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ABSTRACT

This paper describes techniques for determining the
location of the initial centre of rotation (COR) of
a rectangular bar being pushed or pulled. The
initial COR is the point about which the bar first
rotates when the pushing or pulling force is
applied. This point characterises the initial
motion of the bar. The paper also investigates how
the location of the initial COR varies with the
magnitude of the exerted force. The results
obtained are to be used in the design of materisls
handling machines in which workpieces are
manipulated by pushing or pulling to save the time
picking them up and transferring them to their
delivery point.

1.Introduction

Discrete materials handling is often performed by
pushing or pulling the components to be handled
without grasping them. Examples abound in
high~-speed packaging where the packages to be
handled (such as cigarette cartons or confectionery
bars) cannot be manipulated by pick-and-place
operations due to lack of time. This paper forms
part of a study into how components move when
pushed or pulled. Previous work on this topic
includes quasi-static analysis of pushing,
modelling of the dynamics of impact and numerical
simulation of the motion of objects being pulled.
Mason [1-3] obtained fundamental results giving the
sense and centre of rotation of a pushed object
during quasi-static pushing. Peshkin [4] and
Peshkin and Sanderson [5-7] also investigated
quasi-static pushing and developed manipulation
strategies based on their findings. Wang and Mason
[8] and Wang [9] studied the dynamics of impact
where inertia forces dominate frictional forces. By
numerically simulating the motion of a rectangular
bar under traction, Pham and Cheung [10,11]
addressed the case where neither frictional forces
nor inertial forces dominate.

This paper presents methods to determine the
location of the initial centre of rotation (COR) of
a rectangular bar being pushed or pulled. The
initial COR is the point about which the bar first
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rotates when the pushing or pulling force is
applied. This point characterises the initial
motion of the bar. The paper also investigates how
the location of the initial COR varies with the
magnitude and point of application of the exerted
force.

2.Methods of Finding Initial Centre of Rotation
for Different Categories of Motion

2.1.Quasi-static Motion

When the inertial forces on a moving object are
negligible, the motion is known as quasi-static.

The aim of this section is to find the initial
instantaneous centre of rotation of an object
resting on a horizontal support plane when pushed
or pulled by a force. A method of doing this is to
take moments about the point of application of the
force and then equating the moment to zero as
inertial forces are negligible [12). In this
section a different approach is employed to find
the centre of rotation.

Consider the rectangular bar in Figure 1. Let R be
the distance between the centre of rotation COR and
the centre of mass CM and Y, be the distance

between CM and the point of application P of
pulling force F.
Let Mc be the frictional moment about the COR. M

Cc
is a function of R. Taking moments about COR, for
motion to be possible:

P(R+y)-M >0
n c
In the quasi-static case, F(R+y ) - M =0
n <

M
F=— 1)
R+ y
n
For a given y'n, the COR will be so located as to

minimize the value of P that can cause rotation.
This is termed the minimum effort criterion.

By differentiating F with respect to R and equating
the derivative to zero, a value of R can be found
which defines the centre of rotation for



quasi-static motion (or simply, the "quasi-static"
COR). his approach to finding the quasi-static COR
will be shown to yield the same result as that
adopted by Mason [12].

Method

For the rectangular bar shown in Figure 1, the
friction moment about point O, the COR, caused by
the rotation of an element is:

nd:dfxp

~umg ,
——— sgn(B)pdpdy x p
4ab

where m is the mass and 8 the angular velocity of
the object and u the friction coefficient.

