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ABSTRACT
The work  described in this  paper
addresses the problem of determination of the
appropriate distribution of forces between the

fingers of a wmultifingered gripper grasping an
object. The system is statically indeterminate
and an optimal solution for this probiem is
desired for force control. A fast and efficient
sub-optimal method for computing the grasping
forces is presented. This method is based on the
superposition of finger-interaction forces on
equilibrating forces. An interaction force is
defined as the component of the vector difference
of the finger contact forces at any two fingers
along the 1line joining the two contact points.
They are computed based on the assumption that

the normals at the point of contact pass through
the centroid of the contact points and are
therefore independent of the actual geometry of

the object. The contact interaction s modelled
as a point contact. The problems associated with

making the algorithm independent of the object
geometry are explored.
1. Introduction
Dextrous, multifingered grippers have been

the object of considerablie research [1]~[4]. The
kinematics and force control problems engendered

by these devices have been analyzed in [5]-[8].
Force control of such & system requires the
specification of contact forces between the
fingers and the gripped object. The gripper-
object system has a high degree of static
indeterminacy [6], [8], [9] and the interaction

between the gripper and the object is similar to
the interaction of a Tlegged locomotion system
with the ground [10]-[12]. This paper outlines a

method of computing the grasping forces for a
general object.

In a legged Tocomotion system or a walking
machine it is essential to compute the support
forces required at the feet to maintain
equilibrium with the force of gravity and the

inertial forces [10], [12]. In the gripper-object

system, in addition to computing the contact
forces required to maintain the object in
equiliorium (equilibrating forces), it is

necessary to determine the finger-interaction
forces to ensure that the friction angle at each
contact point is within allowable 1imits. The
interaction force between two fingers is defined
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as the component of the difference of the finger
contact forces at the two fingers directed along

the Tine joining the two contact points. (They
are similar to the scalar internal forces which
describe the pinch between two fingers [1],

[8]). This probiem Tends itself +to optimization
of the contact forces through linear programming
[6] but such techniques are very expensive in
terms of computational time and are consequently
unsuitable for real-time operation with currentiy
available computer hardware.

A sub-optimal soiution to this problem is
proposed in this paper. This method is attractive
in its speed and efficiency. Contacts are
modeiled as point contacts [8] (the point contact
model is accurate when the finger tips are small
compared to the object being held) and it is
assumed that the object 1is stationary with
respect to the gripper - manipulation issues are
not in context here. A heuristic idea (based on
this method) for selecting grasping postures is
also presented.

2. Formulation

2.1 Coordinate systems:

Let XE-YE—ZE be a reference frame fixed with

respect to the earth. Consider a reference frame
XB—YB—ZB with the origin at the grasp centroid,
the centroid of the support/contact points, (Exi,
E E

Yss Zi) and the ZB-axis parallel to the wrench
axis [13], $ (see figure 1). $ is the axis of the
wrench which is the resultant of the weight of

the object and the inertial forces and moments.

The Tleading superscripts E and B refer to the
earth and body (object) fixed reference frames
respectively. Let (Bx$,By$,0) be the intersection
of the wrench axis with the XB—YB plane. From
this point on, unless otherwise specified, all
guantities are described in the body fixed
reference frame. In figure 1,
th

p; is the position of the i contact point,

n is the number of contact points,
Ei is the contact force at i

0 is the
and

centroid of the n contact points,



(f.c) is  the force-couple dyname
associated with the wrench about $

[13]

This
problems:
A. Determination of the forces
maintain the equilibrium of the
assuming that the
are absent.

B. Determination of the interaction forces needed
to produce the finger forces computed in step
A without violating the friction angle
constraints.

The following subsections elaborate on procedures

for A and B.

problem can be decomposed into two sub-

required to
gripped body
finger interaction forces

2.2 Force distribution for

equilibrium:

The force distribution must satisfy the six
equations of equilibrium enumerated below.
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There are two ways this force distribution can be
arrived at. The first procedure is based on the
zero finger force interaction principle but the
second method differs slightly 1in that the
interaction forces are zero only if the points of
contact are considered to be projections of the
actual points of contact on the XB-YB plane.

