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ABSTRACT: This article develops a for- 
malism for describing and analyzing a very 
simple representative class of robotic tasks 
that require “dynamical dexterity”-among 
them, the task of juggling. The authors re- 
view their empirical success, to date, with a 
new class of control algorithms for this task 
domain, called “mirror algorithms.” The 
formalism for representing the task domain 
and encoding within it the desired robot be- 
havior enables them to prove that a suitable 
mirror algorithm is correct with respect to a 
specified task. 

Introduction 
We are interested in robotic task domains 

involving intermittent dynamical environ- 
ments, and this article considers a simple 
representative from a range of robotic tasks 
associated with dexterous capabilities that 
might be grouped under the general rubric 
of “juggling.” This term includes those tasks 
requiring throwing and catching, or (as in 
this article) beating and batting, or any other 
interaction with an object (or multiple ob- 
jects), which would otherwise fall freely in 
the earth’s gravitational field. Such tasks 
share the property of presenting nontrivial 
dynamical environments whose characteris- 
tics change intermittently subject to excita- 
tion from the robot. It seems fair to say that 
the only systematic work in this realm to date 
has been the pioneering research of Raibert, 
whose careful experimental studies verify the 
correctness of his elegant control scheme [ l ] .  
Our strategy for research in this area is to 
study, carefully, a very simple experimental 
apparatus and develop a theoretical perspec- 
tive that both explains the particular empir- 
ical experience and generalizes to a synthesis 
procedure over the larger task domain. This 
article reviews our own experimental results 
and presents a body of theory that accom- 
plishes the first goal. 

Presented at the 1980 5EE International Confer- 
ence on Robotics and utomation, Scottsdale, Ar- 
izona, May 15-19, 1989. The authors are with the 
Center for Systems Science, Department of Elec- 
trical Engineering, Yale University, New Haven, 
C T  06520. 

The experimental setup and a simplified 
mathematical model are presented in the next 
section. Analysis of the “contact geometry” 
between robot and environment gives rise to 
an impact model-the “environmental con- 
trol system”-with respect to which the 
“vertical one-juggle” task is formally de- 
fined and proven to be achievable in the fol- 
lowing section. Next, we offer a review of 
previous results, introduce a family of robot 
control strategies arising from a “mirror ge- 
ometry” in the phase space of the robot- 
environment pair, demonstrate that this 
family solves the environmental control 
problem-the rigorous formulation of the 
juggling task expressed in terms of the con- 
tact geometry-and present experimental data 
attesting to the physical validity of this strat- 
egy. Essentially, the controller has been de- 
signed so that the desired juggling pattern is 
an attracting periodic orbit of the closed-loop 
robot-environment dynamics. The conclu- 
sion offers some speculations upon the larger 
implications of this work for robotic tasks in 
more general intermittent dynamical envi- 
ronments. 

The Empirical and Analytical 
Setting 

This section introduces the experimental 
apparatus-the Yale Planar Juggling Ro- 
bot-and develops a simplified mathematical 
model of the physics relevant to the juggling 
task. 

Mechanical and Computational Setup 

The physical apparatus consists of a puck, 
which slides on an inclined plane and is bat- 
ted successively by a simple “robot”: a bar 
with a billiard cushion rotating in the jug- 
gling plane, as depicted in Fig. 1. 

All intelligent sensor and controller func- 
tions are performed by a four-node distrib- 
uted computational network formed from 
Yale XPiDCS control nodes 121. In addition 
to the 10 MIPS, 1.5 MFLOPS, and high- 
speed (20, 10, or 5 MBitsisec) serial inter- 
processor communications rate contributed 
by the INMbS Transputrr, our XPIDCS 
boardset features fiber 01 :s support, fast 

RAM, as well as support for fast and exten- 
sive I/O via a bidirectional latched 32-bit 
U0 bus. 

