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A B S T R A C T  

A typical example of constrained dynamic systems is the 
constrained robot system in which the motion of the robot end- 
effector is restrained by environment. Such a system is usually 
composed of a set of differential equations and a set of algebraic 
equations. A modified computed torque controller has been 
developed by McClamroch and Wang. If the mathematical 
model of the robot is exact, the modified computed torque can 
simultaneously control the robot motion and contact force in 
an accurate way. However, there may exist uncertainties in 
the model, such as flexibility of joints and links, joint friction, 
and inexact surface model. It will be shown that the modified 
computed torque controller may result in an unstable closed- 
loop system for the system with uncertainties. This difficulty 
can be overcome by using variable structure controller. The 
controller is robust in that i t  is insensitive to  variations in the 
plant parameters and to external disturbances of contact force. 

In many caaes, the robot end-effector interacts with envi- 
ronment. Hence, the robot motion is constrained. Such sys- 
tem is a typical example of constrained dynamic systems. For 
a constrained system, simultaneous control of position and in- 
teracting contact force is required. In order to  investigate this 
problem, the contact force can be incorporated into the robot 
model to  form a swxlled singular system [1,2]. Several con- 
trol strategies have been developed on the basis of this singular 
model [3,10,11]. In those approaches, the models for the robot 
system and environment are assumed exact; however, it is not 
generally true. For instance, the system may be subjected to 
uncertainties due to joint friction, joint and link flexibilities, 
surface friction, and compliant surface. Under these circum- 
stances, the approaches described in [3,10,11] may be inade- 
quate or even result in unstable system. In order to overcome 
the above difficulty, a robust controller is proposed for the con- 
strained dynamic system. The controller is variable structure 
type per se. It is insensitive to the variation of system param- 
eters and external disturbance; moreover, the chattering effect 
can be eliminated in the controller design. 

This paper is organized BS follows: The constrained dy- 
namic system and some preliminary results are first presented. 
Next, the variable structure controller is designed on the ba- 
sis of nonsingular system model. Then the variable structure 
controller is designed for simultaneous control of position and 
contact force with the consideration of system uncertainties. 
Finally, an example for equality constrained system is given. 
Comparisons between the variable structure controller and the 

modified computed torque controller are also made. It will be 
shown that the variable structure controller is robust to  un- 
modelled dynamics, while the computed torque controller may 
result in unstable systems. 

II. Problem Formulation and Preliminaries 
The robot system under consideration is described by equa- 

tions of the type [1,2,10] 

+((I) = 0 (2) 

where q E R" is the generalized displacement; M(q)  is an n x n 
inertial matrix function; F(q ,q )  is an n dimensional vector 
function, containing the Coriolis, the centrifugal and the grav- 
itational t e r m ;  U E R" is the generalized control input; 4(q) 
is the m dimensional constraint vector function; J ( q )  = - a4(4 

aq 
is an m x n Jacobian matrix; X 6 R"is the generalized contact 
force vector associated with the constraints. 

For a linear timeinvariant differential system, the variable 
structure controller I481 is directly applicable. However, the 
system under consideration is nonlinear as well as differential- 
and-algebraic type. These characteristics make the concept of 
variable structure controller fail to  apply. In order to facil- 
itate the following developments, the system (1)-(2) is first 
converted into a nonsingular model by eliminating the contact 
force; then the design of variable structure controller is based 
on this nonsingular model. The other approach is to  convert 
the system into two subsystems; then the variable structure 
controller is designed for both position and force control. 

The nonsingular model will be first derived. Since the 
constraint 4(q) is twice continuously differentiable, the first 
and second time derivatives of the constraint are ala0 equal to  
zero; i.e., 

and 
J(dQ = 0 (3) 

(4) J ( q ) i  + j ( q ) i  = 0 

where j ( q )  = $J(q ) .  From Eqns. (1) and (4), the contact 
force can be obtained as 

x = [JM-'J=]-' . [JM-'F - JM-'u - jq] (5) 

Here we assume that [JM-'JT] is nonsingular. Note that 
the argument in equations are omitted hereafter for simplicity. 
Define 

K(q)  = I" - JT(JM-lJT)-'JM-I 
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R =  K u  

'Then the singular system (1)(2) is converted into the following 
nonsingular system 

The first controller will be developed in terms of this nonsin- 
gular model. 