2.2.1 Method I

Equation (1) can be decomposed into two sub-
problems. Three out of the six equations of
equilibrium, {1.1), (1.2), and (1.6) are written
as:

1 010 ... 10 ( lew 0

o1 01 ... 01 Fly =]0

Y XY Ky e e s TV Xy Fax ¢
F2y

(2)
an
Fny
L i
where Fix and F1.y are the x and y components of

th

Ei and the X and Yy coordinates refer to the §
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Figure 1: Reference frames for the gripper-object
system.

Figure 2: Finger contact forces at the ith
contact point. \
finger contact point (from this poiﬁt on, all
references are to the body reference firame and
the superscript B is deleted for convpnience).
The matrix eguation (2) represents an
undetermined set of equations with only 3

equations in 2n unknowns. There are cleanly 2n-3
degrees of freedom in this system. However in
accordance with the zero force ' interaction
principle [12], the vector difference between any
two contact forces should have no component
along the 1line Jjoining the two contact points.
Mathematically, this condition is expressed as:

(ET-‘EJ)'(ET—EJ) =0 ’ 1)\] = 1:"5n' ( 3)

The matrix equation (2) can now be solved
subject to the restriction (3) and this yields a
simple solution given by:

;) (4.1)

c (-
Iy

5 = c (x ) (4.2)
D)

1

where I = o

[x?+y?], and
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n is the number of contact points.

The forces on the X-Y plane are thus given by
equations (4.1) and (4.2) and it 1is easy to
verify by substitution that they satisfy equation
(3). If Eit is the resultant of Fiy and Eiy’ then

Eit is  perpendicular to the corresponding
position vector and

(Fixl + F:lyl)- by = 0 {5)
This force field is analogous to the velocity

field of a rigid body where the velocity of any
point is perpendicular to the position vector if
the origin is coincident with the velocity center

[12].
If (2) is rewritten as

Gr =

( 6)

where G is the 3x2n coefficient matrix, r is the
2nx1 unknown force vector and w is a 3x1 TJoad
vector, then this system of equations can also be
solved by taking the Moore-Penrose Generalized

Inverse (or the pseudo-inverse) of G [14]. If §f
is the pseudo-inverse of G, then for a full rank
matrix (one in which the rank of G is the minimum
of p and q), then

6= 6'(aeh) ™ (7.1)
and r can be found from the equation

r=gw (7.2)
(In the event G is not of full rank, the pseudo-
inverse can still be found by using the LU

decomposition scheme or the Householder algorithm
[14]7). The pseudo-inverse can be analytically
derived and it is interesting to note that the
solution thus obtained from equations (7.1) and
(7.2) is identical to equations (4.1) and (4.2).

This in fact provides a physical
interpretation of the pseudo-inverse. The null-
space of the coefficient matrix, G, consists of
all possible interaction force vectors and the
row-space of G comprises of all the equilibrating
force vectors with zero interaction force
components. The pseudo-inverse seeks the solution
vector with the least Euclidean norm (length) and
hence the force vector which ties completely in
the row-space of the coefficient matrix (which
has no interaction force components).

Having found the finger forces in the x and y
directions the three remaining equations of
equilibrium, (1.3), (1.4) and {1.5) can be
applied to solve the second sub-problem :

1 1.1 Fos f
(xl-x$) (xz-x$). .(xn—x$) FZZ = ZZiFix ( 8)
(¥17Yg) (yp7¥g)- - (¥,vg) Fiz £23Fiy
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This can be solved again by using the pseudo-
inverse which serves to minimize the norm of the
Ez vector. (A physical 1interpretation for the

pseudo~inverse can be made in terms of the
fingers having equal compliances in the Z-
direction). The zero force-interaction principle
can not used here as it would necessitate the
equality of all the Eiz components and thus over-
the The Eiz field
obtained by the pseudo-inverse is described by a
planar force distribution. This completes one
method for step A. It should be noted that
equation (2) has to be solved before the right
hand side of equation (8) 1is known - the two
equations are not completely decoupied.

