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Abstract 

RALF ( Robotic Arm, Large and Flexible) with a paral­

lel link mechanism has. been developed at School of Me.chani-. 

cal Engineering in Georgia Institute of Technology. The 

structure consists of two ten foot long l~nks and a actuator 

link, and the upper link is driven using the parallel link 

mechanism. 

In this paper, a derivation of reduced order model for 

RALF by the modal cost analysis method is shown. In order 

to derive the reduced order ~odel, 2 analytical models with 

deferent kinds of mode shapes which have the first 5 com­

ponent modes of each link are used as the original model. 

The redu~ed order model which consists of the first 2 

modes of each link is obtained from the control point of 

view. The ~valuation of the reduced order model is made 

by the comparison between the frequency responses and the 

modal cost analysis results. 
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10 I NTRODUCT ION 

Model reduction problems which derive an appropriate 

order model from a given large order system have been an im­

portant research issue in the structural dynamics field as 

well as in the control field0 1),2) 

The purpose of deriving a reduced order model are 1) 

reducing efforts for obtaining a controller which satisfies 

the desired performance, 2) obtaining a lower dimensional 

controller. 3) achieving simpler simulation of the given 

system, and 4) reducing simulation costs and time. 

As is well known, a lot of model reduction techniques 

for line~r systems have been developed. In tho&e tech­

niques, there are at least four important and popular state 

space based model reduction techniques for a flexible struc­

ture, namely, truncation of the internally balanced realiza­

tion 3),4) • Hankel norm optimal approximation 5),6) ,q­

covariance equivalent approximation 7),8) , and modal cost 

analysis 9H2). 

Internally 

BoC.Moore, is a 

gular value is 

balanced 

singular 

able to 

. . 

realization, which was deve!opBd by 

values based technique. The sin­

measure controllability and observ-

From controllability and observ­

ability points of view, the weaker portions of system, con­

cerning both controllability and observability, are trun­

cated in .this technique. 

ability of the system. 

The Hankel norm optimal approximation method is also a 

singular values based technique. The deference between this 

and the above is that the reduced order model obtained by 

this method minimizes Hankel norm error between the 

original system and the reduced order model. 

The basic idea of q-covariance approximation is to ap­

proximate a low frequency characteristic of the original 
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system by a reduced order model. 

The model reduction techniques mentioned above deal 

with the over all system as an object of model reduction. 

They don't address the question of component model reduc­

tion. In a flexible manipulator model reduction, a com­

ponent model reduction as well as a over all model reduction 

is an important research issue, because the manipulator 

dynamics is derived on the basis of a Lagrangian-assumed 

mode method. 

R. E. Skel ton, et ale proposed a modal cost analysis 

method and a 'component cost analysis method to solv.e LSS ( 

Large Space Structure) model reduction problems. 

The basic idea of these methods is to decompose a norm 

of the response into contributions from each coordinate of 

the original system and to find coordinates that contribute 

a small amount. 

The modal cost analysis method is a special case of 

the component cost analysis method in the sense tha~. system 

dynamics is represented in the modal coordinates. 

In applying the ~odal cost analysis method to flexible 

structural systems, the damping ratio of each component mode 

plays an important role. The damping ratio of each system 

mode can be obtained by' some vibration tests. 

In this paper, reduced order models of RALF ( Robotic 

Arm, Large and Flexible) by the modal cost analysis and 

evaluation of the reduced models are presented. 

D.G.Hasting obtained a 6 order model for a 1 link 

flexible manipulator model using the internally balanced 
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realization technique 13),15) As mentioned above, general 

mbdel reduction methods are applicable to a single link 

flexIble manipulator. 

To achieve a reduced order model of RALF, the modal 

cost analysis method is used in this paper. The modal cost 

analysis method deals with the system described in modal 

coordinates, but the analytical model of RALF is represented 

in physical coordinat.es. In section 2, an overview of the 

modal cost analysis method and its application to RALF are 

presented. A brief outline the analytical model for RALF14) 

is shown in section 3. The reduced order model of RALF and 

its evaluation are discussed in section 4. 
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2. MODAL COST ANALYSIS METHOD 

2.1 Background of modal cost analysis9l10l 

The next paragraphs provide an overview of the modal 

cost analysis method. 

