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Abstract

RALF ( Robotic Arm, Large and Flexible ) with a paral-
lel link mechanism has been developed at School of Mechani-
'cal Engineering in Georgia Institute of Technology. The
structure consists of two ten foot long links and a actuator
link, and the upper link is driven using the parallel link
mechanism.

In this paper, a derivation of reduced 6rder model for
RALF by the modal cost analysis method is shown. In order
to derive the reduced order model, 2 analytical models with
deferent kKinds of mode shapes which have the first 5 com-
ponent modes of each link are used as the original model.

The reduced order model which consists of the first 2
modes of each link is obtained from the control point of
view. The evaluation of the reduced order model is made

by the comparison between the frequency responses and the

modal cost analysis results.




1. INTRODUCTION

Model reduction problems which derive an appropriate
order model from a given large order system have been an im-
portant research issue in the structural dynamics field as
well as in the contrel field.!2)

The purpose of deriving a reduced order model are 1)
reducing efforts for obtaining a controller which satisfies
the desired performance, 2) obtaining a lower dimensional
controller, 3) achieving simpler simulation of the given
system, and 4) reducing simulation costs and time.

As is well known, a lot of model reduction techniques
for linear systems have been developed. In those tech-
niques, there are at least four important and popular'state

space based model reductlon techn1ques for a flex1ble struc—

U'ture, namely, truncat1on of the 1nternally balanced reallza—

tion 34 , Hankel norm opt1mal approximation 5)+6) s Q-

covariance equivalent approximation 7),8) , and modal cost

analyS1s 9-12),

Internally balanced real12at1on,-whieh was develbéed by
B.C.Moore, is a singular values based technique.  The sin-
gular value is able to measure cbntrollability and observ-
ability of the'system. From controllability and observ-
ability points of view, the weaker portions of system, con-
cerning both controllability and observability, are trun-
cated in this technique.

The Hankel norm optimal apprdximation method is also a
singular values based technique. The deference between this
and the above is that the reduced order model obtained by
this method minimizes Hankel norm error between the
original system and the reduced order model.

The basic idea of q-covariance approximation is to ap-

proxXximate a low frequency characteristic of the original
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system by a reduced order model.

" The model reduction techniques mentioned above deal
with the over all system as an object of model reduction.
They don't address the question of component model reduc-
tion. In a flexibie manipulator model reduction, a com-
ponent model reduction as well as a over all model reduction
is an important research issue, because the manipulator
dynamics is derived on the basis of a Lagrangian—-assumed

mode method.

R.E.Skelton, et al. proposed a modal cost analysis
method and a component cost analysis method to solwe LSS (
Large Space Structure ) model reduction problems.

The basic idea of these methods is to decompose a norm
of the response 1nto contr1butlons from each coordlnate of
the original system and to find coordinates that contribute
a small amount.

The modal cost ana1y51s method 1s a speC1a1 case of

vthe compooent cost analysis method in the sense that system.

dynamics is represented in the modal coordinates.

In applying the modal cost analysis method to fleXible
structural systems, the damping ratio of each component mode
plays an important role. The damping ratio of each system

mode can be obtained by some vibration tests.

In this paper, reduced order models of RALF ( Robotic
Arm, Large and Flexible ) by the modal cost analysis and
evaluation of the reduced models are presented.

G.G.Hasting obtained a 6 order model for a 1 link

flexible manipulator model using the internally balanced




realization technique 13)513) . As mentioned above, general

model reduction methods are applicable to a single link
flexible manipulator.

To achieve a reduced order model! of RALF, the modal
cost analysis method is used in this paper. The modal cost
analysis method deals with the system described in modal
coordinates, but the analytical model of RALF is represented
in physical coordinates. In section 2, an overview of the
modal cost analysis method and its application to RALF are
presented. A brief outline the analytical model for RALF4)
is shown in section 3. The reduced order modél of RALF and

its evaluation are discussed in section 4.




2. MODAL COST ANALYSIS METHOD
2.1 Background of modal cost analysisQHm

The next paragraphs provide an overview of the modal

cost analysis method.

Given the following linear second-order system which

represents a typical mechanical system.

M-q(t) + D-q(t) + K-q(t) = Dy-w(t) ¢ 2-1 )
y(t) = Peq(t) ( 2-2 )

where, M, D, K, and P are the system inertia, damping,

~stiffness matr1ces and the output matr1x, Dy is a n01se

dxstr1but1on matrix, and q is an N d1men51onal vector, and

Ww(t) is the white noise described as follows.

