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Abstract: We consider the following problem: given a robot system, find a minimal-time
trajectory from a start position and velocity to a goal position and velocity, while avoid-
ing obstacles and respecting dynamic constraints on velocity and acceleration. Based on
the theoretical results of [CDRX], we have developed and implemented a new, provably
good approximation algorithm for the minimum-time tra Jectory problem. Our algorithm
differs from previous work in three ways. First, it is possible to bound the goodness of
the approximation by an error term e. Second, we can polynomially bound the running
time (complexity) of our algorithm. Third, we can express the complexity as a polyno-
mial function of the error term. Hence, one supplies the algorithm with the geometric
obstacles, dynamics bounds, and the error term ¢. The algorithm returns a solution
that is e-close to optimal, and promises to spend only a polynomial (in (1)) amount of
time computing the answer. In this paper, we describe the algorithm and explain the
results in simple terms. We show how it can be applied to robotics, and report on an
implementation and experiments.



1 Introduction

The kinodynamic planning problem [CDRX] is to synthesize a robot motion sub ject to
simultaneous kinematic constraints (such as avoiding obstacles) and dynamic constraints
(such as modulus bounds on velocity, acceleration, and force). A kinodynamic solution
is a mapping from time to generalized forces. The resulting motion is governed by a
dynamics equation. In robotics, a long-standing open problem is to synthesize time-
optimal kinodynamic solutions, by which we mean a solution that requires minimal time
and respects the kinodynamic constraints.

While there has been a great deal of work on this problem, with the exception of
the one-dimensional case, there are no exact algorithms. Among the many proposed ap-
proximate or heuristic techniques, there exist no bounds on the goodness of the resulting
solutions, or on the time-complexity of the algorithms.

Because the problem is quite hard, we feel that it is reasonable to pursue approximate
algorithms, by which we mean algorithms that compute kinodynamic solutions that are
“close” to optimal (in some appropriate sense). It is also desirable to find efficient algo-
rithms, since these problems are currently computationally very intensive. In this vein,
we feel it is natural to ask the following three questions about such an algorithm:

Open Questions

e How close to optimal is the solution?
¢ What is the running time (computational complexity) of the algorithm?

e Can the running time be related to the desired solution accuracy?

Hence, ideally, we would like to find an algorithm for which one could guarantee the
solution accuracy to some tolerance e. For a fixed ¢, one hopes such an algorithm would be
efficient (i.e., polynomial-time). While one might expect such an algorithm to run longer
when a more accurate solution was required, the algorithm would promise to spend only
a polynomial amount of time longer, as ¢ was made smaller. We call such an algorithm a
provably good approzimation algorithm. Despite a great amount of previous work, to our
knowledge no such algorithm exists, and all the questions above remain open.

Because the problem is quite hard, we have started with a simplified case. We consider
the restricted situation of particle dynamics, and provide a provably good approxima-
tion algorithm for 2- and 3-dimensional optimal kinodynamic planning. We have devel-
oped and implemented an algorithm based on our earlier, theoretical results in [CDRX].
Roughly speaking, we show that if there exists a “safe” optimal-time kinodynamic so-
lution requiring time ¢, then we can find a “near-optimal” solution that requires time
(1 + €)t. Furthermore, the running time of our algorithm is polynomial in the both in
the closeness of the approximation L and in the geometric complexity. (This is true even
in 3 dimensions, where computation of an exact solution can be shown to be A/ P-hard).



These bounds on solution accuracy and running time are the first that have been ob-
tained for 2D and 3D optimal kinodynamic planning, which has been an open problem
in computational robotics for over ten years. Our algorithm is very simple, and we have
implemented it. We report on experiments with the implementation later in this pa-
per. Finally, we believe that our approach might well extend to robot systems with full
dynamics.

2 Kinodynamic Motion Planning

Kinodynamic planning attempts to solve a motion problem sub Ject to simultaneous kine-
matic and dynamic constraints. We wish to consider the following problem. A point
mass in R4 (d = 2,3) must be moved from a start position and velocity s = (s,3) to a
goal position and velocity g = (g,§). In the course of the motion, it must avoid a set of
polyhedral obstacles: these are the kinematic constraints. The point is commanded to
move by applying forces (or equivalently, commanding accelerations). The corresponding
motion is governed by Newtonian dynamics. However, there are upper bounds on the
magnitude of the commanded accelerations. These bounds are given by an L,-norm: for
all times ¢, the acceleration a(t) is bounded by the inequality

|a(t)leo < amas- (1)

In addition, we have velocity bounds that the solution must respect. For a smooth
path p, we must ensure that

[B(t)loo < Ymas- (2)

Egs. (1) and (2) are called dynamic constraints.

We will denote our configuration space R¢ by C, and its phase space by T'C. Phase
space T'C is isomorphic to 2 and a point in TC is a (position, velocity) pair such as g
or s.

The commanded acceleration is a map a : [0,b] — R for a closed interval [0,5]. The
path p corresponding to a is its second integral subject to the initial position and velocity
s, and the trajectory T for a and s is the mapping T : [0,4] — TC taking a time ¢ to
(P(t), P(t)). Thus p is the time derivative of p, and a = p.

Let us assume the polyhedral obstacles are input as an arrangement £ with n vertices.
Free space is the complement of these obstacles. A general kinodynamic planning problem,
then, is a tuple (£,8,8, Gmaz, Vmaz). We assume that the set of free configurations is
bounded by a square of side length .

A solution to the kinodynamic planning problem is a suitable encoding of the accel-
eration map a such that I'(0) = s, I'(b) = g, and T obeys the kinematic and dynamic
constraints. That is, p avoids all obstacles, p respects (2), and a respects (1).

The time for a solution a is simply b. The optimal kinodynamic planning problem is
to find a kinodynamic solution with minimal time.



Figure 1: A kinodynamic planning problem, showing the obstacles, the start s, the goal g.