In order to move the bar according to some 
puck-dependent control algorithm, the puck’s 
position and velocity must be measured. 
Presently, this is accomplished by placing an 
oscillator inside the puck and burying a grid 
in the juggling plane, thus imitating a big 
digitizing tablet. The sensor node measures 
induced voltages and computes the puck po- 
sitions from the zero- and first-order mo- 
ments. These, in turn, feed into a standard 
linear observer to reduce measurement noise 
in position and estimate velocity. The output 
of the observer is communicated asynchro- 
nously via fiber optics to the juggle planning 
and control node at a rate of 1 kHz. There, 
a reference trajectory for the motor is com- 
puted, according to the mirror algorithm that 
we describe below, and communicated to the 
motor controller node. The latter issues 
torque commands to the motor at a rate of 2 
kHz, performing noise filtering and numer- 
ous additional housekeeping and safety 
checks as well. The fourth node is used as 
a logging system and human interface. At 
the time of this writing, we are completing 
a real-time vision system [3] based on the 
XP/DCS in order to move off the plane and 
juggle in three spaces. 

A Simpl$ed Mathematical Model 

Locate a frame of reference, To, at the 
center of the robot shaft, with the b,-axis and 
b2-axis as depicted in Fig. 2. Define q so 
that it measures the angle of the right-hand 
portion of the robot’s bar (with the hitting 
surface-the billiard cushion-facing up) 
away from the bl-axis on the juggling plane. 

The Robot and Environment Models The 
configuration space of the entire problem is 
the cross product, e = 63 X Q, of the en- 
vironment and the robot configurations. We 
will model the robot’s configuration space as 
Q k [ -a /2,  a/2], real scalars, which we 
restrict to a half-revolution, since, for pres- 
ent purposes, it will suffice to consider only 
those locations of the bar in the right half of 
the juggling plane for which the hitting bil- 
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Fig. 1. The Yale Juggler. 
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Fig. 2. The impact event. 

hard cushion is facing up. We will represent 
the location of the falling body on the plane 
as a real two vector in 63 with the coordi- 
nates (b, , b,) denoting, respectively, the po- 
sition of its centroid relative to the “hori- 
zontal” (b , )  and “vertical” (b,) axes of the 
reference frame, 5,. 

In isolation, the robot’s dynamics occur in 
its phase space, CR A 7‘Q = Q x - ,  of 
angular positions and velocities and may be 
modeled simply by the following equations 
(where U denotes the commanded torque 
from the motor control node and p denotes 
the moment of inertia of the bar) since the 
motor (with its high bandwidth and power, 
low shaft friction, and inertia deployed in the 
absence of any transmission) comes close to 
providing a source of “pure torque.” 

Unfortunately, the large mass of this mo- 
tor mitigates against its role m a multijointed 
direct drive robot. 

In isolation, the puck’s dynamics occur in 
its phase space, W 7’63 = 63 X ’ ,  and 
may be modeled by the following equations 

(where a = [0, -71 ‘) since we assume that 
the puck is a point of unit mass sliding on a 
frictionless surface. 

In fact, this idealized model is overly sim- 
plistic, since there is noticeable Coulomb 
friction on the sliding plane. One of the ob- 
jectives of our study is to develop a control 
procedure that is robust enough to succeed 
even in the face of such unmodeled dynam- 
ics, and we will use only n from (2) in the 
formal analysis. However, in the sequel, we 
will find it interesting to compare numerical 
simulations of the robot control laws in the 
idealized environment, n,  with the same 
strategies run in the more realistic simulation 
model with friction, as against empirical 
data. 