~umg .,
dM = ——— sgn(B)p“dpdy
¢ 4ab
“Umg
M = ——— sgn(6) pzdpdx
€ 4ab J‘[

After integrating:

” pPdpdy
s

={- 2 2 2 2 _ 2 2
[ h‘lhz'lhi *hythhh, t by h3h4rhs * b,

lh2+h2-h
1 2 2

2 2 1 3
+ + P —_—
hthh4 n? ]/3 = |njin —
h + n?-n
4 1 4
. Jh§+h§+h s lhz+hz—h
+ hln 3 +h31n—3—‘—‘

lh2+h2-h
2 3 2

th*hz+h
2 3 3

where h1= Rsing - b, h2= Rcosa + a, h3= Rsina + b,
h4= Reosx — a. (R is the distance between CM and

COR; « is the inclination of the line joining CM
and COR with the horizontal axis)

As the applied force is along the x-axis, there is
no impending motion in the y-direction, hence no
component of friction force in the y-direction. So
the initial motion will be translation along the
x—-direction with anti~clockwise rotation. Therefore
the initial COR lies on the axis through the CM of
the object and parallel to y. Hence a = 270 .

Substituting this value of « into the expressions

for h1, hz, h3 and h‘ yields:

h,= ~(R*b), h,= a, h = ~(R-b), h = -a.

M can then be written as
<
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Figure 1 Friction moment about COR of

a rectangular bar

“Hmg

sgn (8) x g,(R)
4ab

where
g,(R)

:(2a/3)((R+b) RZ+aZ+b2+2Rb — (R-b){RZ+aZ+b2-2RD ]

le+sz+b2-2Rb -R+b

+-% Zaaln
1R2+az+b2*2Rb -R-b
JR2+a2+b2+2Rb -a
- (R + b)°In
an+az+b2+2nb +a
. .IR2+az+bz—2Rb +a
- (R = b)’In
JRz*az+bz-2Rb -a
From Eq (1)
-umg .
sgn (6) x g (R)
_ 4bab
P
R+ y
n
dF
dR
—pmg . ds,(R) 2
= ——— sgn O)|R + y )—— - g R)/R + y)
4ab " 4R
Putting g; = 0 gives



dg, (R)
R+ y) -8 (R)=0 (2)
n R 1
Solving Bq (2) will yield the R that minimizes P.

This is a one—dimensional root finding problem. It
is solved numerically using the Van
Wijngaarden-Dekker-Brent Method [13]. This method
combines root bracketing, bisection and inverse
quadratic interpolation to converge from the
neighbourhood of a zero crossing to the actual
root. Therefore it possesses the sureness of
bisection with the speed of a higher order method
when appropriate.

The results obtained for an arbitrarily sized
object (390mm X 40mm) are shown in Table 1.

Table 1 Values of R . obtained using the
quasi

minimum effort criterion

y (m) R aes (@)
0.01 0.18920
0.05 0.15308
0.10 0.12057
0.15 0.09723
0.19 0.08334

Table 2 shows the values of R for the quasi-static

case, R uaei’ obtained using Mason's zero-moment
q

approach which is described in [14].

Table 2 Values of un obtained using

asi
Mason's zero-moment approach

y (m) Rq“_.i(m)
0.01 0.18920
0.05 0.15308
0.10 0.12057
0.15 0.09723
0.19 0.08334

It can be seen that the location of the
quasi~static COR as found when applying the minimum
effort criterion is the same as that predicted by
Mason's technique.

2.2.Impulsive motion

When the inertial forces of a moving object
dominate over the frictional forces, the motion is
referred to as impulsive. It is known [15] that if
F is an impulse then the following relationship
holds:
_ 2 2
L =(k’ +R )/R 3

G impul impul

where R is the value of R for the case of

impul
impulsive motion, kG is the radius of gyration of

the object being hit by F and L the distance
between the point of application of F and the point
about which the object will instantaneously rotate
(i.e. the "impulsive" COR) (Figure 2).

COR o

R
impul

e

c.M.¢4

> F

Figure 2 Definition of geometrical parameters

Note that Eq (3) also gives the initial COR for the
case when F is a step function and frictional
resistance is negligible.
Relative to CM, the location of the initial
(impulsive) COR is defined by
- .2
Ri-pul- kG/ yn (4)
+

since L = R y

impul n

Clearly, if the bar is hinged at the COR thus
determined, point P will be the centre of
percussion well known in mechanics [15].