However, the theoretically optimal solution may still be unrealizable by a physical
robot, (even if it is a point!) This is because robot control systems cannot accurately
navigate through tight obstacle channels at high speeds. We would like to take thjs
constraint into account in our analysis, in order to supply a result that is not only
theoretically interesting, but also perhaps of practical value. Thus we define the notion
of a §,-safe kinodynamic solution. The intuition behind such solutions is that they avoid
obstacles by a safety margin 6,. Furthermore, this safety margin is an affine function of
the trajectory speed. We choose the safety margin a priori using two positive scalars c,
and co. One may think of this choice as corresponding to how accurately the dynamical
system can control its energy consumption. This variation specifies a tube about the safe
path that must remain obstacle-free. We call this tube a 6u(c1, co)-tube; it grows linearly
in size with speed.

Formally, a §,-safe kinodynamic solution has the property that for all times ¢ in [0, 8],
there exists a ball about p(t) in free space of radius é,(t) = ¢;|p(t)| + co. (Here “ball” is
used in a topological sense: i.e., its shape depends on the metric being used.)

Now, for fixed c;, co, consider the class of all §,-safe kinodynamic solutions. We define
an optimal 6,-safe kinodynamic solution to be a §,-safe solution whose time is minimal
in the class of §,-safe solutions. We will henceforth abbreviate this to “optimal safe
kinodynamic solution” since 6,-safety is the only type we consider here.

We must specify precisely what it means for one kinodynamic solution to “approxi-
mate” another. First, we say that a trajectory T, : [0,2,] — T'C is “e-close” at the start
s (resp. goal g) if, at time O (resp. time ¢,), it achieves the start (resp. goal) position
to within an additive error that is polynomial in ¢, and the start (resp. goal) velocity to
within a multiplicative error of (1 + ¢), plus or minus another additive error, also poly-
nomial in e. That is, if [y = (p,, P,), then both |p,(0) — 3] and [(1 + €)p,(0) — 3| are
€°(™) (and similar conditions hold at the goal). The idea is that by making € smaller, T,
can be made to achieve the start and goal as accurately as desired.

Finally, we define an approzimate optimal safe solution T’y to be a kinodynamic solution
which is “e-close” at the start and the goal, “near-optimal” in time, and “also safe”. By
“near optimal”, we mean that if the optimal safe solution I' takes time b, the time ¢,
required by Ty is bounded above by (1 + ¢)b. By “also safe”, we mean nearly §,-safe:
specifically, that the position component p, of T, lies in an obstacle-free safety tube
bs(cy,p) for constants c|, ¢, where ¢ = (1 — €)co and ¢, = (1 — €)c;. Note that 6,-safety
is actually a mized kinematic and dynamic constraint; it is an example of a kinodynamic
constraint that is neither purely kinematic nor purely dynamic.






Figure 2: T is the optimal kinodynamic solution. However, it is not é,-safe. T, is the optimal §,-safe
solution. Ty illustrates a solution that is almost as fast as I',, and almost as safe. Our algorithm can find
solutions such as Ty, and provides guarantees as to how fast, and how safe they are, relative to T,.

Figure 3: A near-optimal trajectory that was found by our implementation. (The “spikes” indicate the
velocities).

2.1 Statement of Results

In this paper, we assume the workspace has unit diameter (I =1). We describe a prov-
ably good approximation algorithm for the optimal safe kinodynamic planning problem
K = (€,8,8,Gmaz; Umaz, C1,C0,€). The algorithm produces an approximate optimal safe
solution. ¢, which is an input parameter, specifies how close in time the desired solu-
tion should be to the optimal, safe solution. c;, ¢ specify the class of trajectories to be
considered “safe.”

Our algorithm runs in time polynomial in the geometric complexity n, and in the
resolution (1). Thus we can bound both the goodness of our approximation, and the
running time of the algorithm. Furthermore, we can relate the running time to the error
term, and show that this relationship is polynomial.

More precisely, we observe that an optimal safe kinodynamic planning problem K
has three components: The combinatorial complezity of K is the number n of vertices in
the arrangement of obstacles £. The algebraic complezity of the geometry is the number
of bits necessary to encode the coordinates of the vertices of £ , and the start and goal
states. The algebraic complezity of the kinodynamic boundsis the number of bits necessary
to encode the kinodynamic bounds (@mazs Vmaz, €1, %) In the language of combinatorial
optimization [PS], we show that our algorithm is an e-approximation scheme that is fully
polynomial in the combinatorial and algebraic complexity of the geometry, and pseudo-
polynomial in the kinodynamic bounds.

Note, however, that we cannot claim that the approximate optimal safe solution is
necessarily near (in position space) to the (true) optimal safe solution. In this respect
it is useful to compare Papadimitriou’s fully polynomial approximation scheme for 3D
Euclidean shortest path [Pap)]. Specifically, neither method finds a solution that is nec-
essarily close (in position space) to the optimal path, but merely one that has a length
(or, in our case time) that is not too much longer than the optimal length (resp. time).
In fact, the results of [CR] imply that finding a path that is position-space close to the
shortest path, or even one that is homotopic to the optimal is N'P-hard.
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2.2 Review of Previous Work

For a review of issues in robotics and algorithmic motion planning, see [Bra, Y]. There
exists a large body of work on optimal control in the control theory and robotics literature.
For example, see [Hol, BDG, Sch, SS1, SS2]. Much of this work attempts an analytic
characterization of time-optimal solutions—for example, to prove that in certain cases
piecewise-extremal (“bang-bang”) controls, with a finite number of switchings, suffice.
This has led to many interesting and deep subresults. For example, [BDG, Hol] show how
given a particular trajectory I = (p, p), its velocity profile can be rescaled so as to respect
dynamic constraints and to be time-optimal. Using these ideas, a number of authors have
proposed heuristic or approximate algorithms for what is hoped to be near time-optimal
trajectory planning. In particular, Sahar and Hollerbach [SH] and Shiller and Dubowsky
[SD] both implemented algorithms which employ a fixed-resolution configuration-space
or phase-space grid to compute, approximately, near minimal-time tra Jjectories for robots
with several degrees of freedom (and full dynamics). They did not bound the goodness
of their approximation, nor the running time of their algorithm. However, their grid
methods take time which grows exponentially with the number of grid points, or the
resolution. We provide the first polynomial-time algorithm.