EL w(t) 1=0 . e (273 )
BL w(t)-w()T 1= W8 (1) ‘ ( 2-4)

where, EL 1 and W represent the expectation operator and the
intensity of the white noise, and § (t) is Kronecker's &

function.
A response norm V is defined by egn.( 2-5 ).
V =1im El yT-Qy 1 . ( 2-5 )
t—>o00

where, Q@ is a weighting matrix.

There exists a transformation g = T-# that simultaneously
diagonalizes M and K. Applying the transformation T to




the system equations (2-1) and (2-2), we obtain the

model expressed in the modal coordinates:

7 (t) + Be7 (t) + K- 7 (t) = Dy w(t) ( 2-6 )

y(t) =  PB-7 (t) ( 2-7 )
where,

D = diag( 0,-++,0, 28 W1, "+, 2Z NOW N )

K = diag( 0,-++,0, @ 1,***5 WN )

P=10[py, v +,pN ]

® i is the natural frequency of i-th system mode, and & i is
the i-th mode damping ratio given by some vibration experi-

ments. .
1

If we éssume the open loop system is lightly damped,

“the decomposition of the response norm V into contributions

of each coordinate is given’by eqn. ( 2-8 ).

Vi= ( 2-8 )

where,
(13 12 = [ ﬁw-w-ﬁwT Ti4
and the n eigenvalues of the system (2-6) are given by com-

plex conjugate pair.

A = -8 rwi * i
A = -{j 0 - ;g
0<&y<1 (i=1, 2, ++- , N ) ¢ 2-9 )




2.2 Component cost derivation

‘The modal cost analysis method for the overall system
model reduction is described in the above section.

‘As mentioned above, the component cost analysis
method! 12 g effecti?e in the derivation of each component
cost which expresses a contribution of each component mode
to the response norm, V. The disadvantage of this tech-
nique is that the damping ratio to each component mode is
required. From a practical point of view, giving an ap-
propriate damping ratio to each component mode is not easily
accomplished. On the other hand, the damping ratio of
each system mode can be obtained by some vibration tests for
use in calculating the modal cost. Since the damping
rat1o of the component modes 1s not the same as the damplng
ratlo 0of the system modes, a component cost der1vatlon tech-
nique based on the modal cost analysis is shown in the fol-

lowing section.

Consider the following second order ejetem Witn a set.

of m holonomic constraint egquations as a RALF model.

" Meq(t) + D-q(t) + Keq(t) + f o+ & gT-X = Dyew(t)

. ( 2-10 a.)
y(t) = P-q(t) ( 2-10 b.)
® (@) = 0. ° . ¢ 2-10 c.)

where, ¢ é is the constfaint Jacobian matrix, A 1is the vec-
tor of Lagrange multipliers, and f indicates the vector
including nonlinear coupling terms and their derivatives.

Using the singular value decomposition technique (14),

a transformation, q = Va-2, is found which transforms the




system equations ( 2-10 a.) and ( 2-10 b.) into
Vol M-Vg-z(t) + VoT-D-Vorz(t) + VoT K -Vyez(t) + VoT-f

VoT -Dw-w(t) + Vol M- ® g*- & 4-Vo-2(t) ( 2-11 a.)

y(t) = P-Vg-z(t) ( 2-11 b.)

where, @ q+ is the pseudo-inverse of & 4.
Equation ( 2-11 ) is linearized about zero velocity to

get

VoT-M-Vg-z(t) + VoT:D-Vo-z(t) + VoT K Vo 2(1) '

= VT -Dw-wct) S S C(2-12 a.)
y(t) = P-Va-z(t) ( 2-12 b.)
‘where,
$q=00U; Up1[Zp 0] [vlq
’ vy T ( 2-13 )
S = diag( 01,02, ***, @ ) ( 2-14 )

Here, the ¢ ;'s are called the singular values of matrix

® g, ordered 0 1= 022 ---Z 0 p>0.

There exists a transformation z = T'-& that trans-
forms equations (2-12) to the expression in the modal coor-

dinates.
Applying the transformation T' to the system ( 2-12 ),

we obtain equations (2-15):




T TovoTeM-Vo T - £ (1) + T'T-voTeDeVy-T - & (1)
+ T'T-voT RV T+ £ (1) ’

= T'T-vyT.Dw-w(t) ( 2-15 a.)
y(t) = P-Vo-T'-§ (1) ( 2-15 b.)

where,

T‘T'VQT'M'Vg'T'= I
T'TevoTeDevy-T'= diag( 0,-++,0, 2 10 1,°"*» 2& N-m®@ N-m )
T'T-voT-K-Vg:T'= diag( 0,+<+,0, Wi,° °, WN-p J>s

®w i is the natural frequency of i-th system mode, and ¢ ;
is the i-th mode damping ratio given by some vibration ex-

periments.