constrain problem. force

2.2.2 Method I1
This method decouples the sub-probiems of
finding forces parallel to the Xg~Yp plane and

forces parallel to the wrench axis completely.
This time, equations {1.1) through (1.5) are used
to solve for Fix and Fiy'

r1 01 0 . . . 1 0+ ¢ le 1 r 0 -
01 01 . . . 01 Fl 0
Y
RG-SR P I P VO R
z, 0 z, o . . . z, 0 F2y 0
0 z1 0 12 . 0 z, 0
L ] L
an { 9)
F
ny

Once again, the pseudo-inverse is used as a

tool to keep the magnitude of the forces small.
With some algebraic manipulation this can be
solved and an analytical expression for the
forces can be found.
_.2 J—
in— c X y;z + ziyz)
- _2 2
n(iz"- yz - xz ) (10)
.-._2 —_—
Fyi" c X (xiz zixz)
2 2 _2
n(lz- yz - xz ) (11)
n
where, 72-1 ¢ z?,
n 2.0
i=T
—_— 1 n
xz= o B (x524),
i=1
—_ 1 n
and yz= = 1 (y.z.)
n oo



Now the z-components of the forces are found
by writing equations {1.3) through (1.5) to get

equation (8), but now the terms ZZiFix and ZZiFiy
are zero because of the way the Fix and F1.y were

found. This time analytical inversion  for
equation (8) is not as cumbersome and the Eiz are

given by:
Fizz (f/D) X (1 - A (Xi— X$) - B (‘yT'- Y$)) (12)
where,
Xi= (xi-x$),
¥i= (yi7yg)s
- 1 |2 - Lot 1
A=7x X Ty Xy E yi,
12 2 Y
Z X_-I X y:I (Z X:I.V:,)
B = (2 yi)/D - A(E X'Iy'|> R
2
AH
1 2 [ 1y, 1 '
p=n- YT a ] XTIy YT
2 2
z .V.i b .V-i
Equations (10) and (11) do not describe a
force field with zero interaction forces

(equation (5) does not hold) - unless the contact
points are all on the X-Y plane. But, on the
other hand, the complete decoupling of the
equations (9) and (12) which are required to find

the forces s an advantage. It is difficult to
say which of the two methods 1is better as in
either case, the solution is sub-optimal.

However, method I involves 11in+16 multiplications
and 11n+5 additions and method II needs 15n+13
multiplications and 16n-3 additions. If parallel
processing is available then method II cuts the

time requirement to that needed for 9n+3
multiplications and 7n-4 additions. Clearly,
method Il is superior in a parallel processing
environment (it takes 15-20 % less time) but

otherwise, method I is faster.

2.3 Interaction Forces:

The forces computed by either of the
methods described earlier are Fiz (iea1,..

two
>N)
which are parallel to the wrench axis, $ and Fix’
Fiy (i=1,...,n) which lie on planes perpendicular
to the wrench axis. It is assumed that method I
is used and the resultant of the forces Fix and

Fiy is perpendicular to the vector P, (see figure

2). Let the total interaction force exerted by
the 1th finger on the object be Eil‘ Then
n
T F..=0 (13)
j=1 1
n
I (pix Eip) =0 (14)
i=1
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The resultant of the interaction forces has to be
zero for equilibrium to be maintained (equation
(13)). The geometric significance of (14) is that
the lines of action of EiI have to pass through a

point of concurrence. In an ideal situation, the
Tines of action would be along the normals to the
surface of the gripped object at the contact
points. In a practical situation, the normals at
the contact points are unknown and, in general,
they are not concurrent. It is proposed that the
point of concurrence be chosen as the centroid of
the contact of points, namely the origin. This
choice is merely a convenience and in principle,

any other point could be chosen. The reader is

?equesteq to bear with this gross assumption -
its validity 1is discussed Jater. Now the unit
normals, e at all the n contact points are
given by
&= Xi/di’ e1y= yi/di’ and e,," Zi/di (15)
- 2 2 2
where di' /(Xi+ yi+ zﬁ).