. The polyhedral euclidean shortest path problem is a version of optimal kinodynamic
planning with the acceleration bound @, set equal to infinity. This observation may be
used to extend the results of [CR] to show that in 3D, optimal kinodynamic planning is
N'P-hard. In other work, O’Diinlaing [O] provides an exact algorithm for one-dimensional
kinodynamic planning. These methods may extend to the 2- and 3D cases as well.
Kinodynamic planning in 2D is related to the problem of planning with non-holonomic
constraints, as studied by Fortune and Wilfong [FW, W]. In this problem, a robot with
wheels and a bounded minimum turning radius must be moved. To make the analogy
clear, in our case, the minimum turning radius is a—’:‘;”p”2 These algorithms might lead
in time to an exact solution to kinodynamic problems in 2D and 3D.

3 Description of the Approach
3.1 The Basic Idea

The phase space TC is the state space for the particle robot. One can imagine a regular
discretization of phase space TC. This discretization can be thought of as a “grid”; a
point in the interstices is a “grid point”. One could command a move from one grid point
to another using piecewise-maximal accelerations. Such a motion is called a “bang” in
the controls literature. Of course, not all grid-point neighbors will be reachable for an
arbitrary discretization. However, it seems intuitively plausible that for a sufficiently
“fine” grid, a grid-point bang path might approximate the optimal time path. We will
call a trajectory that conmsists of bang-accelerations between grid points a “grid-bang
trajectory”. The key issues are to choose the grid spacing correctly and to prove that



Figure 4: A picture of the phase space grid in 1D. A plot of z versus . The cross indicates zero position
and velocity. The dashed arrows from (0, 0) indicate the two states reachable after time step 7, under +
and — (a,7)-bangs. The six states reachable at time 2r are indicated by dotted arrows. The 14 states
reachable at time 37 are indicated by solid arrows. The grid spacing is ar? in z, and a7 in .

the approximation bound

ts<(1+¢€)b (3)

holds. (b is the true optimal safe solution time, and ty is the grid-bang approximate
optimal safe solution time). Furthermore, the grid must be polynomial in size. The
proofs of these properties require certain non-trivial constructions.

Our idea is to use a non-linear grid spacing.! The spacing is a function of the velocity.
For a grid point (x,X), let us call the distance from (x, X) to each of its grid neighbors the
local grid spacing at (x, ). This distance has both a position and a velocity component.
The local grid spacing in the velocity dimensions of phase space will be constant. The
local grid spacing in a position dimension i will be an affine function of the local velocity
;. This will ensure that from a state (x, x), all neighbors will be reachable under a single
acceleration bang. Our approach is further distinguished from uniform grid algorithms
in that at each time step, one is compelled to move to a neighbor. The algorithm can
find a grid-bang trajectory that lies within some tube (in phase space) of the optimal
trajectory. By staying within this tube, we can hope to achieve a constant multiplicative
error bound in terms of time.

Wiog, we assume that the start s and goal g lie on the grid. Our algorithm first
chooses a time-step 7 that we derive as a function of @maz, €, Co, and ¢;. Next, the
algorithm performs a breadth-first search, that takes time O(Glog G) in the number G of
grid points (however, collision avoidance and 6,-safety introduce an additional quadratic
factor in the geometric complexity n).

More specifically, a queue is initialized to contain the start point s. At each step of
the algorithm, a state (phase space point) (x, x) is popped off the queue. We check to
see whether it is the goal. If it is, then we halt; the approximate grid-bang path has been
found. We consider bangs (maximal accelerations) of duration 7 along the major axes
from (x,x), in both + and — directions. For example, in 2D, we would consider bangs
a of the form a,i + a,j for a; € {0, amaz, —Gmax }. After time 7, the final phase space
coordinates for each bang are taken as the new set of neighbors. (It is easy to verify that
these grid points have a position offset that is affine in %, and a constant velocity offset).
Those neighbors that have not been explored are pushed on the back of the queue. They
must retain a pointer to their father grid point. So a queue entry must consist of (a) the
grid-point (x,x), (b) the grid-point’s parent, and (c) the commanded acceleration a to

! Although our discretization does form a lattice in TC, the reachable neighbors are not the geometric
neighbors. We continue to use the term “grid” for intuition.






get there from the parent in time r. A balanced tree can be employed to keep track of
which grid points have already been explored.

To see that this algorithm is correct, we view the discrete search space as a directed
graph. Vertices of the graph are grid points. Directed edges correspond to (a, 7)-bangs.
Two vertices u and w are connected by an edge iff w is reachable from u by an (a,r)-
bang. The vertices connected to u by edges from u are called its neighbors. Since we
have a normal form for the bangs a, the out-degree of each vertex is fixed at 3¢ for
dimension d. The algorithm starts at s and begins constructing edges of the graph. The
search terminates when either a path to the goal g is found, or the maximal connected
component from s has been explored. Thus the algorithm reduces to directed graph
search. We will show that the number G of vertices (grid-points) is polynomial. Since
we are seeking a shortest path in a graph where all edges represent the same time step,
we can use the breadth-first search algorithm above, which takes time O(Glog G).

There are several complications. First, when a neighbor is generated, the resulting
bang trajectory is considered:

P;Z[O,T] - TC (4)
t — (p,p) =(x+xt+ iat? x + at).

~ Our planner must ensure that (a) p does not intersect any obstacles, (b) p does not
violate the velocity bounds (2), and (c) for all times ¢, p(t) is no closer than alp(®)| +
to any obstacle. (a) and (c) may be tested together by “growing” the obstacles affinely
in TC as the velocity increases. Any bang-neighbor violating (b) or (c) is considered
unreachable from (x, X), and so is left unconnected in the directed graph.