Applying the modal cost analysis method to the system
¢ 2-15 ), we obtain the modal cost V5 attributable to the
system mode Qa .

: 'To obtain the component cost Vei for éach'comppnent
mode from the modal cost Vg, thg fbiiowiﬁg fransfofﬁation

is used.

Vei = I Vo-T'l - L Vg, -+, VNop 1T ( 2-16 )
where, | J denotes ihe absolute value operator.

The reader is reminded that Vci as given by egn.(2-16)

is not always egquivalent to the component cost analysis
:12) results.




3. ANALYTICAI, MODEILL OF RALLEF
3.1 Ovefview of analyfical model

The schematic drawing of a 2 link manipulator RALF (
Robotic Arm , Large and Flexible ) with a parallel mechanism
is shown Fig. 3.1. In order to derive an analytical model
of RALF, the reference frame is defined as shown in Fig.
3.2. Lagrange's equations and the assumed mode method ‘is
used for deriving the equations of motion of this flexible
structure.

The absolute position vectors of an arbitrary point on

1

each link are defined by the following :
riy = Ry + Upy + Ugjy. ¢ i=1,2,3.) . - ¢ 3-1)

where, Rj 'is the position vector of the origin of the
reference body with respect to the global frame, Uyj is the
undeformed position vector, .and Ugf; is .the elastic deflec-.
tion vector.

Ugj is expressed in linear combination form as follows.

n
Ui (x,t) = 2 ¥i(x)-q¢55() ¢ 3-2)
. j:l

where, ¥ ;;(x) and g ¢5;(t) denote an admissible shape
function and time dependent modal coordinates, respectively.

In this paper, an analytical model which has five com-
ponent modes of each link is assumed as the RALF original

model. A linearized RALF model is given by egn. ( 3-3 ).

VoT-M-Vo-2(t) + VoTeDevgez(t) + VoT Kevy-z(t)
= VoT-Dwew(t) , ( 3-3)

10




where, Vo is given by eqn (2-13).

3.2 Natural frequencies and Mode shapes

For numerical analysis, selection of the mode shape

functions is necessary and may greatly influence the

results.

The following 2 sets of boundary conditions for each

link in Table 3.1 are considered in this paper.

case 1 : case 2
Lower link clamped - mass pinned - pinned - mass
Upper link clamped - free .Pinned - pinned - free
Actuator link pinned - pinned pinned -pinned

Table

3.1 Boundary conditions

The natural frequencies for the above 2 cases are in

Table 3.2.

case 1 case 2
( Hz ) ( Hz )

1st mode 6.21 5.62
2nd mode 16.90 . 14.40
3rd mode 30.73 30.70
4th mode 95.61 68.47
5th mode 104.65 86.47
6th mode 120.73 120.68
Table 3.2 Natural frequencies

11
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4 . REDUCED ORDER MODEIL
4.1 Component cost

The inputs to RALF are forces by hydraulic actuators
mounted at the lower link and the actuator link as in Fig.
3.1, and the outputs are the tip position of the upper link,
the strain at the center of each link, the strains at base
of the lower link and the upper link, and the joint angles
8 1 and 8 4 as shown in Fig. 3.2. '

To obtain the component cost for each component mode,
the weighting matrix Q in ean. ( 2-5 ) is chosen to be the
identity matrix. Thelintensity of white noise W in eqn. (
2-4 ) is chosen +to be 1, because there is no data about the

-noise-in‘hydraulic actuator output that would allow selec-

tion of an appropriate value of the intensity W. The
damping ratios which are used in the modal cost calculation

are given in Table 4.1.

The resultant component costs for the case 1 model in
Table 3.1 are shown in Fig. 4.1. Every cost V*cij is nor-

malized by the following equation.

'3 5
V¥ij = Veij / £ 2 Veij ( 4-1)
o i=1 j=1

where, i and j indicate the component number and the mode
number as shown in Table 4.2.

In Figures 4.1, the mode number i-j denotes j-th cbm—
ponent mode of i-th component. The modeling error for some
reduced order models shown in Table 4.3 vs. the attitude of

RALF which is defined by € 1 and 8 3 are given in Fig. 4.2.