2.3.Dynamic motion

This problem lies between the quasi-static and
impulsive motion problems. Here, the applied force
F is sufficiently high to accelerate the object
being pushed, but is still below the level beyond
which friction effects can be ignored.

The initial COR was obtained by performing the
numerical integration described in [10,11] for a
small time interval, typically 10~ second. As
expected, it was found that for a given point of
application of F, the COR lay between the
corresponding quasi-static and impulsive centres as
shown in Pigure 3.

3.Variation of quasi-static centre and impulsive
centre with point of application of force

As seen from Figure 3, both the quasi-static and
impulsive COR are functions of y ,the distance
n

between the centre of mass CM and the point of
application of P, For small values of Yo i.e. when

F is applied near to CM, the impulsive COR is
further away from CM than its quasi-static
counterpart (Figure 4a).
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Pigure 3 Variation of R with v, for

a rectangular bar
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Figure 4a Relative magnitude of R nd

a
quasi

for y (y
impul n c

As y increases, both CORs move towards CM. The
n

rate of displacement is higher for the impulsive
COR than that for the quasi-static COR.

At point v, =Y. the two CORs become coincident.

For . > yc, the impulsive COR is nearer to CM than
the quasi-static COR (Figure 4b).
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4.Results

4.1.Motion on Frictionless Support

In this case there is no quasi-static COR. The
object will rotate about the impulsive COR
independently of the magnitude of the applied
force.

4,2.Motion on Frictional Support

4.2.1. Combined Rffects of Magnitude and Point of
Application of Force

When the magnitude of the applied force F is small,
the initial COR lies near to the quasi-static COR.
As the magnitude of F increases, depending on the
point of application of F, the initial COR will
either move away from CM or move towards it.

When the point of application of F is near CM (i.e.
when Y. is small), the initial COR moves away from

CM as the magnitude of F increases. When the point
of application of F is near the end of the object
(i.e. when v, is large), the initial COR moves

towards CM as the magnitude of F increases.

The reason for this phenomenon resides in the fact
that as P increases, the initial COR moves from the
quasi-static COR towards the impulsive COR. As seen
from Figure 3, for small values of Y the impulsive

COR lies further away from CM than the quasi-static
COR. Therefore, when the magnitude of F increases,
the initial COR moves away from CM. PFor large
values of Y, the impulsive COR lies nearer to CM

than the quasi-static COR. Therefore, as the
magnitude of F increases, the initial COR moves
towards CM.

4,2.2, Special Case When the Quasi-static and
Impulsive Centres Coincide

It can be seen from Figure 3 that there exists a y
c

such that the quasi-static and impulsive centres of
rotation coincide.




Method of finding y
c

Prom Bqs (2) and (4), it can be seen that R

quasi

and R are functions of y only. (Although
impul n

Eq(2) is a polynomial equation, it can be

rearranged into the form R = f (y ) where £_ is
quasi R''n R

a function of yn.)

It follows that the difference between Rq . and
uasi
R is also a function of y .
impul n
Th i = - i
e function Rditt(yn) anasi(yn) Ri-pul(yn) bt

constructed and the Van Wijngaarden-Dekker-Brent
Method is again used to solve for Y. such that
R

difrfg
corresponding R is 114.11mm.

= 0. It was found that v, = 112.23mm and the

The significance of this result is that when the
object is being pulled at the point thus
determined, regardless of the magnitude of the
applied force (provided that the latter is at least
equal to the magnitude required to cause motion),
it will always start to rotate about a known point
which can be determined without using either the
Direct Integration method or the
Predictor-Corrector search described in [10,11].

5.Conclusion

The minimum effort criterion has been proved to be

able to predict the quasi-static centre of
rotation.

It has been found that the initial COR always lies
between the quasi-static and the impulsive CORs and
that it will move towards the impulsive COR as the
magnitude of the applied force increases.

There exists a point on an object such that when
the force is applied at that point, the object will
start to rotate about a known point.

Note that although the analysis reported here has
been carried out for an object under traction, the
results apply equally well to the case where the
object is being pushed.
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