Given the following linear second-order system which 

represents a typical mechanical system • 

• 0 • 

M-q(t) + D'q(t) + K'q(t) = Dw'w(t) 

yet) = P'q(t) 

( 2-1 ) 

( 2-2 ) 

where, M, D, K, and P are the system inertia, damping, 

stiffness matrices and the output matrix, Dw is a noise 
. .. - .. ', 

distribution matrix, and q is an N dimensional vector, and 

wet) is the white noise described as follows. 

E[ wet) ] = 0 

E[ w(t) 'w(t) T ] = W' 0 (t) 

I 

( 2-3 ) 

(2-4 ) 

where, E[ ] and W represent the expectation operator and the 

intensity of the white noise, and 0 (t) is Kronecker's 0 

function. 

A response norm V is defined by eqn.( 2-5 ). 

V = lim E[ yT.Q.y ] 
t~oo 

where, Q is a weighting matrix. 

( 2-5 ) 

There exists a transformation q = Ton that simultaneously 

diagonalizes M and K. Applying the transformation T to 
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the system equati-ons (2-1) and (2-2), 

mode1 expressed in the modal coordinates: 

~ (t) + D';' (t) + K· n (t) = 15w' w ( t ) 

yet) = P'n (t) 

where, 

we obtain the 

( 2-6 ) 

( 2-7 ) 

15 = diag( 0,'" ,0, 24: 1W 1,"', 24: NW N ) 

K = diag( 0,'" ,0, wI, ... , wN ) 

P = [ PI, ...•• ,PN ] 
" 

W i is the natural frequency of i-th system mode, and 4: i is 

the i-th mode damping ratio given by some vibration experi­

ments. 

If we assume the open loop system is lightly damped, 

the decomposition of the response norm V into contributions 

of each coordinate is given by eqn. ( 2-8 ). 

N 
-.- V = E Vi·-

j=l 

( PiT. Q. Pi ) • (J .2 
1 

Vi= ( 2-8 ) 

4·4: i ".W . 3 
1 

where, 

(J i 2 = [ 15W'W'15wT ]ii 
and the n eigenvalues of the system (2-6) are given by com­

plex conjugate pair. 

A i = -4:i . wi + jWi 

X i = -4:i . wi - jWi 

O( 4: i < 1 ( i= 1 , 2, N ) ( 2-9 ) 
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2.2 Component cost derivation 

The modal cost analysis method for the overall system 

model reduction is described in the above section. 

As mentioned above. the component cost analysis 

method11 ),i2) is effective in the derivation of each component 

cost which expresses a contribution of each component mode 

to the response norm, V. The disadvantage of this tech-

nique is that the damping ratio to each component mode is 

required. From a practical point of view, giving an ap­

propriate damping ratio to each component mode is not easily 

accomplished. On the other hand, the damping ratio of 

each system mode can be obtained by some vibration tests for 

use in calculating the modal cost. Since the damping 

ratio of the component modes is not the same as the damping 

ratio of the system modes, a component cost derivation tech­

nique based on the modal cost analysis is shown in the fol­

lowing section. 

Consider the following second order sy_stem with a set. 

of m holonomic constraint equations as a RALF model. 

.. . 
Moq(t) + D'q(t) + K'q(t) + f + 1> qToA. = 

Y.(t) = P'q(t) 

<I> (q) = 0 . 

Dwow(t) 
( 

( 

( 

2-10 a. ) 

2-10 b. ) 

2-10 c. ) 

where, 1> q is the constraint Jacobian matrix, A. is the vec­

tor of Lagrange multipliers, and f indicates the vector 

including nonlinear coupling terms and their derivativeso 

Using the singular value decomposition technique (14), 

a transformation, q = V2'~' is found which transforms the 
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system equations ( 2-10 a.) and ( 2-10 b.) into 

( 2-11 a.) 

y(t) = P'Y2'z(t) ( 2-11 b.) 

where,t q+ is the pseudo-inverse of t q. 