If the obstacles are “grown” affinely with velocity, their boundaries form O(n) al-
gebraic surfaces in phase space. Collision detection for a single (a,7)-bang can be ac-
complished by intersecting the quadratic trajectory (parameterized by time) with these
surfaces, and performing O(n) sign-tests on each intersection point. Thus collision de-
tection can be done in time O(n?) per bang, and the overall complexity of the algorithm
is O(n?G + Glog G).

4 Outline of the Proof

We can now give a very basic overview of the approach we have used to show that our
algorithm is a provably good approximation algorithm. Full proofs can be found in an
appendix.

4.1 Time Scaling

We denote the position and velocity components of a subscripted trajectory I', by p,
and p,, resp. We say that a path p is traversed by a trajectory I' under acceleration
bound am,; if the image of the position component of T is equal to the image of p, and
T respects (1). First we must prove a not very difficult lemma showing that allowing a
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Figure 5: A tube in phase-space. Trajectory I'y approximately tracks I’ to tolerance (12, my)-

multiplicative time error of (1 + ¢) permits a trajectory to be traversed with a tighter
acceleration bound. Intuitively, this permits an approximate, grid-bang trajectory with
acceleration bound a to “keep up with” a trajectory that respects a smaller acceleration
bound W, regardless of curvature.

Specifically, suppose we are given a trajectory I', which is an optimal safe kinodynamic
solution (see fig 2). Let ( = Zl_-ln-_J Then

L) = (pr(ct), Cir(ct)) 5)

is obtained by rescaling T',; its image in position space is the same. Next, we must
prove that there exists some (g, 7)-grid-bang trajectory I', that is “sufficiently near” I
in phase space. The bound on solution accuracy will then follow from this relationship
of “sufficient nearness.” The bound on time complexity will follow by showing that the
(a, 7)-grid need only have polynomial size—or equivalently, that 7, the time step, is only
polynomially small. Thus the proof may be sketched as

I, -TI, -7,

Now, a time spacing 7 and an acceleration bound a define a non-linear grid on phase
space, as in sec. 3.1. We call this an (a,7)-grid. Recall that a grid-bang (or (a,7)-
grid-bang) trajectory starts on the grid, and is defined by a finite number of “bangs”
(maximal or zero accelerations under the L,-norm) each of duration 7. We may think
of it as successive bangs “between” grid points. Our goal is to choose a sufficiently small
7 such that (3) holds, but still maintain a polynomial-size number of grid points. To this
end, we must be able to show that 7 can be chosen such that for any safe trajectory,
there exists a “nearby” grid-bang trajectory that is “almost as fast.” Since the simple
structure of our grid assures neighbor reachability tautologously, it is easy to see that
our algorithm will find such a grid-bang path if it exists, and is the fastest.

4.2 Tubes in Phase Space

It remains to make precise our notion of “sufficient nearness.” This notion may be
captured by a “tube” about a phase space trajectory. A tube about a trajectory (in
phase space) is a neighborhood about the the trajectory image. (see fig. 5). It is
specified by two metric parameters, one for position space, and one for velocity space.
More precisely, consider two trajectories T, T, : [0,5] — T'C. Given two scalars n: and
My, We say that we say that I'; approzimately tracks T, to tolerance (7z,M0) n the Loo-norm
if for all times ¢, [pg(t) — Pr(t)|oo < 7z and |Pg(t) — Pr(t)loo < 70

Then, using certain non-trivial arguments, we are able to show the following Tracking
Lemma. It essentially says the following: suppose we rescale the optimal trajectory I,
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Figure 6: Knot points at which the trajectories I’y and T} are close in phase space. The knot times are
times kNt for integer k > 0.

to obtain I'; (as above). Then we can choose T so that the following hold. First, for any
(7z,7v)-tube, T can be chosen such that there is an (a, 7)-grid-bang solution within the
tube about I',. Second, T need only be polynomially small in the tube size (and in ¢).

The Tracking Lemma: Suppose a trajectory I', respects acceleration bounds ﬁﬁ
and takes time T,. Then in the absence of obstacles

(a) for any positive 1, n,, there ezists a time spacing 7 and an (a,T)-grid-bang tra-
Jectory L'y with bounded acceleration a that approzimately tracks I, to tolerance (n,n,) in
time T,.

(b) Moreover, T is polynomial in ¢, 1., and n,. Specifically, when 0 < € < 1, 7 can be

chosen as:
. Nz€ 1Ny€
< _— ).
T= m(V 17a’ 12a) (6)

We now give some intuition for how one proves the Tracking Lemma. The essential
technique is reminiscent of constructing spline-curve approximations. What we can show
is that there exist “knot” points along I'. and ', at which the two trajectories are “close”
in both position and velocity. See fig 6. Furthermore, these knot points are equally
spaced in time; these times are called knot times. More precisely, we suppose that
has been fixed (arbitrarily). Then, at every knot time ¢, we can show that the position
components p,(t) and p.(t) are no further apart than 3a7? (in the oo-norm). Similarly,
the velocity components are no farther apart than 3a7. Finally, the knot points are given
by the sequence of times

0,N7,2N7,3N1,4NT,...

where N is an integer dependent on e. In fact, it turns out that choosing N greater
then 10.5¢ suffices. Hence, every Nt seconds, the trajectories are guaranteed to converge.
Now, since the convergance distance (}ar?, 1ar) can be made arbitrarily small by chosing
a small 7, we must then calculate how far apart the trajectories can stray between knot
points. This calculation is not hard; for example, in the position case we must choose 7
to ensure that 1(ar? + aN7?) + aN72? < 1),.