Finally, the set of all possible impact con- 
figurations may be described by a smooth 
surface, 9, in the puck-robot configuration 
space, e,  as formalized in [4, Lemma 2.11. 
An impact configuration, (q ,  b) E 9, implic- 
itly defines the robot’s “virtual gripper”- 
the point of contact on the billiard cushion; 

it is useful to define a new “virtual gripper 
frame,” 5 , ,  whose origin is in the body’s 
center, b, and whose b, and b, axis are 
aligned with, and perpendicular to, the robot 
bar, respectively-all depicted in Fig. 2. The 
new frame has a representation with respect 
to the “base frame” given by 

R b  
= Io. J 

cos q -sin q 

sin q cos q 

The Impact Model We now develop a sim- 
plified model of the dynamics of repeated 
puck-robot impacts, based upon the follow- 
ing assumptions. First, we assume here that 
all interactions between the ball and robot 
during impact can be adequately modeled as 
an instantaneous event: a posteriori veloci- 
ties are related to a priori velocities via a 
simple “coefficient of restitution” [ 5 ] ,  -a, 
which belongs to the interval (0, 1). Second, 
we assume that the robot mass is sufficiently 
large as to make the puck’s mass negligible. 
Finally, we neglect puck spin, and it is as- 
sumed that the puck’s velocity component 
parallel to the robot bar is unchanged by the 
impact. 

Under these assumptions, the a posteriori 
velocity of the body after impact, b‘, is re- 
lated to the a priori velocity of the body, 
6 ,  and that of the robot’s virtual gripper, u2 

1 1  b 1 1  . q, in the 5 ,  coordinates as 

‘ b . = [ I  O ] l b + [  O ju* 
0 --a l + C X  

- 
= c‘b + ? U 2  

This is expressed in 5, coordinates as 

b‘ = cb + cu2 

c & R C R ~  

(4) 

where 

c Rc 

Recall that R and, hence, C ,  c are all func- 
tions of q. But since q = O(b) for all impact 
configurations, (b,  q) E 9, we obtain br 
purely as a function of (b,  6) and q. 

The forward trajectory of the body is now 
obtained by integrating its motion in W 
starting from the initial conditions, w = (b,  
b ’ ) ,  according to the isolated dynamics, 
n(w),  given in (2), 
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The Environmental Control Problem 
This section investigates the response of 

the puck to all logically possible impact 
events by examining the environmental con- 
trol system. This results from considering the 
effect of repeated puck-robot impacts on the 
future puck trajectory (5 ) ,  assuming arbi- 
trarily assigned values for the robot, (q, q) 
E a, at each impact event, independent of 
the robot’s dynamics (1). From (5 ) ,  it is clear 
that the first time, t, + ,, after the j th  impact 
at time t,, at which the robot and body again 
make contact, (b ( t ,+ , ) ,  q ( t ,+ , ) )  E 9, is a 
function of the robot’s future position trajec- 
tory, q(t,+ ,). Moreover, from (4), it is clear 
that the velocity of the virtual gripper at im- 
pact is determined by choice of the robot’s 
velocity at impact, q(t,). In the sequel, we 
will use the term impact schedule to denote 
a sequence of pairs, where U&) denotes the 
velocity of the virtual gripper at the moment 
of thejth impact, which occurs at time t = 
t,, and U,(?,) 2 t, + , - t, denotes the interval 
of time that elapsed between that impact 
event and its successor. 

An impact schedule gives rise to a sequence 
of puck states measured just before impact, 

w(t, + I )  = f (w(t,L u(t,)) 

The function f :  W X ‘U + W is derived 
by substituting (4) into (5) to obtain 

f (w, U) 

1 b + ( C ( b ) b  + c(b)uz)uI + ;aut =I C(b)b  + c(b)u2 + au, 

(6) 

This nonlinear discrete dynamical control 
system comprises the environmental control 
system. An environmental control problem 
results from prescribing some desired se- 
quence of puck states, { W * ( I , ) } ~ = ~ ,  and ask- 
ing for an impact sequence, {~*(t,)}lm,~, 
which results in asymptotic convergence of 

Clearly, any control problem may be 
solved by a great variety of controller struc- 
tures. This section solely concerns solutions 
via pure feedback compensation: namely, we 
shall abstract away all physical properties of 
the robot and presume it to be an “ideal” 
feedback agent that measures puck states, 

w (t,) to w * (t,) . 

w(t,), and delivers control inputs, u(t,), ac- 
cordingly. This point of view affords a pre- 
cise definition of the juggling task in the next 
section, as well as the demonstration that the 
task is at least logically achievable in the 
following section. 