Equation ( 2-11 ) is linearized about zero velocity to 

get 

. . . 
Y2ToMoV20Z(t) + Y2ToDoV2'Z(t) + Y2T·K·Y2°Z(t) 

( 2-:-12 ao) 

y(t) = pOY2oz(t) ( 2-12 b.) 

.where, 

U2 ] [ L m o ] 
( 2-13 ) 

L m = d i ag ( (J 1, (J 2, • 0 ., (J m ) ( 2-14 ) 

Here,·the· (J i's are called the singular values of matrix 

t q. ordered (J 1~ (J 2~ ... ~ (J m> O. 

There exists a transformation z = T'·~ that trans­

forms equations (2-12) to the expression in the modal coor­

dinateso 
Applying the transformation T' to the system ( 2-12 ), 

we obtain equations (2-15): 
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· T'T.V2T.M.V2·T'.~ (t) + T'T·V2T·D·V2·T'·~ (t) 

+ T'T·V2T·K·V2·T'·~ (t) 

= T,T·V2T·Dw·w(t) 2-15 a.) 

yet) = P·V2·T'·~ (t) ( 2-15 b.) 

where, 

T,T·V2T·M·V2·T'= I 

, T ' T . V 2 T . D . V 2 . T '= d i ag ( 0,···, 0, 2 z: 1 WI, . . ., 2 z: N - m W N - m ) 

T ' T . V 2 T • K· V 2 . T '= d i ag ( 0,·· ,. ,0, wI,···, W N-m ), 

W i is the na tural frequency 0 f i - th s ys t em mode, ,and z: i 

is the i-th mode damping ratio given by some vibration ex­

periments. 

Applying the modal cost analysis method to the system 

( 2-15 ), we obtain the modal cost Va attributable to the 

sys tern mode a . 
.. ," 

To obtain the component cost Vci ;fo.r each comI'~ol1ent 

mode from the modal cost Va , the following transformation 

is used. 

Vci = I V2·T'I· [VI, ... , VN-m]T ( 2-16 ) 

where, denotes the absolute value operator. 

The reader is reminded that Vci as given by eqn.(2-16) 

is not always equivalent to the component cost analysis 
11),12) results. 
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3_ ANALYTICAL MODEL OF HALF 

3.1 Overview of analytical model 

The schematic drawing of a 2 link manipulator RALF e 

Robotic Arm, Large and Flexible) with a parallel mechanism 

is shown Fig. 3.1. In order to derive an analytical model 

of RALF, the reference frame is defined as shown in Fig. 

3.2. Lagrange's equations and the assumed mode method 'is 

used for deriving the equations of motion of this flexible 

structure. 

The absolute position vectors of an arbitrary point on 

each link are defined by the following 

( i=1,2,3.) e 3-1 ) 

where, Ri is the position vector of the origin of the 

reference body with respect to the global frame. Uri is the 

undeformed position vector, ,and Ufi is the elasticde·flec­

tion vector. 

Ufi is expressed in l~near combination form as follows. 

n 

Ufiex,t) = L 'l' ijex)'q fij(t) 
j=l 

e 3-2 ) 

where, 'l' i j e x) and q fijet) denote an admissible shape 

function and time dependent modal coordinates, respectively. 

In this paper, an analytical model which has five com­

ponent modes of each link is assumed as the RALF original 

model. A linearized RALF model is given by eqn. e 3-3 ). 

V2ToM.V2o~et) + V2T.D.V2·;et) + V2T·KoV2ozet) 

= V2 T · Dw · w(t) 

10 
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where, V2 is given by eqn (2-13). 

3.2 Natural frequencies and Mode shapes 

For numerical analysis, selection of the mode shape 

functions is necessary and may greatly influence the 

results. 