4.3 More Phase Space Tubes: The Case With Obstacles

Recall the construction of I', from I, by rescaling. The Tracking Lemma does not yield a
polynomially-small 7 that guarantees that a trajectory I', respecting acceleration bound
a is tracked to a tolerance (7;,7,) by some (a,7)-grid-bang trajectory. However, if 7
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satisfies (6), there exists an (a,7)-grid-bang trajectory that “follows” such a [, in a
weaker sense. Specifically, let ( = (ﬁ_;; and let T, be given by (5). If T, is a-bounded,
then TI,’ is (?a-bounded, and thus by the Tracking Lemma, there is an (a, 7)-grid-bang
trajectory that approximately tracks I',’ to tolerance (nz,7mv). It then follows from the
definition of I'; and the definition of “approximately tracks” that for all ¢ € 0,(1+€)T]
we have |py(t) — pr((t)leo < 7.

We use this observation to motivate an extension of the Tracking Lemma to obstacle-
avoiding trajectories. Recall that 6, is an affine function of speed completely specified by
two constants ¢y and ¢; which are input to the algorithm; henceforth we will abbreviate
dy(co, ¢1) by 8,. Suppose that I, is d.-safe, and recall the §,-tube for T, (see sec. 2). It
is then clear that I', must also tube §,-safe. Naively applying the observation, we might
expect that if a trajectory I'; tracks I'. imperfectly but closely enough, then the §,-tube
induced by I'; would lie entirely in 6,-tube induced by I',. Since this is not generally
true, it is natural to try a slightly weaker conjecture: for any é,’ such that for all speeds
y and some constant e,,

6,'(y) < 6u(y) + €,

if I'y tracks I'; closely enough, the 6!-tube induced by 'y will lie within the §, be induced
by I';. This conjecture is formalized by the following lemma.

The Safe Tracking Lemma: Suppose that 8, is specified by co and ¢; and 0 < € < )
and let 6,' = (1 — €)6,. Then for a given acceleration bound a there ezists a tolerance
(nzy7m0) such that for any trajectories T, and I’} as above (12), the following hold:

(a) If Ty tracks T, to tolerance (1s,7,), then the 8! -tube induced by Ty lies within the
0,-tube induced by T, .

(b) Furthermore, for any positive (3, the following choices suffice:

T S SRR 7

2 < P

Ndw, since we know that  is polynomially dependent on 7, and 7,, we can apply the
lemmas above and choose # to maximize the upper bound on 7. This yields the following
choice of tau, which suffices for 0 < ¢ < 1:

2co€?
T < S

" 12ac, + \/144a2c§ + 68aco'

(8)

4.4 Bounding the Number of Grid Points

We now bound the number of (a, 7)-gridpoints for a point robot with maximum (Loo)
speed Umqz in a d-dimensional free-space of diameter /. Let G (8@, T, Vmaz, |,d) denote this
bound. Then
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Goo(, 7, Vmaz, 1, d) = (Goo(a, T, Umasz, 1,1))% . (9)

It is clear that Goo(@, T, ¥maz, 1, 1) is equal to the maximum number of possible veloc-
ities at any given time kr multiplied by the maximum number of possible positions at
that time. Since at each timestep the change in velocity is ar, —ar, or 0, the number of
possible velocities is at most 2maz 4 1. To see that the number of possible positions
at a given velocity is at most 37 + 1, let v denote the velocity and z; the position
at timestep k for all k. Then 734, = vt + a(k)%, where o(k) € {—1,0,1}. Wiog, let
vo = 0 and z¢ = 0. Since vy = crar for some integer cx, by using induction we can show
that

Ty = ﬂ*-#)"—"’ if ¢ odd

(10)
Ty = ﬁ‘;‘-'ﬁ if cx even,

where T is another integer. It follows directly from (9) and (10) that

Goo(@, 7, Vmas, 1, d) = ((2‘;";“ +1) (# + 1))". (11)

Hence, in a bounded workspace with velocity limits, a polynomial-sized grid suffices to
obtain an approximate optimal safe solution. It is easy to see that this polynomial-sized
grid can be searched for the optimal (a,7)-grid-bang path, while avoiding obstacles as
prescribed by a safety function &, in polynomial time. We formalize this claim below:

Theorem: Given acceleration bounds a, velocity bounds vp,.z, environment diameter l
and positive scalars ¢, co, and c;, the (a,7)-grid with T chosen to satisfy (8) has polynomial
size. In addition given obstacles £, start s, and goal g, a minimal-time (a,7)-grid-bang,
4, -safe trajectory T'y from 8 to g can be computed in polynomial time.

Note that the computed trajectory I, satisfies the time approximation T,<(1+€T,
in addition to respecting the kinodynamic constraints and being §!-safe.

5 Implementation and Experiments

To get some idea for how our algorithm might perform in practice, we have completed a
preliminary implementation for the two dimensional case. The implementation runs on
a Symbolics 3620 in Zetalisp. Currently, the planner implements collision-avoidance but
not §,-safety; that is, the paths found are collision-free but not necessarily §,-safe. We
intend to implement é,-safety by the final version of this paper. Since §,-safety reduces
the search space, this may result in a performance improvement.

An example of a solution found by our planner is shown in fig. 3. The start position is
at lower left, and the start velocity is in the y direction. The goal, at the upper right, has
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Figure 7: This figure shows the commanded accelerations for the solution in fig. 3. Eg., at the start
configuration, the commanded acceleration for the first time-step is a bang in the +z direction. The
large “diagonal” accelerations correspond to simultaneous co-norm bangs in the —z and y or —z and —y
directions. Thus this figure represents the “plan” of commanded forces.

zero velocity. The small circles indicate the position component of the planned trajectory
at each time step. The “lines” or “spikes” attached to each circle indicate the velocity at
that position.

