 0.25 
Actual friction angle : p = v = p = 0.25 

Example (b) sphere : ( s e e  figure 3 (b)) 

No. of fingers: 4 
Coordinates of : 1 - ( l . O , o . ~ , ~ . o )  
contact points 2 - (0 .0 ,1 .0 ,0 .0 )  

(m) 3 - (0 .0 ,0 .0 ,1 .0 )  

2 3  

1 2 3  

4 - (-.5174,-.5174,-.5714) 
Load force (N): 11+lJ+lk applied at (0.5,1.0,0.5) 
Load  couple : lk 

angle angle 

4 0.00 0.00 
In this section some examples of application 

of the  proposed  method  have  been  presented. In 
a1 1 these exampl e s ,  it  is assumed that  the 
desired coefficient of friction is 0.25. All the 
quantities are described i n  the  earth coordinate 
system (unless otherwise specified).  Example  (a) 
illustrates a common assembly operation of 
screwing a nut onto a threaded bolt. Usually  such 
an operation involves a small thrust as  well as a 
moment to  thread  it in - the weight is  assumed  to 
be neglible compared  to these forces. With a 
three fingered grip, as described in figure 3 
(a), the assumption about the concurrence of  the 
normals at  the  centroid of the contact points  is 
definitely valid. That is why the  predicted 
(modelled)  and  actual friction angles are 
identical for all fingers. Figure 3 ( c )  
illustrates another example of a "correct" three 
fingered grip for a cylindrical object. The 
gripper (algorithm) does not distinguish between 
this situation and  the  one in case (a). To this 
extent the algorithm operates independent of 
exact object geometries. 
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a. HexNut b. Sphere  c.  Cylinder 

Figure 3: Examples 

A more complicated problem  is  presented  in 
figure 3 (b), where the assumption about the 
normals is clearly not satisfied. The problem 
with  the  predicted  and  actual friction angles is 
apparent. Even  with a simple geometry such as 
that of a spherical object, a bad  choice of grip 
postures results in large friction angles. 

4. Concl  usi  on 

A  fast and efficient sub-optimal method 'LO 
compute the grasping forces for a multifingered 
gripper is described. A salient feature is the 
decomposition of the contact forces into 
equilibrating forces and  interaction forces. The 
interaction forces are along the vector emanating 
from the grasp centroid  through the corresponding 
contact point.  Another attractive simplification 
is the decomposition of the equilibrating forces 
para1  le1  and perpendicular to  the wrench axis. 
The solution obtained is optimal to the extent 
that every component is independenlty minimized 
by the least-squares minimization technique. A 
better solution is, obviously, one which 
minimizes the maximum net finger contact force. 
The tradeoff between  computational  simp1  icity  and 
optimality is  evident. 

This algorithm works well  if the contact 
normals are along the lines joining the contact 
points with the centroid. The performance is  then 
independent of  the task forces (load  wrench). It 
is important to note that the use of more fingers 
does not necessarily lead t o  a better grip. The 
best grip  is  one which satisfies the assumptions 
about the contact normals and the grip  is 
symmetrical about the  wrench axis. (The grasp 
centroid then lies on the wrench axis.) This 
concept of  a  'best configuration' could be  used 
as a heuristic idea in evaluating and selecting 
grip postures. With the state of the art in robot 
vision  and  image processing, it is possible  to 
locate axes of symmetry for the object and 
accordingly select a grip posture. 
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