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Abstract 

Robotic tasks involving intermittent robot-environment interac- 
tions give rise t o  return maps defining discrete dynamical systems 
that are, in general, strongly nonlinear. In our work on robotic 
juggling, we encounter return maps for which a global stability 
analysis has heretofore proven intractable. At the same time, 
local linear analysis has proven inadequate for any practical pur- 
poses. 

In this paper we appeal to  recent results of dynamical sys- 
tems theory to derive strong predictions concerning the global 
properties of a simplified model of our planar juggling robot. In 
particular, we find that  certain lower order local (linearized) sta- 
bility properties determine the essential global (nonlinear) sta- 
bility properties, and that successive increments in the controller 
gain settings give rise t o  a cascade of stable period doubling bifur- 
cations that comprise a “universal route t o  chaos.” The theoret- 
ical predictions are first verified via simulation and subsequently 
corroborated by experimental data  from the juggling robot. 

1 Introduction 

We have built the “plane-juggler,” a one degree of freedom robot 
that juggles two degree of freedom bodies - pucks falling (other- 
wise) freely on a frictionless plane inclined into the earth’s grav- 
itational field [3]. We have developed the rudiments of a “ge- 
ometric language” - a family of “mirror laws” that map puck 
states into desired robot states - capable of translating certain 
abstract goals (juggling one and two pucks, catching) into robot 
control laws whose closed loop behavior has been~shown experi- 
mentally to  accomplish these tasks in a stable and robust manner 
[Z]. We have proven, as well, that for the task of juggling one puck 
the mirror law is correct by resort t o  a local stability analysis of 
linearized closed loop model [3, 11. Unfortunately, this local anal- 
ysis and its intrinsically weak conclusions have been of little use 
in predicting the physical consequences of different gain settings 
[l] and have convinced us of the practical necessity of a global 
stability analysis. However, even for the simpler line-juggler that 
gives rise to  a scalar return map, a global stability analysis with 
standard mathematical techniques is exceedingly difficult. This 
paper marshals an array of theoretical tools for the global analy- 
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sis of a large class of scalar maps - among them our line-juggler 
map - that gives considerable promise of narrowing the gap be- 
tween our analysis and practice in general. We capitalize on a 
“by-product” of the recently burgeoning study of bifurcations, 
chaos, and sensitive dependence on initial conditions in quslita- 
tive dynamical systems theory [8, 11, 5 ,  7, 61. Specifically, we 
find that  certain (seemingly unrestrictive) sufficient conditions 
for “reading off” from the derivative at a fixed point the essen- 
tial global stability properties of an entire dynamical system are 
met by a simplified model of our closed loop system, the line- 
juggler. The strong predictions concerning the global properties 
are validated by a gratifying correspondence between theory and 
experiment. In addition, the analytical predictions seem to be 
relevant, as well, to  the plane juggler as is strongly suggested 
by experimental data. Moreover, the coincidence of our systems’ 
stability mechanisms with these special cases may be shared by 
the underlying stability mechanism of Raibert’s hoppers 110, 91. 
This coincidence, if physically intrinsic, holds great promise for 
advancing the science of robotics in intermittent dynamical en- 
vironments. 

2 The Line-Juggler Model 

This section, devoted t o  the illustratjve one degree of freedom 
case - the line-juggler - portrays more simply than can the 
two degree of freedom experimental system the modeling process 
as well as the underlying ideas in our new feedback control law, or 
“mirror algorithm.” First, we derive the open loop model for the 
line-juggler. The specification of a feedback control law will then 
give rise the closed loop model, a scalar return map of puck im- 
pact velocities that  is analyzed in the following section. Both the 
modeling and the control law generalize in a straightforward fash- 
ion t o  the two degree of freedom juggler. For a detailed discussion 
of these issues and the complete derivation of the plane-juggler 
model and mirror algorithm refer to  [l, 3, 21. 

2.1 The open loop model 

The simple model of the one degree of freedom line-juggler is 
displayed in Figure 1. A puck falls freely in the gravitational 
field toward a prismatic robot actuator. The robot’s and puck’s 
positions are denoted by T and b ,  respectively. The task - the 
vertical one-juggle - is to force the puck into a stable periodic 
trajectory with specified impact velocity (and thus apex posi- 
tion). Since the robot can only provide intermittent impacts to  
the puck it makes sense to  examine the discrete map between 
puck states a t  those interactions as a function of the robot’s in- 
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puts. For now, we will ignore the robot’s dynamics and assume 
it capable of applying arbitrary inputs to  the puck during these 
recurring interactions. We can now examine the following control 
problem: Given a sequence of desired puck states - the task - 
find a sequence of robot control inputs that achieves it. 
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Figure 1: The Line-Juggler Model 

First we construct the discrete model that  relates two suc- 
cessive puck states w = (b ,  b) just before impact as a function of 
the robot control inputs. This process consists of modeling the 
puck-robot impacts and the puck’s flight dynamics. 