Several points are worthy of comment. See fig. 7, which shows the commanded
accelerations for the solution in fig. 3. Eg., at the start configuration, the commanded
acceleration for the first time-step is a bang in the +z direction. The large “diagonal”
accelerations correspond to simultaneous oco-norm bangs in the —z and y or —z and
—y directions. Thus this figure represents the “plan” of commanded forces. At first
glance, the plan may appear to exhibit chattering. However, consider the plan as two
simultaneous controls in z and y (that is, consider the projections of the commanded
accelerations). From this viewpoint, viewing the z and y controls independently, it is
clear that the plan is actually bang-bang in z, and bang-bang in y independently. That
is, in z, the plan starts out with a full positive acceleration. Roughly half-way along, it
switches to a full negative acceleration. However, in Y, at first here is no y acceleration.
Intuitively, the reason for this may be that a y acceleration would cause a collision. After
the obstacle near the start is cleared, the plan accelerates full positively in y, followed by
a full negative acceleration in y (and a small coast at the end). At this point, however,
we cannot say anything more precise than that the plan has (essentially) a global bang-
bang-like structure in the independent z, y controls.

Our planner is currently implemented as a breadth-first search, with no heuristics
to prune the search space. The solution in figs. 3-7 took several hours to generate. It
would be of great interest to reimplement the planner using A4* search, assuming that
appropriate estimation functions could be found. We hope that such techniques can be
used to improve the performance of the algorithm in practice. Much work remains in
tuning the algorithm; we have just taken the first step.

In addition, in the future, we intend to explore extending our algorithm to the case
of rotational dynamics. A practical, provably-good planner for this case would clearly be
of great interest.

6 Conclusions

In this paper we described the first implementation of a polynomial-time, provably good
approximation algorithm for kinodynamic planning. We feel that kinodynamic plan-
ning represents a new direction in algorithmic motion planning, and expect to see much
progress in this area.

There are many directions for future research:
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. The complexity of our algorithm can probably be improved.

- Other search algorithms, such as A*, may be employed in place of a breadth-first
search.

. Precise lower bounds for kinodynamic planning should be established (especially in
the 2D case).

. Exact algorithms should be explored.

- We conjecture that if contact is allowed (rather than 6,-safety) then the complexity

of the problem increases considerably. More specifically, one can imagine three
related kinodynamic planning problems:

(a) The first is explored in this paper, where the robot must avoid obstacles by a
speed-dependent safety margin.

(b) A second problem might be likened to figure skating: forbidden regions are
marked out in the plane (the “ice”), and a path with velocity-dependent non-
holonomic constraints must be synthesized. The “obstacles” may be grazed
but not crossed. However, the forbidden regions exert no reaction forces on the
robot, even when in contact. This second problem corresponds to theoretical
“true” optimality. )

(c) One can also imagine a third problem in which the reaction forces (impact,
constraint forces, and friction) of the obstacle surfaces are taken into account.

Finally, one may consider the optimization version of each of these problems. Note
that while the theoretical formulation of the “figure skating” problem is quite clean,
it may be rather far from practical interest.

It would be interesting to extend our approach to 2-norm velocity and acceleration
bounds, and to manipulator systems with full rotational dynamics. For example,
one might consider the rigid body dynamics of a planar polygon or a two link planar
manipulator. Finding near-optimal kinodynamic solutions in these cases would be
of great interest.

In addition, there is a great deal of interesting heuristic and experimental work to
be done, in reducing these algorithms to practice. Computational kinodynamics seems
a particularly fruitful area in which to pursue fast, provably good approximation algo-
rithms, since while the problems are of considerable intrinsic interest, exact solutions may

well
and

be intractable. Finally, since the problem has an optimization flavor, the algorithms
proof techniques draw on several branches of computer science and robotics.
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A Proofs

A.1 Details and Lemmas

We now give the proofs, so that the reader may check our argument if desired. For more
details, see [CDRX], where full proofs will appear.

Lemma A.1 If p is traversed in time T, by a trajectory I, under acceleration bound a,
then there ezists some I'. that also traverses p with acceleration bounds [y in time

T.(1+e).

Proof:  Given I, = (p,, p,), we construct .. Let ¢ = ZIL-HY and let T,’ be given by

T = (pr(¢8), ¢B(¢H)- (12)

Then the proof follows by checking position boundary conditions, and differentiating
to obtain the acceleration bound. 0O

Lemma A.2 (The Tracking Lemma) Suppose a trajectoryT, respects acceleration bounds
ﬁv and takes time T,. Then in the absence of obstacles

(a) for any positive 1., 1,, there ezists a time spacing 7 and an (a,T)-grid-bang tra-
jectory Ty with bounded acceleration a that approzimately tracks T, to tolerance (mzym0) in
time T,.

(b) Moreover, T is polynomial in €, 1., and n,. Specifically, when 0 < ¢ <1, 7 can be

chosen as:
. Nz€ 1Nye
< = ).
T —mm(V 17a’12a) (13)
Proof: We first show that given € > 0 we can find an integer N such that for any
trajectory I', respecting acceleration bounds rfemu and its running time 7, the following

holds: for any time-spacing 7 > 0 there exists an (a, 7)-grid-bang trajectory I'; such that
for all integers k such that 0 < kN7 < T,,

(]

|Po(kNT) — p.(ENT)|, < 2= ”
[po(kNT) — p,(kNT)|, < <.

Note that if kN7 > T, the “for all” condition is vacuously true.

Since we are using the Lo-norm, it is sufficient to show (14) for one-dimensional C.
(For d dimensions we just take the largest N;,0 < i < d.) To make the proof more
readable, we introduce a less cumbersome notation: for a mapporI' to C, TC, or R, we
denote its value at kN7 by p(¥) or I'*®), etc.; we denote by Ap(*) the quantity p(k+1) — p(*),
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Note that the dependence of p¥), I'¥) etc. on 7 is not apparent in this notation but will
be obvious in the context of the proof.

The proof of (14) is by induction on k. We find a sufficiently large N that is inde-
pendent of k and 7 during a construction in the induction step. The k = 0 base case is
trivial because I, begins on a gridpoint by hypothesis.