The Vertical One-Juggle 

Probably the simplest systematic behavior 
of this environment imaginable (after the rest 
position) is a periodic vertical motion of the 
puck in its plane. Specifically, one would 
like to be able to specify an arbitrary “apex” 
point in the juggling plane and, from arbi- 
trary initial puck conditions, force the puck 
to attain a purely vertical periodic trajectory 
with the specified apex point. 

Given the specific juggling task at hand, 
only a subset of the full puck impact phase 
space is of interest. As mentioned before, 
we are limiting the set points to the right- 
hand side b,  > 0 of the juggling plane. Also, 
it only makes sense to admit negative ver- 
tical puck velocities b, < 0 just before im- 
pact-i.e., those that point toward the ro- 
bot’s hitting bar. Thus, we define the 
working puck phase space W C W as 

W 2 {w E W: b ,  > 0 ,  b2 < 0) 

Since a purely vertical trajectory requires 
zero horizontal velocity, 6, = 0, and a fixed 
vertical impact velocity, b:, from a specified 
impact height, and b2 = 0 implies a specified 
apex position, one is led to the following 
definition. Let the task subspace of the ver- 
tical one-juggle be the plane 

3 {w E W: bz = 0 ,  6, = 0) 

Say that a feedback law, g: W -+ ‘U, con- 
stitutes a vertical one-juggle with respect to 
the task, w* E 3, if w* is a fixed point of 
the closed-loop system, 

w* =fg(w*) 

(7) 

and is a stable attractor of the resulting dis- 
crete dynamics. 

Proposition I ([4]) Given the discrete dy- 
namical control system (6) and a point, w * 
E W, there exists a feedback law g: W -+ 

‘U such that w * is af iedpoint  of the closed- 
loop map, fg (7), if and only if 

(i) w * E ~ ;  

(ii) g(w*)  = U* 

] b :  
- 217 

- ( I  - a)/(l + a)  
A [  

This result shows, on the one hand, that 
only a point in 3 may be fixed by feedback 

and, on the other hand, that an appropriate 
constant U *  may be found to fix any point 
of 3 .  

Local Stabilizability of the Task Plane 

Next, observe that the system is locally 
controllable at any point in the vertical one- 
juggle task set. 

Proposition 2 ([4]) If 
w* E 3 

and g f i e s  w*, f[w*, g(w*)] = w*, then 
system (6) is locally controllable at [w*, 
g (w *M. 

Local controllability, of course, implies 
local stabilizability . For, according to linear 
control theory, if (A, B) is a completely con- 
trollable pair, then for any desired set of 
poles whose complex elements appear in 
conjugate pairs, A = {A,}:= , C C, there 
exists a matrix, K,, E R Z x 4  such that the 
closed-loop spectrum achieves that set, spec- 
trum (A + BK,) = A. 

Now suppose that A and B denote the fixed 
system and control input matrices resulting 
from a local linearization analysis of (6) 
around a desired set point, w*-that is, A = 
[D,f](w*,u*);B = [D,f](w*,u*) . I f the 
robot feedback algorithm, g,  is chosen to be 

g(w) U* + K,(w - w*) (8) 

it follows that any Kh for which A C 9’ c 
(the open unit disk in the complex plane) 

yields a feedback law, g, which achieves the 
vertical one-juggle as defined earlier in this 
section. Thus, Proposition 2 demonstrates 
that the vertical one-juggle is logically 
achievable. 