For the impact model we make the common assumption that 
the elastic impact can be modeled accurately by a coefficient of 
restitution law and that the robot’s velocity i during impact re- 
mains unchanged. Assuming the puck and the robot are moving 
toward each other, ( b  - i )  < 0, then the puck velocityjust after 
impact b‘ is related to  the velocity just before impact b via 

b ’ = - a i , + ( l + a ) i = c ( b , ? ) ,  (1) 

where a E (0 , l )  denotes the coefficient of restitution. Neglecting 
friction during flight, the puck’s flight dynamics are given by 

b’ + b’t - iyt2 [ RI:; ] = [ b‘-  yt 1 ’  
Here w‘ = (b’,b’) denotes the initial conditions, the puck states 
just after impact, and y the gravitational constant. As the im- 
pacts are modeled to  be instantaneous, the puck position during 
an impact remains unchanged, b’ = b. If we now combine the 
impact model ( 1 )  with the flight model (2) and select the time 
of flight and the robot velocity a t  impact as our robot control 
inputs, we obtain the discrete map between successive puck im- 
pacts as a function of the two robot control inputs, 

2.2 The Mirror Law 

The vertical one juggle task can now be specified as a sequence 
of desired puck states just before impact. Selecting w* = ( P ,  b) 
as the desired constant set point of (3) indicates that  the impact 
should always occur a t  the position b‘ with the velocity just be- 
fore impact 6.. If w* is a fixed point of the closed loop dynamics, 
then the velocity just after impact must be -b*, and this “escape 
velocity” leads to  a free flight puck trajectory whose apex occurs 
a t  the height bopel = b’ + g. Thus, a constant w* LLencodes’’ a 
periodic puck trajectory which passes forever through a specified 
apex point, bopel. 

Successful control of the vertical one juggle task is achieved 
via a new class of feedback algorithms termed “mirror algo- 
rithms” [3]. Suppose the robot tracks exactly the continuous 

“distorted mirror” trajectory of the puck, 

T = -KlOb, 

where K~~ is a constant. In this case, impacts between the two 
do occur only when ( T ,  b) = (0,O) with robot velocity 

i = -nlob. (4) 

For simplicity we will assume that  the desired impact position 
is always selected to  be b’ = 0. Any other impact position 
can be achieved by shifting the coordinate frame for robot and 
puck to  that  position. Now solving the fixed point condition 
k = c ( b * , i ( b ) )  = -k for ~~0 using ( 1 )  and (4), yields a choice 
of that  constant, ~ 1 0  = (1 - a ) / ( l  + a )  which ensures a return of 
the puck to  the original height. Thus a properly tuned “distor- 
tion constant,” will maintain a correct puck trajectory in its 
proper periodic course. 

The ability to  maintain the vertical one-juggle - fixed point 
condition - with such a simple mirror control law is an encour- 
aging first step, but still impractical, as it is not stable. The 
second idea a t  work which will assure stability is borrowed from 
Marc Raibert [ l o ] ,  who also uses the total energy for controlling 
hopping robots. In the absence of friction, the desired steady 
state periodic puck trajectory is completely determined by its 
total vertical energy, 

1 .  
T(W)  = -b2 2 + 7 b .  

This suggests the addition to the the original mirror trajectory, 

A 
T = - K l ( w ) b ;  K 1 ( W )  = K l o  + KlI [q (W*)  -  PO)], ( 5 )  

of a term which “servos” around the desired steady state energy 
level. Thus, implementing a mirror algorithm is an exercise in 
robot trajectory tracking wherein the reference trajectory is a 
function of the puck’s state. 

2.3 The closed loop model 

We will now show that  all impacts between the one degree of 
freedom robot and the puck under the mirror law ( 5 )  must occur 
a t  the desired position b = b‘ = 0 .  The impact conditions T - b = 
0, i - b > 0 translate via equation ( 5 )  and its derivative into 

(1 + Ki(w)]b = 0, 

(1 f K i ( W ) ) b  < 0. 
( 6 )  

(7) 

Here we exploit kl = - K ~ ~ T ~  = 0 as we ignore friction. As noted 
earlier, we restrict ourselves to puck imact velocities pointing 
down in the gravitational field toward the robot, b < 0. There- 
fore, condition (7)  is equivalent to 1 + K ~ ( w )  > 0 and now the 
only solution to  ( 6 )  is the desired puck robot impact position 
b = 0. 