Equation (13) can be rewritten as:

Cix Coxt 0 Smx] T P11 0
= [
e1y eZy' eny F21 0 (16)
elz eZz' .. enz . 0
L ]
Fol
For n=3, equations {16) comprises of three

homogeneous linear equations in 3 unknowns, the
only solution seems to be a trivial one. This is
not the case since the rank of the system of 3
equations in (16) is only 2. This is because any
three points are coplanar, and the determinant of
the coefficient matrix formed by the g.'s is

always zero for n=3. Thus, (16) has only one
degree of freedom. If n=4 there are 3 independent
equations (in general the points are not
coplanar, unless the grip is planar, and the rank
is 3) and again there is one degree of freedom.
For n > 4 there are n-3 degrees of freedom. In
figure 2, the net contact force, Ei is given by

By = Eiet Bty
and resolved

t

can be along the normal e.

;
(postulated normal) to get Ein and on to the
plane perpendicular to the normal to get Eif' Let

n; be the angle between iiz and ey {(i.e. cos n; =

eiz)‘ Then,
Fin = FiI_ Fizcos n; (17)
_ 2 .2 2
Fif = /(F1251n nyt Fit) (18)



h

and the friction angle, ¢., at the it contact

point is defined as

-i;

tan ¢, (Fie/ Fip) (19)

In order to prevent the finger from slipping,
it is essential that the friction angle be within
a prescribed limit. If U is the coefficient of

friction between the ith finger and the surface
of the object then the maximum value of ¢ is

tan_lp..

5 This yjelds n inequality constraints:

F.p 2 max ( Fif/“ﬁ + Fizcos N 0) (20)

il

forces should be made as low as
work and to

The finteraction
possible to minimize the isometric
prevent crushing the object. The interaction
forces can be determined by wminimizing the
largest of the FiI satisfying the equalities in

(16) and the inequalities in (20) --- this s a
classic Tlinear programming exercise. The problem
is easily solved this way but clearly this methed
is not viable for a real-time control algorithm.
An alternative faster algorithm 1is presented
below.

n =2 is a trivial case where F, = “Fyp. For
n = 3 or 4 there is generally only one degree of
freedom in equatioen (16). Setting FlI= 1 the

other interaction forces can be found. Then the
FiI are scaled with the smallest multipiicative
factor which satisfies the constraints in {20).

In general if the rank of the coefficient matrix
in  (16) is k, then if n-k=1 the EiI can be found

by elimination followed by the scaling process.
For n-k > 1, if FlI is set to 1, the other FﬁI

can be obtained by using the pseudo-inverse
technique (instead of Gaussian elimination).
However, unlike the other instances (equations
(9) and (12)), an analytical inverse is not as
simple. An alternative method is proposed to suit
a parallel-processing environment. With any (n-
k) of the interaction forces set to their minimum
values (as defined in equation (20)) the
remaining interaction forces can be found from eq
(16) by elimination. This process can be repeated

for all possible pairs of interaction forces to
obtain
all of these

ncn—k possible solution vectors. Not of

will satisfy the constraint in
equation (20). From the valid solutions, the
solution with the smallest maximum interaction

force 1is selected as a 'best' solution. A1l the
nCn_k solutions can be computed independently

thus facilitating
processors.

For n = 3, the process of determining
interaction forces requires 38 multiplications,
20 additions and 6 square root operations and
these figures are 58, 32 and 8 for n = 4. These
numbers have to be added to those obtained for
calculating equilibrating forces to arrive at the

impiementation on parallel
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total computational cost for the algorithm - 87
multiplications, 58 additions and 6 square roots
for n =3 and 118 multiplications, 81 additions
and 8 square roots for n = 4 (using method I on a
single processor).