Next, a transformed model for the system can be derived 
by using a nonlinear transformation [3] as 

Our problem turns out to  design the variable structure con- 
troller for the transformed system (8)-(10). 

III. Deeien of Variable Structure Controller 
The theory of variable structure system was proposed by 

Itkis [4].  It utilizes a -called sliding surface to  integrate two 
unstable systems into a stable system. When the representative 
point slides to  origin along the sliding surface, i.e., the system 
enters the sliding mode, the trajectory is kept on the sliding 
surface on account of continuous switch of the gain between 
positive and negative values. In the mean time, the system 
response follows the motion of sliding mode instead of origi- 
nal system equations. Therefore, the variable structure system 
is robust to the variation of system parameters and external 
disturbances. The change of system dynamics in the variable 
structure system is quite similar to the constrained dynamic 
system. In order t o  design an adequate variable structure con- 
troller, the design parameters should be suitably chosen ( must 
satisfy Routh-Hurwitz criterion ) to form the sliding surface; 
furthermore, the controller should satisfy the sliding condition 

8 . i  5 -q lS l  (13) 

where s=O is the sliding surface, and 11 is a positive scalar. If 
the sliding condition is met, then the sliding mode exists and 
the representative point can reach the sliding surface in finite 
time. 

Since the constrained dynamic system is a singular system 
in nature, the typical design of variable structure controller can 
not be directly applied. In order to resolve this problem, two 
approaches are adopted: One is to convert the constrained dy- 
namic system into a nonsingular system, the other is to utilize 
the transformed subsystems. 
Controller Desian bv Usina Nonsinaular Model 

The nonsingular model of the system has been obtained in 
Eq.(7). According to Eq.(7), the design of variable structure 
controller can be proceeded in the following way. 

Let q d ( t )  denote the desired trajectory. Assume the sliding 
surface is chosen as 

s =  [8181..'Sn]' = c ( q - q d ) + ( q - q d ) = o  (14) 

where C = diag[cl cz * .  c,] ,  ci > 0 ,  i = 1,2 , - .  , n. 
By differentiating, 

Suppose that M S  has the form 

where 
A = diag[Pi(q,q) - sgn(si)/si]  

Pi(q,q) > 0, i =  1 , 2 , . - - , n  
1, 8 > 0  

0, 8 = 0  

Define the Lyapunov function V as 

V = S T M S  (18) 

Since the matrix M is symmetric and positive definite, from 
Eq.(17) we obtain 

. .  
V = ST MS + S T M S  + ST M S  

The sliding surface S=O will be asymptotically stable as long 
as (A - $) matrix is positive definite. The condition can be 
derived as 

n 

p, - sgn(si)/.i > I Mij/2 I (20) 
j=1 

Let A M  and AH denote the system uncertainties due to pa- 
rameter variations. Then M = MO + A M ,  H = Ho + A H ,  
where M and H are estimated yalues; MO and H o  are nominal 
values. Suppose that A M i j ,  Mij and AHi have the following 
bounds 

1 AMij  I <  i f i j ,  

I  AH^ I <  ri,, 
I ilkij I <  liTij 

i , j =  i , 2 , . . - , n  
(21) 

Combine Eqns.(l6) (17), we have 

M[C(q - i d )  - i d ]  - H R = (22) 

Choose the controller R as 

where b = [c(q - q d )  - id ] .  Substitute (23) into (22), we get 

A M b -  A H  + R' = (24) 
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or equivalently in scalar form as 

n 

x A M ; , b ,  - AH; + g = -E8gn(ai) (25) 
j= 1 

By observing condition (20), we conclude that when Si < 0,  
Eq.(25) becomes 

n n 

Z A M j j b ,  - AH; + < -8; 

j= 1 j= 1 

when S; > 0, Eq.(25) becomes 

n n 

c A M j b j  - AH; + g > -8; 
j= 1 j= 1 

Therefore, 

n 

8gn(8;)[XAMijbj - AH; +e < - 18; I c I M;,/2 I 
j= 1 j= 1 

The auxiliary controller Ri can be further chosen as 

Use Eq.(26) in Eq.(23), the final controller can be obtained as 

or equivalently in the vector form as 

The controller (28) includes the sgn(s) function. Since 
sgn(s) is discontinuous at  s=O, chattering phenomenon may 
occur in the neinhborhood of the sliding surface. In order to  
eliminate the chattering effect, the boundary layer concept [6,7] 
can be applied; namely, sgn(s) is replaced by saturation func- 
tion sat(8/r), where 