To construct the closed loop impact map we must now eval- 
uate the effective robot control inputs a t  impact. The time of 
flight and the robot impact velocity is 

2 ‘ I  

Y 
ul = -b and u 2  = i. = -&lb. 

Substituting these robot control inputs in (3) we obtain the 
scalar map of puck impact velocities just before impact at the 
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invariant impact position b' = 0, 

f ( 6 )  = b (1 - P(b2 - P))  , ( 8 )  

where P = rill . (1  + a)/2. 

In an effort t o  synthesize a more realistic closed loop map than 
(5) that  will serve us in predicting experimental results we now 
include coulomb friction between puck and sliding surface. Fur- 
thermore, in order to  prevent the puck from falling off the sliding 
plane, we incline the juggler in the gravitational field away from 
the vertical by an angle 6, which also has the effect of decreas- 
ing gravitational acceleration. Now the dynamics of the puck in 
isolation are described by 

6 = -7 cos 6 - sgn(b)pjricy sin 6. 

Here pjtic denotes the friction coefficient for dry friction. Pro- 
ceeding now analogously t o  the frictionless case, we apply the 
same mirror law ( 5 )  and obtain the closed loop impact map cor- 
responding t o  (S), 

f ( 6 )  = cb (1 - P ( 6 2  - b2)) , (9) 

where P is defined as above and ( = c(pjric). 

Note that  the impact maps (8) and (9) are only defined for 
positive velocities after impact. This restricts our previous do- 
main b < 0 for the vertical puck velocity just before impact for 
both cases without and with friction to  the domain W defined 

6 < b < 0 where 6 f -[biz + -1;. 1 
by 

P 
3 The Stability Properties of Unimodal 

Maps 

We now sketch our theoretical tools derived from the Singer- 
Guckenheimer theory (for a complete derivation, see [4]) and 
describe their relevance t o  the present application. Bifurcation 
plots are generated on the computer as an illustration of the 
theoretical statements and for purposes of comparison with the 
experimental data  presented in Section 4. 

3.1 The Singer-Guckenheimer Theory 

3.1.1 S-un imoda l  Maps 

Singer and Guckenheimer stated their results for a very particular 
class of functions which preserve the unit interval, called normal 
S-unimodal maps. These functions increase strictly towards a 
unique maximum and strictly decrease over the remainder of the 
interval. Moreover, they have a negative Schwarzian Derivative 
[I11 except a t  the maximum. Rather than seeking global asymp- 
totic stability of a fixed point, we will content ourselves with es- 
sential global asymptotic stability. This property holds when the 
set of initial conditions that  fails to  converge t o  the fixed point 
has measure zero. Note that for all engineering purposes essen- 
tial global asymptotic stability is indistinguishable from global 
asymptotic stability. 

Singer showed that normal S-unimodal maps can have a t  most 
one attracting periodic orbit [ll]. Guckenheimer showed that 

the domain of attraction of such attracting orbits includes the 
entire unit interval with the possible exception of a zero mea- 
sure set (81. Thus, an asymptotically stable orbit of a normal 
S-unimodal map is essentially globally asymptotically stable. Al- 
though these strong results are stated in terms of the apparently 
restrictive c!ass of normal S-unimodal maps, they extend as well 
to  all differentiable conjugates. Namely, say that g is a smooth 
S-unimodal map if there is some normal S-unimodal map, f ,  to  
which g is differentiably conjugate - i.e. there exists a smooth 
and smoothly invertible function, h such that g = h o f o h-'. It 
is straightforward t o  show that  an attracting orbit of a smooth 
S-unimodal map is essentially globally asymptotically stable [4]. 

Smooth S-unimodal maps form a sufficiently large family that 
this theory appears to  have broad engineering applicability. For 
example, we demonstrate below that the line-juggler map falls 
within this class. Moreover, we have shown that simplified mod- 
els of Raibert's hopping robots give rise to  smooth S-unimodal 
maps as well [9]. 

3.1.2 Bifurcat ions of  U n i m o d a l  Maps 

If we now consider one-parameter families of unimodal maps, 
then certain strong and essentially universal (i.e. independent of 
the particular parametrized family) properties hold true. Namely 
we can expect predictable structural changes in the qualitative 
dynamics pertaining t o  almost identically related values of the 
parameter, entirely independent of the details of the particular 
family. Let g,, be a unimodal map for each p in some real interval, 
M C R. A particular value, po,  is said to  be a bifurcation point 
if there is no neighborhood of po in M such that g,, is conjugate 
to  gu0 when p is in that  neighborhood. Intuitively, the qualitative 
behavior of the dynamics changes around a bifurcation point. 