13
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1 | )

0.0142 0.0085

0.007

Table 4.1 The damping ratio

Lower link
Actuator link
Upper .link

1st mode"
2nd mode
3rd mode
4th mode
5th mode

[57 B S T B A

.. Table 4.2 _contents of i, ]

reduced order model

included component mode

-1, 1-2, 2-1, 2-2
3-1, 3-

-1, 1-2, 2-1, 2-3
3-1, 3-2, 3-

-1, 1-2, 2-1, 3-1

Table 4.3 Reduced order models
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The modéling error £ 1is defined by eqn. ( 4-2 ).

o B i

where, Vogqo B { the B -th component mode of the « -th
component ) indicates the component cost of the component

mode included in the reduced order model.

The big change of the modeling error vs. the change in
the angles is found in the reduced order model 1. The
modeling error for both the model 2 and the model 3 are

satisfied less than 5%. _ A
The result of the component cost calculation for the

case of the pinned-pinned-mass boundary condition mentioned

in section 3.2 is shown in Fig. 4.3. ' The component cost
distribution has the same characteristics in both Fig.4.1
and Fig. 4.3.

16
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4.2 Discussion of component cost calculation results

The results indicate that the selection of the output
has an effect on the model order estimated with the modal
cost analysis approach, because the modal cost analysis
method relates to the system controllability and observ-
ability. ‘ And changing the angles 8 1 and 8 9 has little
effect in the reduced order model! 2 which includes the first
2 modes of each component is found in results. in the
strain measurement at base, the variations of the modelihg

error are comparatively small.

Figure 4.4 and 4.5 represent the experimental‘data of
RALF in the case of the strain measurement at base point
and at center point, respectively. In Fig.4.4 and 4.5.. the .
input is the step signal to the hydraulic actuators. Each
figure has the time response data and the spectrum data.
The first ( 5Hz ), second ( 9.4Hz ) and third ( 30.8Hz )
system modes are excited by the actuators. - The spectrum
ratio of the first mode and the second mode is 10 : 1, and
that of the second mode and the third mode becomes almost 20

1. , ‘

The calculating modal cost of RALF in the strain
measurement cases are given in Fig.4.6 and 4.7. The modal
cost ratio between the first mode and the second mode coin-
cides roughly with the spectrum data.

Since the time response is represented by the combina-
tion of component mode, the component cost derived by the
coordinate transformation will represent the importance of

the component mode.

From these points of view, the ‘reduced order model

2 in Table 4.3 which includes the first 2 modes of each com-

20




ponent is recommended for RALF model. Furthermore, in the
control of RALF, it is desirable to measure the strain at

base of the lower link and upper link.

In the previous work done by J.W.Lee and J.D.Huggins
14), the comparison between this model and the experimental
system was shown to have agreement in the general trend of
the vibration of the reduced order model and the experimen-

tal system .

Changing the boundary conditions does not have a sig-
nificant effect on the model order estimation. The reason
is that there is 1little difference in the natural fregquency

as shown in Table 3.2.
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5. CONCLUSION

A reduced order model of RALF system which consists of
the first 2 component modes of each link was derived using
the modal cost analysis approach. From the component
cost calculation results, the modeling error ratio of this
model has little variation, in spite of the change in angles
of the joints.

Additionally, the strain measurement at base has the nar-
rowest variation width in the modeling error ratio. As
discussed in section 4, it is desirable to measure the
strain at base in the control of RALF.

1Y

Because of non-linearity of RALF, in the derivation of

'the rgduced order model of RALF, the change of the modeling

error ratio versus the dhange of the joint ahgles of RALF
was considered. ‘ Furthermore, the component cost were con-
sidered for 2 RALF models which have different mode shapes.
As QeSpribed_in section 4, changing_the boundary_cqnditions
did ndt have a significant effec{ on the modelhorder estima-

tion.

In order to avoid the complexity in the designation of
the weighting matrix Q, the Q@ was selected as the identity
matrix, when calculating the modal cost. In the case of
measuring several kinds of outputs, the Q should be selected

appropriately.

Using the transformation matrix, the modal cost was
transformed to the component cost. It is not theoretically
evident whether the resultant component cost is equivalent
to the results by the component cost analysis theory.
However, the comparison between the spectrum data and the

25




modal cost shows that the modal cost relates to the
frequency response strongly. Therefore, the component cost
derived by the coordinate transformation will represent the

importance of the component mode.

26
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