Consider the induction step for an arbitrary r > 0. If (k+ 1)N7 > T,, then the
induction step holds trivially. If (k+1)Nt < T,, then kN7t < T., and the induction
hypothesis states that there exists some (a, 7)-trajectory T{¥) such that for j = 0,... &

B -] < o

P (15)
B -89 < %

We show that in this case there is an (g, 7)-bang extension 7 to I'®) so that under
[*+1) = I'®) % y(*) (15) holds with j = k + 1 provided that N is sufficiently large and
(k+1)N7 < T,. (Here “+” denotes trajectory composition, which is similar to path
composition.)
(k)
~ Assume that N > % and let @ = ZT-:TF and t; = lé;.lil. Then, we can choose an
integer b, such that |5 < N, and [P + aber — pi*+1)| < 2. We set B = pl®) 4 aby 7.
We can then construct the set Q; of possible Ap{*) for this choice of p+Y); that is, we find
all possible Ap(*) under (a, 7)-bang extensions v(*¥) of I'® such that B+ = p®) + aby .
By considering p,(t) and recalling that p,(t) is its integral for ¢ between kN+ and (k+1)Nr
under the above constraints, we conclude first, that max(Q;) = min( Qi)+ frar? for some
integer [, and second, that u € Q if and only if u = min(Q;) + nar? for some integer
n € [0, Bx]. Hence, we say that the suitable (a, 7)-bang extensions (¥ of I'® achieve the
full range of [min(Qx ), max(Qx)] with grid spacing ar2. Now, in a corresponding manner,
we define Ry to be the (infinite) set of all possible Ap*), for a given p{*) and p(k+1).
Therefore, we must show that for sufficiently large N, with p{¥+1) given by the above,

min(Qy) < inf(R) - o
max(Qx) > sup('Rk)+%.

We describe how to choose N sufficiently large to ensure the max-sup inequality holds;
the argument for the min-inf case is similar and yields the same N. The sup(Rx) for a
given Ap(®) arises when I, accelerates fully in the positive direction for as long as possible
with the restriction of achieving Ap(¥). It is easy to see that in the worst case for a given
ApF)

(16)

~(k a (k ~(k
W -2 < p® < p®,  and

. T . . 17
p$k+1)_% < p‘('k+l) < plktD), (17)

If Ap® > 0, then I', accelerates full-positively for the interval (kN1 kNt + 3‘-‘"2’\’—')
and full-negatively for the interval (kNT + 5”;”—’, (k + 1)NT); otherwise, I, accelerates
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full-positively for the interval (kN7 kNt + iV—"{—“‘) and full-negatively for the interval
(kNT 4+ 222 (k + 1)Nr). Thus, for a given non-negative Apk)

sup(Re) = p*INT + a—;i + ANr-t)? Nt : 8
+ &tk(NT - tk) ( )

When Ap® is negative, eqs. (18-21) and (23) are very similar; here, we assume the
non-negative case throughout. Let b = |by|. Then, similarly to the above, we obtain

max(Qi) > I"((,")Nr + abngz + a,z(,i_bk),
+ ar2be(N - ) — %

(19)

where the “—%” is due to the possibility of N — by being odd. Combining common terms
in NV and b, we get

max(Qs) 2 pINT +eGr 4 Vet
_ M en (20)
4 2
Since b = [RT‘-:?FJ or by = [Rl—‘:;;,-], in (20) we must choose the b; that minimizes
max(Qi). Now we consider the various possible values of b corresponding to different
possible velocities at times kN7 and (k + 1)Nr. Using the RHS of 20, let us define the
function @y, ¢ : R — R so that &y, 4(b) is a lower bound on max(Q;) for b, > 0:

QN,?,k(z) = p‘(,k)NT + ﬂ:_f_’ + a_N;ﬁ

_ar3z2 _ ar? (21)
4 2

Since the quadratic terms of ®x,,.(z) have negative sign and ® N,k is continuous,

if QN,r,k( l_nl—t_f_:v_') S QN,r,k( f;(l—‘:-(?-] ), then QN,f,k(;(l—t::F - 1) < QN',-']:( l_wl—t_t:v-_,), and if
BNkl I-r_(l—‘-:?-l) 2 PN I-Tlt_f_;y;]), then QN"”‘(T;‘:? +1) < BN I’Tltiw]) Thus, the

following is a sufficient condition for the max case of (16):

tk a7'2
_ - -——>0.
QN,,-J‘ (T(l n 6)2 + 1) sup('Rk) 5 = 0 (22)

We now apply (22) to determine how large N must be. Let a = t;/7 and ( = o
Then, tx = ar and RT‘:?F:H = a(*+1. Using (18) and (20) and doing some manipulation,
we obtain:

172 2
N p(————
N, ,k(T(l

art
- _—
o +1) — sup(Ri) 7 2
_.,211-2 + (1-;’):1\/%3 + a}\;fz (23)

(2(1_(2)002,.2 (2 ar? 5_._2
+ y q: 02 — 041'

17



After simplification, we get for both Ap(*) > 0 and Ap® < 0

tk ar?
e | —— - __>
PN,k (‘r(l Y + 1) sup(Rx) 5 2

“T’z[u —C?)N? —4N (24)

+¢*(1 - ¢¥a? - 2¢%a - 5].
Since 0 < a < N, a sufficient condition for the right-hand side of (17) to be non-
negative is

N*(1-¢*)-6N-5>0. (25)
Choosing N to be positive, we see that this is guaranteed if

S8+ \/36 +20(1 - ¢2)
- 2(1-¢?)

For all € > 0, (26) is implied by the condition N > 7(1 + 43) Since for0 < e <1,
% 2 1+ 35, a choice of N > 2L thus implies (26) and therefore (25) and (16). Therefore,
because 7 is arbitrary, we have shown that N > & is sufficiently large enough for the
induction step to go through—that is, if N > 3 then (15) holds with j = k + 1 for
arbitrary 7 such that (k+1)N7 < T..