Now suppose that {g,,} is a family of smooth S-unimodal 

maps. If there is an interval of values M = ( p o , p , )  of p for 
which g w ( c )  = c and g,,,(c) = 1, then we shall say that  g,, is a 
full family [7]. A full family must exhibit an accumulating cas- 
cade of period doubling bifurcations: i.e., from an asymptotically 
stable period one orbit until p1, t o  an asymptotically stable pe- 
riod two orbit until p ~ ,  an asymptotically stable period four orbit 
until pz, and so on. Thus, unimodal families give rise to  theo- 
retically determined global bifurcation diagrams. A typical such 
bifurcation diagram is displayed in Figure 2 as taken straight out 
of (51. 

'4 

Unimodal period doublings have a universal structure. De- 
note as pn those points in the bifurcation diagram where there 
is a bifurcation from length 2"-' to  2". Then the ratios - 
converge to  some universal number 6 = 4.66920 ... regardless o f  
the family or the details of the parametrization [ 5 ] .  We will show 
later that our line-juggler satisfies these conditions and indeed, 
from the simulated bifurcations diagram we can verify this uni- 
versal number. 

3.1.3 Prac t i ca l  S u m m a r y  

In the fortunate case of encountering a smooth S-unimodal re- 
turn map, f ,  the job of determining the essential global limit 
behavior of its associated dynamics reduces to  simple algebra 
and calculus. After finding the fixed points of the N f h  iterate 

1978 



Figure 2: Bifurcation Diagram for f, = 1 - px2 as Shown in 
Collet and Eckmann 

of f (algebra), we compute the magnitude of its first derivative 
(calculus) at a fixed point. If that  magnitude is less than unity 
then we may expect all experiments performed upon the corre- 
sponding physical apparatus (with gains set to  the appropriate 
values) t o  result in periodic steady state behavior exhibiting no 
more than N distinct states. 

If, moreover, we encounter a one-parameter family of smooth 
S-unimodal maps, and the family is full, then appropriate ad- 
justments of the parameter will afford any conceivable stable pe- 
riodic behavior. Eventually, when the period, N ,  gets to  be a 
sufficiently large number, our ability to  distinguish periodic from 
“chaotic” steady state behavior will be compromised by the im- 
precision of our measurements. 

( p o , p c o )  = (:, g f i ) ,  we obtain gpo(c )  = c and g,,(c) = 1. Now 
we know that  after the fixed point b f ,  becomes unstable, the map 
f will exhibit period doublings that will eventually lead t o  chaotic 
behavior, as predicted before. This is confirmed in Figure 3, 
which show the bifurcation diagram (obtained via simulation) for 
our specific line-juggler map (with friction). The ratio - is 
evaluated for the first three bifurcations, n = 2, directly from the 
two figures, as 4.6 with an accuracy of about 0.3 due t o  the large 
p stepsize. This value is close t o  the expected limiting value for 
n + 0;) of 6 = 4.66920 ... . 

Given the settings /Ifr;= = 0.16, a = 0.7, ( = 0.9115, and b* = 
-125, one can predict from f ’(bjp) = -1 the first P-bifurcation 
value 7 . 6 .  The corresponding value of ~ 1 1  = 2P/(1+ a )  = 
8.9. is confirmed accurately from Figure 3. 
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Figure 3: Line-Juggler with Friction: Simulated Bifurcation Di- 
agram 

3.2 Applications to the Line-Juggler Return Map 

We now explore the implications of the preceding theory for our 
particular dynamics. In order to  be directly applicable t o  our 
physical apparatus, we will use the models that include friction 
i n  the following sections. The case without friction can readily 
be recovered by setting ( = 1. 

The original map for successive impact velocities (9) has a 
fixed point a t  

and aunique minimum a t  b, = 5b with f(b,) = <$b:. Moreover, 
it is not hard t o  see that f is smooth S-unimodal [4]. Thus from 
the preceeding results we immediately have 

In this section we present experimental data  to  validate the mod- 
els developed in Section 2 and the theoretical predictions by com- 
parisons with simulated data  from Section 3.2. In Section 4.1 
devoted to  the line-juggler, we will use the theoretical insights 
presented in Section 3.1 for scalar return maps to  predict the dy- 
namical behavior of the physical apparatus. The correspondence 
between simulated and experimental data  is gratifying. We are 
able to predict and verify experimentally the transients of the 
stable fixed points as well as higher period stability properties, 
specifically bifurcations t o  stable period two and period four or- 
bits. In Section 4.2 we back with experiments our speculations [4] 
about the applicability of the theory to  the two degree of freedom 
juggler. 