1, r > l  

-1, r < - 1  

E > 0 denotes the configuration of boundary layers. Larger E 
results in better elimination of chattering effect. However, too 
large E will reduce the system accuracy. A suitable E may be 
selected according to the following criterion. 

(29) 
E =  { € 1 2  i f ' % I q - q d ( < € l  

if €2 1 q - qd I> €1 €2 I q - qd 1, 
where el > 0, C > €2 2 0 are constants. If the controller 
(28) takes into account the elimination of chattering effect, the 
matrix S2 should be modified as 

S2 = diag[eat(81/el), t U t ( S 2 / € 2 ) , * * *  , sat(8,J~~)]  (30) 

Since R is only a pseudo controller, the original controller 
U can be recovered by using Eqns. (7)(28). If the matrix K is 
nonsingular, the controller U is 

U = K-'(q)R (31) 

U = K+(q)R (32) 
otherwise 

where K+(q)  is the generalized inverse of K(q). The above 
results can be summarized as 
Theorem 1: 

Consider the robot system (1)(2). kssume matrix K(q) is 
nonsingular. Given any initial conditions q(0) , q(0) satisfying 
4(q) = O,&q) = 0, then the controller (31) will result in a 
stable closed-loop control; i.e., q( t )  -+ qd(t) as t -+ CO, and the 
contact force X is indirectly controlled. 
Controller Desinn bv Usinn Nonlinear Transformation 

In the last section, the controller design is based on a non- 
singular model of the system. The contact force X haa been 
eliminated from the model; hence, the force can only be con- 
trolled through the control of q and q. In many cases, simul- 
taneous control of both position and contact force is required. 
This objective can be achieved by using transformed subsys- 
t e m ,  Eqns. (8)-( 10). 

Eqns.(8)(9) are rewritten below 

EIM(zP)E;Jz + EiP(~2 ,22)  = EiT"(Zz)U 
+ E1TT(~2)JT(~2)X (33) 

EaM(zz)G22 + E ~ P ( z ~ , Z ~ )  = &T'(Z~)U (34) 
The controller is selected as 

TT(z2)u=ETGIElTT(~2)J'(~2)(X - Ad) 

- TT(z2)JT(z2)Xd + P o ( z 2 , 2 9 )  + p(zZ)E;fuN 
(35) 

where GI is an m x m, symmetric and non-negative definite 
matrix; Ad k the desired contact force; Po and @ are nominal 
values of P and M, M-&P = AM, P - P o  = AP; UN E Rn-m 
is the variable structure controller which will be determined. 

Substitute the controller (35) into Eqns.(33)(34), we ob- 
tain 

(36) 
ElliiOg(39 - UN) + ElAMiiE;P32 + EiAP 

= (1, + Gf)EITTJT(X - Ad) 

EaWE;(& - UN) + EaAME;& + G A P  = 0 (37) 
Let 

where W E P-". Since @ is nonsingular, i t  has n indepen- 
dent column vectors. ( & f " ~ ) , x l n - m ~  is also a full column 

AfiE;Zz + AP = (MoEF)W (38) 
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rank matrix. Thus, W can be found from Eq.(38) by least 
square solution [Q] .  

is ignored; the friction between the robot end-effector and the 
constraint surface is not taken into account. It is not true 
for practical applications. In the following, those unmodelled 
dynamics will be regarded as an extra input; its influence to  
the controller design and the position and force control will be 

W = [(U"E,')'(n;l"E,')]-' (lii"g). 
(39) 

[hag22 + AP] d i s c U d .  