Robot Implementation 
The preceding analysis employed a geo- 

metric representation of the task domain in 
terms of a discrete dynamical control system 
on puck velocities over the contact set, 9. 
That analysis permitted a rigorous definition 
of the task at hand and the logical assurance 
of its possibility. Attention now turns to the 
robot control problem: the synthesis of robot 
control laws guaranteed to result in impact 
schedules that accomplish a specified task. 
To this end, we will introduce a new geo- 
metric synthesis procedure defined on the 
entire cross-product puck-robot phase space, 
W X 63, which represents the continuous 
physical trajectories of both rather than the 
discrete-time evolution of their mutual im- 
pacts. This synthesis procedure gives rise to 
a family of robot control algorithms, which 
we demonstrate empirically and prove math- 
ematically to be correct. 

18 /E€€ Control Systems Magazine 



Our resort to this new controller geometry 
is a consequence of the unexpected failure 
of robot controllers based upon the straight- 
forward algorithm (8) .  In an earlier paper 
[6], we gave a detailed explanation for this 
empirical result. Roughly speaking, this fail- 
ure is attributed, on the one hand, to limi- 
tations of local linear controller design and, 
on the other hand, to the inappropriateness 
of the discrete task geometry for physically 
viable implementations in the real world of 
continuous trajectories and torque actuators. 

This section describes the implementation 
of a successful vertical one-juggle on the 
physical apparatus and reviews the formal 
proof of its correctness summarized from the 
account in [4]. We first introduce the “mir- 
ror algorithm” and its relationship to the ge- 
ometry of the continuous puck-robot phase 
space, W X R. In order to prove its cor- 
rectness, we then relate the continuous-time 
geometry of the mirror algorithm to the dis- 
crete-time geometry of the environmental 
control system. Finally, we present data from 
the physical experiments performed using 
this algorithm. 

The Mirror Algoritlirn 
and Irs Irnplernrntation 

This section introduces a control proce- 
dure grounded in the robot’s continuous-time 
framework. Two different ideas arc at work. 
First, one “translates” the desired impact 
sequence into an analytic function of the 
continuously changing state of the environ- 
ment. Thus, the robot is merely required to 
track a reference trajectory generated on-line 
from a mechanical system. This promises to 
be more robust than a procedure relying ex- 
plicitly on state measurement at impact. The 
second idea, borrowing from Raibert [ I ] ,  [7], 
is to use the total energy of the environment 
in this function in order to stabilize the mo- 
tion around a desired trajectory. If the de- 
sired behavior is periodic, then it may be 
characterized at any instant-for example, 
just before impact-by specifying some con- 
stant value for desired total energy. 

To better convey the intuitive origins of 
the new algorithm, we will first discuss the 
problem of a prismatic one-degree-of-frce- 
dom robot in a one-degree-of-freedom en- 
vironment and then suggest how our solution 
scales to the present apparatus. 

A Prismatic Robot in a One-Degree-of- 
Freedom Environment Suppose there is a 
single puck (of unit mass) constrained to fall 
in only the vertical direction and a piston that 
moves up and down to strike it precisely. 
The objective is to bring the puck to a spec- 
ified periodic orbit via successive impacts. 

Suppose that r and b measure the height of 
the robot and the puck, respectively. Notice 
that the trivial “mirror” law 

r = -KlOb, 

K I O  = - ( I  - Ci)/(l f CY) 

already satisfies the fixed point conditions of 
Proposition 1. Assuming the robot is track- 
ing accurately, impact is guaranteed to occur 
at zero height. The vertical puck trajectory 
is completely determined by its total vertical 
energy, 

q(b ,  6) = 4b2 + y b  

This fact can be conveniently used to en- 
hance K~~ by a vertical energy error term to 
stabilize the above system at a fixed point: 

r = - { K I O  + K I I [ W  - q(b, 6)I lb  

= - K ( W ) b  (9) 

The reader may note that an impact occurs 
either in the case of exact tracking r(r) = 
b(t)  or when both the robot and the puck 
achieve zero height. In the latter case, the 
robot describes a distorted “mirror” reflec- 
tion of the puck’s trajectory. The reader may 
note as well that since friction is neglected 
during the puck’s flight, we may assume that 
11 = 0; hence, 

i- = - K ( W ) b  

Since the energy error term stays constant 
during flight (assuming, as we do, the ab- 
sence of friction) in the tracking case, the 
robot would track the object during the entire 
flight. This can be considered a limiting case 
for K~ I. 