Theorem 1 ([4]) The mirror algorithm for the line-juggler re- 
sults i n  a successful vertical one juggle which is essentially globally 
asymptotically stable as long as 

4’1 Line-Juggler Experiments 

All our past experiments were based on the plane-juggler, which 
allows for planar puck motion which is controlled by impacts 
with a revolute motor, as depicted in Figure 4. The one-juggle 
is implemented by restricting the puck motion to  a vertical line. 
The resulting closed loop impact map, when using the proper 
mirror algorithm for the motor, is identical to  the one-juggle It is easy to  verify that gu is also a full family: For p E 
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Figure 4: The Line-Juggler Implementation 

We have shown in the previous section that the local dy- 
namical behavior is essentially global. The data  in Figure 5 
confirm that the transients can be predicted by recourse to  lo- 
cal linear analysis of the scalar impact map. Evaluating the 
derivative of (9) at tire fixed point (10) for the four gain set- 
tings 1511 = 3/5/7/9.  shown in the figure, we predict lo- 
cally an overdamped, critically damped, underdamped and an 
unstable response, respectively. This behavior is confirmed even 
from large initial conditions ("globally") on the juggling appa- 
ratus. When inspecting the transient for the last gain setting 
~ 1 1  = 9 .  lod5 closely we see that it maintains a small oscillation, 
the predicted onset of instability. The fixed point in the presence 
of friction (10) depends on the gain setting 1511. Figure 5 con- 
firms as well our ability to  predict the steady state values for the 
vertical impact velocities with less than 3% error. 
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Figure 5: Line-Juggler Transients: Experimental Data 

When increasing the gain beyond the predicted first ~ 1 1  bi- 
furcation value of 8.99. lob5, we expect to  see a stable period 
two orbit. Visually, this shows the puck oscillating between two 
different juggling heights. Indeed, for ~ 1 1  = 1 1 .  Figure G 
shows the divergence from the unstable fixed point of f (120.8 

in/sec) towards a stable period two - a stable fixed point of 
f o f .  
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Figure 6: A Transient Toward Period Two: Experimental Data  

The strength of our analyical predictions is demonstrated fur- 
ther when increasing the gain t o  l~~~ = 12.25.1W5: an observable 
period four trajectory emerges, as shown in Figure 7. As the gain 
increases, the higher period orbits become more and more sen- 
sitive t o  perturbations. This together with the slower transient 
recovery from these perturbations causes the period four orbit 
to  appear and disappear a t  unregular intervals, and explains the 
fact that we have not seen higher period orbits than period four. 

This most satisfying correspondence between analytical pre- 
dictions and experimental data  is summarized in Figure 8: the 
experimentally acquired bifurcation diagram for the line-juggler. 
It coincides with good accuracy with the model prediction in Fig- 
ure 3 up to the second bifurcation. This plot was acquired i n  an 
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analogous fashion to  the simulated plot. The puck was dropped 
a t  a height corresponding to  b = -100 in/sec. We discarded the 
first 20 impacts to  assure steady state juggling and logged the 
following 50 impacts. For the last four gain settings we logged 
the following 100 impacts since the spread of impact velocities 
increased. This was repeated for the ~ 1 1  gain range in 0.25. 10W5 
increments. 

- 

- 

- 

4.2 Planar Juggler Experiments 

We now remove the guiding wires in Figure 4 to  obtain the orig- 
inal plane-juggler. The one-juggle mirror algorithm can be gen- 
eralized to  accomplish the vertical one-juggle task on the plane- 

juggler [4]. However, the complexity of the new closed loop sys- 
tem admits only a local linear proof of correctness. After showing 
that the plane-juggler dynamics at a fixed horizontal position are 
identical t o  the line-juggler, we argue that even in the presence of 
horizontal position errors the line-juggler analysis should serve US 

for qualitative predictions. This can be verified in Figure 9 which 
displays an experimentally measured bifurcation diagram for the 
planar juggler. Again, the puck is dropped with an initial height 
which results in an initial vertical impact velocity of about -100 
in/sec. After the first 20 impacts have passed, we log the next 
100 impacts shown in the plot. We start with an initial value of 
G . lop5  and record a run until ~ 1 1  = 12.5. 

This bifurcation plot is almost identical to  that of the line- 
,juggler in Figure 8. Due to  the larger perturbations present, the 
spread of the data  is considerable larger. However, we can still 
identify a bifurcation to  a stable period two orbit after the value 
of ~ 1 1 =  10 . 
predicted from the theory of the simpler system. 

which is close to  the value ~ 1 1  = 8.99 . 
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