Suppose the joint and link compliance, friction, exter- 

F.,(q,i). F.,(q,q) E R" is an unknown vector function with 

into account the unmodelled dynamics becomes 

From the above equation, W is function of 2 2 , 3 2  and 22. If 
I qi I, I 4; I and I & are bounded, then I 22i I, I .& I and 1 2,; are 

(n-m)' use (38) in 

disturbance, and system uncertainty be as 

a known bound. Then the constrained dynamic system taking Hence, 1 W i  I< w; for i=1,2, 
(36) and (37), we have 

Eilii"EZ[33 - U N  + w] = (1, + G,)EITTJT(X - A d )  (40) 
M(q)q + F ( q ,  9 )  = U + JT ( q ) A  + Fe,(% i )  (48) 

& n ; i " g ( Z p  - U N  + W ]  = 0 (41) 
4 ( d  = 0 (49) Suppose that (&n;i"g) is a nonsingular matrix, then Eq.(41) 

gives 
2 2  - U N  + W = 0 (42f 

If the controller design is in terms of the transformed method, 
then the transformed subsystems becomes 

In order to design the variable structure controller, the slidinf 
surface is chosen as 

si = (z + C;)' {l' [z2; - %ad;] d t }  

E i w g [ 2 2  - U N ]  + E l [ A M G &  + AP - Fe,] 
(50) 

d = (I, + G ~ ) E ~ T T J T ( X  - A,) 

E2a0E,'[i2 - U N ]  + & [ A a g Z 2  + AP - Fe,] = 0 (51) 
(43: Let 

Then follow the same procedures as in the previous section, 

A M g 2 2 + A P - F e q = ( n ; l " g ) . W  

where ci > 0, i=1,2, . . .,(n-m). The integral control in the 

and dlsturbance. Differentiate (43) and use (42), we obtain 

the Controller U N  is Similar to  Eq.(47) except that  @; beCOme6 

of W; will depend on the bound of Feq. 
Corollary 3: 

Consider the constrained robot system (1)(2). Suppose 
the bound of the unmodelled dynamics is given. By adjust- 
ing the magnitude of @;, the controller defined in Eq.(35) will 
guarantee q(t) -+ qd(t)  and X(t) -+ &(t) as t -+ M. 

Eq.(43) is used to  reduce the steady state error due to friction larger in Order to compensate the uncertainty Feq- The range 

si = -Wi -k U N ;  - 2 2 d ;  + 2c;[h2; - z a d i ]  
(44) + (2% - %di] 

By observing this equation, the controller can be selected as 

Since I W; I C  @;, Eq.(46) is always lees than zero. The condi- 
tion for sliding mode existence is satisfied. Namely, the trajec- 
tory will reach the sliding surface for any initial conditions. In 
addition, the chattering effect can be eliminated by replacing 
sgn(e;) with sat(s;/c;). Then the controller U N  can be denoted 
as 

U N  = Z 2 d - 2 c l ( z 2 - z 2 d ) - c 2 ( 2 2 - z 2 d ) - s 3 ' w  (47) 

where C1 = diag[cl, c 2 ,  . , cn- , ] ,  C2 = diag[cf, c i ,  - , cz-,,,I, 
and S3 = diag[eat(el/c1), - ~ - , s a t ( s , - , , , / ~ , - ~ ] .  The original 
controller U can be obtained by substituting U N  into Eq.(35). 
This variable structure type controller U will guarantee z2 -+ 

2 2 d  and q(t)  -+ qd(t) as t --+ CO. From Eqns.(33)(34), x ( t )  -+ 
Xd(t) as t -+ W. The result is summarized as follows: 
Theorem 2: 

Consider system (1)(2). For any given initial conditions 
q ( O ) , g ( O )  satisfying 4(q) = 0 and $(q)  = 0, the controller de- 
fined by (35) results in a stable closed-loop system. Namely, 
q(t)  + qd(t) and X(t) -+ X ( t )  as t -+ CO. 