The following 2 sets of boundary conditions for each 

link in Table 3.1 are considered in this paper. 

case 1 case 2 

Lower link clamped - mass pinned - pinned - mass 
Upper link clamped - free pinned - pinned - free 
Actuator 1 ink pinned - pinned pinned -pinned 

Table 3.1 Boundary conditions 

The natural frequencies for the above 2 cases are in 

Table 3.2. 

case 1 case 2 

( Hz ) ( Hz ) 

1st mode 6.21 5.62 
2nd mode 16.90 14.40 

3rd mode 30.73 30.70 
4th mode 95.61 68.47 
5th mode 104.65 86.47 

6th mode 120.73 120.68 

Table 3.2 Natural frequencies 
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Fig. 3.1 RALF 

Fig. 3.2 

Coordinate systems for 

the assumed mode method 



4_ REDUCED ORDER MODEL 

4.1 Component cost 

The inputs to RALF are forces by hydraulic actuators 

mounted at the lower link and the actuator link as in Fig. 

3.1, and the outputs are the tip position of the upper link, 

the strain at the center of each link, the strains at base 

of the lower link and the upper link, and the joint angles 

eland e 4 as shown in Fig. 3.2. 

To obtain the component cost for each component mode, 

the weighting matrix Q in eqn. ( 2-5 ) is chosen to be the 
I 

identity matrix. The intensity of white noise W in eqn. ( 

2-4 ) is chosen to be 1, because there is no data about the 

noi~e ·inhydraulic actuato~ output that would allow selec­

tion of an appropriate value of the intensity W. The 

damping ratios which are used in the modal cost calculation 

are given in Table 4.1. 

The resultant component costs for the case 1 model in 

Table 3.1 are shown in Fig. 4.1. Every cost V*cij is nor-

malized by the following equation. 

·3 5 

V*cij = Vcij / ~ L Vcij 
i=1 j=1 

( 4-1 ) 

where, i and j i nd i ca t e the componen t number and the mode 

number as shown in Table 4.2. 

In Figures 4.1, the mode number i-j denotes j-th com­

ponent mode of i-th component. The modeling error for some 

reduced order models shown in Table 4.3 vs. the attitude of 

RALF which is defined by eland e 2 are given in Fig. 4.2. 
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Fig. 4.1 The component cost 

a. ,Tip position of the upper link measurement 

b. Strain measurement at center of each link 

c. Strain measurement at base of lower link and upper link 

d. eland e 4 measuremen t 
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t; 1 t; 2 t; 3, ..... ,t; 15 

0.0142 0.0085 0.007 

Table 4.1 The damping ratio 

i j 

1 Lower link 1 1st mode· 

2 Actuator link 2 2nd mode 

3 UP.per 1 ink 3 3rd mode 

4 4th mode 

5 5th mode 

Table 4.2 contents of i, j 

reduced order model included component mode 

1 1-1, 2-1, 3-1 

2 1-1, 1-2, 2-1, 2-2 

3-1, 3-2 

3 I-I, 1-2, 2-1. 2-3 

3-1, 3-2, 3-3 

4 1-1, 1-2, 2-1, 3-1 

Table 4.3 Reduced order models 
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The modeling error £ is defined by eqn. ( 4-2 ). 

£ = 1 - ( L L Vca f3 / L L Vcij ) ( 4-2 ) 
a f3 i j 

where, Vca f3 (the f3 -th component mode of the a -th 

component ) indicates the component cost of the component 

mode included in the reduced order model. 

The big change of the modeling error vs. the change in 

the angles is found in the reduced order model 1. The 

modeling error for both the model 2 and the model 3 are 

satisfied less than 5%. 

The result of the component cost calculation for the 

case ofth~ pinned-pinned-mass boundary condition mentioned 

in section 3.2 is shown in Fig. 4.3. The component cost 

distribution has the same characteristics in both Fig.4.1 

and Fig. 4.3. 