Now that we have shown an upper bound for how large N must be in (14) independent
of 7, we can choose 7 such that |p,(t) — p,(t)| < 7., and |Pe(t) — pr(t)] < 7,. Since
for all k, |pg(kNT) — p,(kNT)| < lar? and |py(kNT) — p,(kNT)| < 1ar, and for all ¢,
|Pr(t) — Bg(t)| < 2a, we can simply choose T such that 3(ar?+aN7?)+aN7? < n,. Thus,
for the position case we require that

(26)

LS ———221——-.
a(3N +1)

Since |p,(t) — pr(t)| < a(N +1)7 for 0 < ¢t < T, or else B — p®| < lar gets violated,
for the velocity case we require that

(27)

N, 1
<___
7._a(N+1 (28)

Substituting our bound for N into (27) and (28) taking the minimum, we obtain the
bound in part (b) of the lemma (eq. (13)). O
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Lemma A.3 (The Safe Tracking Lemma) Suppose that 6, is specified by co and ¢, and
0<e<1, andleté, =(1—¢€)b,. Then for a given acceleration bound a there ezists a
tolerance (nz,n,) such that for any trajectories T, and I'. as above (12), the following hold:
(a) If Tq tracks T to tolerance (n,,7,), then the &' -tube induced by Ty lies within the
d,-tube induced by T, .
(b) Furthermore, for any positive 3, the following choices suffice:

T S GncaTs (29)

Nz < B

Proof:  We find positive real numbers 7, and 1 such that if 'y tracks I to tolerance
(7z,7v), then the §'-tube induced by Ty lies entirely inside the §,-tube induced by T,.
Henceforth, let ¢4 = (1 — €)co and ¢} = (1 — €)c;.

Suppose x € C lies inside the &,-tube induced by I',. Then for some ¢, € [0,(1+¢€)T}],
|x—Pq(t=)| < co+¢j[Pg(ts)|. 1 Ty tracks I, to tolerance (n2,70), then pq(t.) € By, (p.(t:))
and po(t;) € By, (P}(t:)). (B,(p) denotes the closed n-ball around P in an arbitrary
metric.) Therefore, |x — p!(t.)| < |x — py(t:)| + 7. and [Pe(tz)] < |PL(¢z)| + 1. Since
P (t:) = pr((t;) and pr(tz) = (Pr((ts), |x — Pr({tz)] < o+ n: + (B (Ct2)l + nv).
Therefore, the condition

co+ s+ A (IPr({tz)leo + 1) < co + a1 |Pr(Cts)loo (30_)

implies that |x — p,((t;)| < co + 1 |p.(¢ts)| for some ¢, € [0,(1 + ¢)T,]. Simplifying, we
find that a sufficient condition for (30) is

Nz + (1 = €)erny < eco. (31)

Thus, (31) implies that if T, tracks I'. to tolerance (7.,7,), then the 4;-tube induced
by I'; lies entirely inside the §,-tube induced by I,. Both parts of the lemma are obtained
by letting n. = 7, and observing (31). 0O

Recall that by lemma A.2, 7 is polynomially dependent on n: and 7,. Applying
lemmas A.2 and A.3 and choosing § to maximize the upper bound on 7 yields the
following theorem:

Theorem A.4 Given acceleration bounds a, obstacles £ , and positive scalars € < 1, ¢,
and ¢, for any 6,(co,c1)-safe trajectory taking time T, there ezists a time spacing T and
an (@, 7)-grid-bang, 8,-safe trajectory T, taking time at most (1 + €)T. In particular, the
following choice of T suffices:

2
T < Zcoe

< : (32)
12ac; + /144a2c} + 68aco
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Proof: Suppose T, is a §,(co, c1)-safe trajectory taking time T, obeying acceleration
bound a. Applying lemma A.1, the trajectory I', as given in (12) respects Ty and
traverses I'; in time (1+ ¢€)7T,. Then by lemma A.3 the choice of a tolerance (7z,70) given
in (29) ensures that if a trajectory ', approximately tracks I’ to tolerance (7zy7mv), then
the §,-tube induced by I, lies entirely inside the 6,-tube induced by I',. Since the §,-tube
induced by I, intersects no obstacles in &£ y Tq is therefore §!-safe. Given the tolerance
(7z,70), by lemma A.2 there is a time-spacing 7 such that some(a, 7)-grid-bang tra Jectory
approximately tracks I, to tolerance (7., 7,).

To get the desired bounds, we must choose 3 so that using (32) yields a maximal 7
as given by (13). Let us therefore define for 3 > 0

=(8) =\ mekilys
wB) = mEams (33)
T(B) = min(7;(8), 7,(8)).

By inspection, 7.(0) < 7,(0), 7, is monotonically increasing, and 7, is monotonically
decreasing. Thus, 7(8) is maximized when 7.(8) = To(B). Requiring 3 to be positive and
doing a little computation, we find that () is maximized when

. V144a2c3(1 — €)? + 17acoe? — 144acy(1 — €)
24a '
Applying either 7, or 7, to this 3 yields the desired 7 in (32). O

(34)

Using our bound on the number of gridpoints (11), we hence conclude that in a
bounded workspace with velocity limits, a polynomial-sized grid suffices to obtain an
approximate optimal safe solution. It is easy to see that this polynomial-sized grid can
be searched for the optimal (a, 7)-grid-bang path, while avoiding obstacles as prescribed
by a safety function &, in polynomial time. We formalize this claim below:

Corollary A.5 Given acceleration bounds a, velocity bounds Umaz, €nvironment diame-
ter l, and positive scalars ¢, cy, and c;, the (a,7)-grid with T chosen to satisfy (82) has
polynomial size. In addition given obstacles £, start s, and goal g, a minimal-time (a,7)-
grid-bang, §,-safe trajectory Ty from s to g can be computed in polynomial time.

Note that the computed trajectory I, satisfies the time approximation T, < (1 +¢)T,
in addition to respecting the kinodynamic constraints and being 6! -safe.
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