Effects of-unmodelled Dynamics 
In the previous development, the system model is an ideal 

one. The robotic arm is assumed to be rigid; the joint friction 

In this section, a second order nonlinear constrained dy- 
namic system will be used to illustrate the design and ro- 
bustness of the variable structure controller (V.S.C.). The re- 
sults are alm compared with the computed torque controller 
(C.T.C.) proposed by McClamroch and Wang. It will be shown 
that the computed torque controller may cause unstable closed- 
loop system under system parameter variations. While the 
variable structure controller performs well for all cases. 

Consider the following second order nonlinear constrained 
system 

aq1 + 10q1q2 = U1 + x 

The constraint equation is defined by 

4 ( q l * q 2 ) = q I  -qaa=o (53) 

Note that constants a,/3,7 are system parameters; their nom- 
inal values are a = 1, B = 1, and 7 = 1. 

Let q 7 [q! q2IT and z = [zl 2 2 I T .  Then the nonlinear 
transformation IS given by 

(54) 

(55) 

Using this nonlinear transformation, the transformed subsys- 
tems are obtained as 
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2a2222 + [ZOz; + 2a(i2)'] = u1 + x (56) 

(57) 

21  = o  (58) 

(4az; + a)& + (202: - 8072;Za + 4 a ~ ~ ( & ) ~ ]  

= 222Ul + % 

Two typea of controllers will be constructed in terms of the 
transformed subsystems: one is the computed torque controller, 
the other is the variable structure controller. 

First, the computed torque controller (C.T.C.) developed 
by McClamroch and Wang can be found as 

TTU =h$Er&d - TTJTXd + P + q G , E I T T  (A - Ad) 

+ U g [ G , ( & d  - ; a )  +Gd(zad - za)] 
(59) 

Since the C.T.C. does not consider the variation of system pa- 
rameters, the controller is obtained by setting a = /3 = 7 = l 

(60) 

(61) 

U1 =22a[i&d + Gm(&d - Za) + G.i(Zpd - Za)] 

+ [G,(X - Ad) - Ad] + [loz; + 2(4) ]  

Ua =[bad + Gt.(&d - 2 2 )  -k Gd(%d - za)] 
- 22,[Gj(X - Ad) - Ad] - 8oZiZa 

Thus, the closed-loop system is given by 

(62) 
2ffZaia + 2(a - 1)Zz - 221[82d + G,(Zid - 20) 

+ Gd(Zad - 2 ~ ) ]  = (1 + G,)(X - Ad) 

(4aZ; + a)& - (42; + 1)[Zzd + G. (+ad - 2 2 )  

+ Gd(2a.j - Za)] -k 4(U - i ) Z p Z i  - 80(7 - 1)Z;Za = 0 
(63) 

Next, the variable structure controller (V.S.C.) will be 
constructed. The sliding surface is chosen aa 

s = (& - &) + - zad) (64) 

The V.S.C. controller can be found as 

(65) 

(66) 

U1 =22a[&d - c(& - &ad) - k ' 8d(s/€)] 

+ [G,(A - Ad) - Ad] + [102; + 22:] 

=[%ad - .(&a - &ad) - @ * 8d(S/e)] 
- 222[G,(X - Ad) - Ad] - 802i22 

Using this controller in the original system, the closed-loop 
system is obtained as 

2a22& + 2(a  - I)*: - 222[&d - c(ip - *ad) 
(67) - k * Sd(S/€)]  = (1 + Gj)(X - Ad) 

(4QLZi +a)&, - (42; + l)[kad - c(& - &ad) - k * 8d(S/e)] 

+ 4(a - l)z,Z; - 80(7 - l)z;Za = 0 
(68) 

In this example, the desired trajectory is planned as qld = 
(t/2- I)', qad = t/2- 1, and the desired contact force is Ad = 3. 
The initial conditions are a ( 0 )  = -1, qa(0) = 0.5. The design 
parameters are selected as G. = 8, Gd = 32, G, = 100, and 
C = 5. The parameters of boundary layer are set aa el = 0.01, 
€2 = 1. Furthermore, the robot motion is bounded by Iq21 5 1, 
161 I 1, I & ]  5 1; and the range of parameter variation are 
0.1 5 a 5 2, 0.1 5 5 2, 0.1 5 7 5 2. Then the bound of 

k can be computed as k = 16. Consider the real parameters 
are larger than the nominal values; i.e. U = = 7 = 2. In this 
case, C.T.C. controller becomes unstable in position and force 
control. While V.S.C. k e e p  excellent performance in position 
control; the maximum force error is only 0.2. The reaults are 
shown in Fig.1 to Fig.5. 