Thus, this procedure makes explicit use of 
the full puck trajectory. completely specifies 
the robot’s behavior, and results in a prob- 
able correct vertical one-juggle, when the ro- 
bot and environment have the same “Carte- 
sian” degrees of freedom. 

A Revolute Robot in a Two-Degree-of-Free- 
dorn Environment This idea “scales” to 
the particular case at hand-the two-degree- 
of-freedom Cartesian environment presented 
earlier. 

The basic idea carries over into this en- 
vironment by just adding linear PD feedback 
compensation terms for the horizontal com- 
ponent. Define the “puck angle” as O(b) = 
a tan (b2/bl). 

Now, as opposed to controlling the robot 
height as a function of puck height, we con- 
trol the robot angle q as a function of puck 
angle: 

= -k,(w)O + kz(w)  

[ K j l  + ((W - W * ) ‘ M ( M /  - W*))*]’ 

where k,, are fixed constant gains, and M is 
a symmetric matrix in ’‘. 

The first two terms in k2 are borrowed from 
standard linear feedback control theory, im- 
plementing proportional derivative feed- 
back. Analyzing the linearized system at a 
fixed point with just these two terms in k2 
results in an ill-conditioned system-the 
controllability matrix is nearly singular. The 
last two terms in this expression were intro- 
duced to ensure complete controllability lo- 
cally without confounding the favorable 
global properties of the algorithm. 

Analytical Results 

This summary of our analytical results is 
taken from the complete presentation in [4], 
to which the reader should refer for a more 
complete discussion as well as all proofs. 

When the robot has achieved the reference 
“mirror” trajectory described above. then 
the puck and robot trajectories lie on a “mir- 
ror surface,” 3?Z C W X R, in the cross 
product phase space, 

311 = 61, (q ,  41 E w x a: (q ,  4) 

specified as the graph of the function p ( w )  

K ~ ( W )  . 0 - K ~ ( w ) ,  and its derivative along 
the motion of the puck (2). Recall 0 is the 
“puck angle” and K ,  are the gain functions 
detailed in (10). 

Examination of the intersection between 
311 and the velocities over the contact set, 9, 
reveals how to choose the gains in K~ ( I O )  to 
achieve the fixed point conditions of Prop- 
osition 1 for any W *  E 3. A central result 
[4, Proposition 5.21 shows via projection of 
this intersection onto W that the robot’s 
“mirroring” motion induces a three-dimen- 
sional invariant submanifold of the environ- 
mental control system (6). In consequence 
[4, Corollary 5.31, the local stability behav- 
ior of any valid vertical one-juggle task, K,*  
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E 3, may be adjusted by the appropriate 
choice of gains in K~ (IO). 

Empirical Results 

We now present plots of simulated and 
experimental data in order to validate our 
simplified model used for analysis and to il- 
lustrate the utility of our analytical results 
for both the idealized model as well as the 
real system. 

Figure 3, a “recording” of a successful 
vertical one-juggle using all parameters de- 
rived from analytical procedures, nicely de- 
picts the rapid convergence for initial con- 
ditions (in drop-off position) from any region 
within the puck’s workspace not too close to 
the origin-a kinematic singularity. Despite 
departures from the idealized model and the 
relatively large sensor noise discussed in the 
beginning of this section, it may be observed 
from this and the subsequent plots that our 
algorithm produces steady reliable juggling 
performance. We have recorded vertical one- 
juggle runs with hundreds of impacts without 
encountering any failures. 