16 



MODELI.NG ERROR ( X ) 
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Fig 4.2a The modeling error vs. angles e 1 8 2 

Tip position of the upper link measurement 
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Fig 4.2b The modeling·error vs. angles e 1 8 2 

Strain measurement at center position ·of each link 
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Fig 4.2d The modeling error vs. angles e 1 8 2 
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a. b. 
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Fig. 4.3 The component cost ( Single output case) 

a. Tip position of the upper link measurement 

b. S trat"n measure·men tat cen ter of each link 

c. Strain.measurement at base of lower link and upper link 

d. eland e 4 measuremen t 
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4.2 Discussion of component cost calculation results 

The results indicate that the selection of the output 

has an effect on the model order estimated with the modal 

cost analysis approach, because the modal cost analysis 

method relates to the system controllability and observ­

ability. And changing the angles e 1 and e 2 has little 

effect in the reduced order model 2 which includes the first 

2 modes of each component is found in results. In the 

strain measurement at base, the variations of the modeling 

error are comparatively small. 

Figure 4.4 and 4.5 represent the experimental 'data of 

RALF in the case of the strain measurement at base point 

and at center point, respectively. In Fig.4.4 and 4.5. the 

input is the step signal to the hydraulic actuators. Each 

figure has the time response data and the spectrum data. 

The first ( 5Hz ), second ( 9.4Hz ) and third ( 30.8Hz ) 

system modes are excited by the actuators. The spectrum 

ratio of the first mode and the second mode is 10 : 1, and 

that of the second mode and the.third mode becomes almost 20 

:1. 

The calculating modal cost of RALF in the strain 

measurement cases are given in Fig.4.6 and 4.7. The modal 

cost ratio between the first mode and the second mode coin­

cides roughly with the spectrum data. 

Since the time response is represented by the combina­

tion of component mode, the component cost derived by the 

coordinate transformation will represent the importance of 

the component mode. 

From these points of view, the reduced order model 

2 in Table 4.3 which includes the first 2 modes of each com-
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ponent is recommended for RALF model. Furthermore, in the 

control of RALF, it is desirable to measure the strain at 

base-of the lower link and upper link. 

In the previous work done by J.W.Lee and J.D.Huggins 

14), the comparison between this model and the experimental 

system was shown to have agreement in the general trend of 

the vibration of the reduced order model and the experimen­

tal system 0 

Changing the boundary conditions does not have a sig-

nificant effect on the model order estimation. The reason 

is that there is little difference in the natural fr,equency 

as shown in Table 3.2. 
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a. Lower beam base strain 

b. Upper beam base strain 
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a. Lower beam center strain 

b. Actuator link center strain 
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Fig. 4.6 Modal cost, of strain measurement at base 
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F~g. 4.7 Modal cost of strain measurement at center 
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5 _ CONCLUS ION' 

A reduced order model of HALF system which consists of 

the first 2 component modes of each link was derived using 

the modal cost analysis approach. From the component 

cost calculation results, the modeling error ratio of this 

model has little variation, in spite of the change in angles 

of the joints. 

Additionally, the strain measurement at base has the nar­

rowest variation width in the modeling error ratio. As 

discussed in section 4, it is desirable to measure the 

strain at base in the control of HALF. 

Because of non-linearity of HALF, in the derivation of 

the reduced order model of HALF, the change of the model ing 

error ratio versus the change of the joint angles of HALF 

was considered. Furthermore, the component cost were con­

sidered for 2 HALF models which have different mode shapes. 

As described in section 4. changing the boundary conditions 

did not have a significant effect on the model order estima­

tion. 

In order to avoid the complexity in the designation of 

the weighting matrix Q, the Q was selected as the identity 

matrix, when calculating the modal cost. In the case of 

measuring several kinds of outputs, the Q should be selected 

appropriately. 

Using the transformation matrix, the modal cost was 

transformed to the component cost. It is not theoretically 

evident whether the resultant component cost is equivalent 

to the results by the component cost analysis theory. 

However, the comparison between the spectrum data and the 

25 
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modal cos t shows tha t the modal cost relates to the 

frequency response s trongl y. Therefore, the componen t cos t 

derived by the coordinate transformation will represent the 

importance of the component mode. 
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