V. Conclusion 
This paper presents two typea of variable structure con- 

troller design for the constrained dynamic system. One is based 
on the nonsingular system model, the other is based on the sin- 
gular model. The former can not directly control the contact 
force; the later allows simultaneous control of position and con- 
tact force. The variable structure controller is compared with 
the computed torque controller. According to the simulation 
results, C.T.C. controller is sensitive to the parameter vari- 
ation; while V.S.C. can handle various parameter variations. 
Namely, V.S.C. is robust to the system unmodelled dynam- 
ics. The implication is that the constrained dynamic system 
and the variable structure system may poseess some common 
features in nature. 

REFERENCE 
Huang, H.P., "The unified Formulation of Constrained 
Robot Systems," Proc. of IEEE Conf. on Robotics and 
Automation, Philadelphia, 1988. 

McClamroch, N.H., H.P. Huang, "Dynamics of a Closed 
Chain Manipulator," Proc. of American Control Confer- 
ence, Boston, 1985. 

McClamroch, N.H., D. Wang, "Feedback Stabilization and 
Tracking of Constrained Robots," Proc. of American Con- 
trol Conference, 1987. 

Itkis, U., Control System of Variable Structure. New York: 
Wiley, 1976. 

Utkin, V.I., "Variable Structure System with Sliding Modes," 
IEEE Trans. on Automatic Control, Vol. AC22, April, 
1977. 

Slotine, J.E., S.S. Sastry, "Tracking Control of Nonlinear 
Systems using Sliding Surface with Application to Robot 
Manipulators," Int. J. of Control, Vol. 38, No.2, 1986. 

Slotine, J.E., "The Robust Control of Robot Manipula- 
tors," Int. J. of Robotics Research, Vol. 4, 1985. 

Yeung, K.S., Y.P. Chen, "A New Controller Design for 
Manipulators using the Theory of Variable Structure S y s  
tems," IEEE Trans. on Automatic Control, Vol. AC33, 
No. 2, Feb. 1988. 

Noble, B., J.W. Daniel, Applied Linear Algebra. New 
York: PrenticeHall, 1977. 

[lo] Huang, H.P., N.H. McClamroch, "Time-Optimal Control 
for a Contour Following Problem." IEEE J. of Robotics 
and Automation, Vo1.4, No.2, 140-149, April 1988. 

[ll] Yoshikawa, T., "Dynamic Hybrid Position Force Control 
of Robot Manipulators-Description of Hand Constrained 
and Calculation of Joint Driving Force," IEEE J. of Robotics, 
and Automation, Vol. RA-3, No.5, 1987. 

[12] Young, K.D., "Controller Design for a Manipulator wing 
Theory of Variable Structure Systems," IEEE Trans. on 
System, Man, and Cybernetics, Vol. SMC-8, Feb. 1978. 

(131 Huang, H.P., "Simulation of Constrained Robot Systems," 
National Science Council Report, No. NSC76-0401-EO02- 
14, Taiwan, R.O.C., July, 1988. 

1366 



d 

c 

4 -  - 9 1 4  

_.__-.__. C.T.C. 
3 -  ____-  V.S.C. ! -  

I 
I 

@a 
F 

5 
- 1 .  

------ V.S.C. 
........... C.T.C. 

M i-i - 

k --- ,,<L-----; 
'..J \ 

U !x ,.i \ 
0 

3 ---+:---:-- 

2 

2 ,- 
i - q s 4  I 

____- -- V.S.C. 

1 -  _.._.... - C.T-C. 

0 1' 2 3 4 

TIME 

Fig.2. Displacement qz 

5 0 ,  I 

-100' 1 2 3 4 
0 

TIME 

Fig.4. Input 

1000 
- V.S.C. 1 

-1000' J 
0 1 2 3 4 

TIME 

Fig.5. Input ua 