Figures 4 and 5 compare the responses of 
the analytical model with and without fric- 
tion to the responses of our experimental 
setup for two different initial conditions. 
Each experimental data curve displays sta- 
tistical information (mean plus/minus one 
standard deviation) obtained from 20 suc- 
cessive runs (without handpicking). This 
presentation promises to offer a closer ren- 
dering of true performance than one based 
upon a handpicked best run. The steady-state 
values in the horizontal impact position, &,, 
are very close around the desired value for 

both curves. The plots of the vertical impact 
velocity, b,, demonstrate, first, as we 
expected, that the effect of the unmodeled 
friction is a steady-state deviation, which, 
second, is rather accurately predicted by the 
one-degree-of-freedom model that includes 
friction. In examining the transients, notice 
that the experimental transient responses for 
b, (lower plots) consistently match the re- 
sponses of the model with friction, as ex- 
pected. However, for &, (upper plots), the 
experimental transient responses are closer 
to the much faster transient model responses 
without friction than to those of the model 
with friction. This favorable discrepancy is 
not completely understood at present. We 
suspect that a lower friction value at the low 
horizontal velocities, or the unmodeled ef- 
fect of spin on the impact, for example, 
might be responsible for this benign discrep- 
ancy. 

Recall that the last two terms in (10) were 
introduced to arbitrarily specify the local be- 
havior-that is, to place the poles of the lin- 
earized system. However, no significant 
changes were observed experimentally: the 
effects of the linear terms are apparently very 
small and disappear in the measurement 
noise, or are dominated by unmodeled dy- 
namics. This corroborates our comments in 
[6] concerning the relative insignificance of 
local stability properties in the present set- 
ting. 

Conclusion 
We have shown how the geometry of the 

impact configurations, 9, leads to a discrete 

I I 1 I I I I I I 

Horizontal Puck Position (inches) 
Fig. 3. Sample continuous data. 

dynamical model of the effect of robot im- 
pact strategies upon the behavior of an oth- 
erwise free-falling puck. This model pro- 
vides a framework for rigorously defining 
dexterous robotic tasks-for example, the 
“vertical one-juggle”-and determining 
their feasibility. Although prescriptions for 
explicit impact strategies may be extracted 
from this model as well, it does not seem to 
offer an empirically viable framework for 
synthesis of robot control laws. 

After many failed attempts to implement 
a logically correct but physically undercon- 
strained and nonrobust algorithm extracted 
from the discrete dynamics arising out of this 
“contact geometry,” we were led to a new 
type of control algorithm based on a com- 
pletely different “mirror geometry” inhab- 
iting the continuous phase space of the robot- 
environment pair. Experiments attest to the 
effectiveness of this control design. More- 
over, analysis of the intersection between the 
mirror surface and the impact surface results 
in a correctness proof with respect to the 
discrete dynamical ‘‘environmental control 
system” that formally defines the task. 

The central notion of robot controller syn- 
thesis via a “mirror geometry” in phase 
space appears to generalize to other inter- 
esting robotic tasks in this domain. For ex- 
ample, we have extended it to the task of 
catching falling objects and have applied it 
successfully to the task of juggling two pucks 
simultaneously as well. Retrospective cor- 
rectness proofs notwithstanding, the gener- 
ation of algorithm geometry is completely 
heuristic at present: each synthesis is empir- 
ically hand-tailored to fit the given task. 
Nevertheless, the analytical tractability of the 
resulting robot-environment closed loop as 
demonstrated here raises the hope that suf- 
ficient understanding may soon be realized 
to afford automatic translation of suitably ex- 
pressed task definitions into provably correct 
and empirically valid robot controller de- 
signs. 

In the longer term, we believe these ideas 
will have still wider application. For exam- 
ple, analytical techniques similar to those 
employed here result in correctness proofs 
for (simplified versions of)  Raibert’s empir- 
ically verified legged locomotion algorithms 
[7]. Our juggler and Raibert’s hopper “settle 
down” to a characteristic steady-state pat- 
tern because that pattern is an attracting pe- 
riodic orbit of the closed-loop robot-environ- 
ment dynamics. Very likely, similar 
“natural” control mechanisms would make 
good candidates for gait regulation and other 
more complex tasks requiring controlled in- 
termittent collisions with a dynamical envi- 
ronment. 
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