3. Examples
Example (a): Hex-nut (see figure 3 (a))

No. of fingers: 3
Coordinates of :
contact points

1~ (0.0216,-0.0125,0.0)
2 - (-0.0216,-0.0125,0.0)
(in meters) 3 - (0.0000, 0.0250,0.0)
Load force (N) : 10k applied at (0.0, 0.0, 0.0)
Load couple (N-m): 1k
Equilibrating forces : £1= 6.661+11.555+3,33k

(N) F,= 6.66i-11.55]+3.33k
Eg= ~13.33i+3.33k
Interaction forces : F, = -47.611+27.48]
(N) Form 47.613+27.48)
£31= -54.98]
Predicted friction angle : Mi= W™ Hg= 0.25
Actual friction angie H1T Ho™ Hg® 0.25

Example (b) sphere : (see figure 3 (b))

No. of fingers: 4

Coordinates of 1 - (1.0,0.0,0.0)
contact points 2 - (0.0,1.0,0.0)

(m) 3 - (0.0,0.0,1.0)

4 - (-.5774,-.5774,-.5774)
Load force (N): 1i+1j+lk applied at (0.5,1.0,0.5)
Load coupTe @ 1k
Finger | Predicted friction | Actual friction
angle angle

1 0.25 0.43

2 0.16 0.32

3 0.08 0.23

4 0.00 0.00

In this section some examples of application
of the proposed method have been presented. In

all these examples, it is assumed that the
desired coefficient of friction is 0.25. A11 the
quantities are described in the earth coordinate
system (unless otherwise specified). Example (a)
111us§rates a common assembly operation of
screwing a nut onto a threaded holt. Usually such
an operation involves a small thrust as well as a
moment to thread it in - the weight is assumed to
be neglible compared to these forces. With a
three fingered grip, as described in figure 3
(a), the assumption about the concurrence of the

normals at the centroid of the contact points is
definitely valid. That 1is why the predicted
gmode11ed) and actual friction angles are
identical for all fingers. Figure 3 (c)

i]]ustrates another example of a "correct" three
qugered grip for a cylindrical object. The
gripper (algorithm) does not distinguish between
this situation and the one in case (a). To this
extent the algorithm operates independent of
exact object geometries.



a. HexNut b.

Sphere c.

Cylinder

Figure 3: Examples.

A more complicated problem is presented in
figure 3 (b), where the assumption about the
normals is clearly not satisfied. The problem

with the predicted and actual friction angles is
apparent. Even with a simple geometry such as
that of a spherical object, a bad choice of grip
postures results in large friction angles.

4. Conclusion

A fast and efficient sub-optimal wmethod to
compute the grasping forces for a multifingered
gripper is described. A salient feature is the
decomposition of the contact forces into
equilibrating forces and interaction forces. The
interaction forces are along the vector emanating
from the grasp centroid through the corresponding
contact point. Another attractive simplification
is the decomposition of the equilibrating forces
parallel and perpendicular to the wrench axis.
The solution obtained is optimal to the extent
that every component is independenlity minimized
by the least-squares minimization technique. A
better solution is, obviously, one which
minimizes the maximum net finger contact force.
The tradeoff between computational simplicity and
optimality is evident.

This algorithm works well if the contact
normals are along the lines joining the contact
points with the centroid. The performance is then
independent of the task forces {load wrench). It
is important to note that the use of more fingers
does not necessarily lead to a better grip. The
best grip is one which satisfies the assumptions
about the contact normals and the grip is
symmetrical about the wrench axis. (The grasp
centroid then lies on the wrench axis.) This
concept of a 'best configuration' could be used
as a heuristic idea in evaluating and selecting
grip postures. With the state of the art in robot
vision and image processing, it is possible to
Tocate axes of symmetry for the object and
accordingly select a grip posture.
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