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Abstract 

Flexible manufacturing systems (FMS’s) become more and 
more popular nowadays in the field of manufacturing since they can 
perform different workpieces automatically in more than one 
sequence and, hence, possess considerable flexibility. Design of an 
FMS will involve several levels of consideration and each level will 
endeavor to solve various problems. One of those levels is planning 
and scheduling where problems regarding how to perform 
ckzssifrcotzon and selection are intrinsic ones. In this paper, an 
efficient heuristic method by building some minimum spanning 
tree(s) (MST) to solve these problems is proposed and, then, it is 
applied to three different types of environment for illustration. 
Computer simulation results show that our approach can obtain a 
satisfactory solution in moderate computational time. 

I. Introduction 

Flexible manufacturing systems (FMS’s) become more and more 
popular nowadays in the field of manufacturing since they can perform 
different workpieces automatically in more than one sequence and, hence, 
possess considerable flexibility. In other words, no human intervention 
will be needed in determining system operations and in handling con- 
tingent incidents in such an automatic manufacturing environment. 
Design of an FMS will involve several levels of consideration and each 
level will endeavor to solve various problems. One of those levels is 
planning and scheduling where problems regarding how to perform 
clussifrcution and selection are intrinsic ones. In this paper, a efficient 
approach for solving these problems is proposed and is, later, applied to 
three different types of environment for illustration. 

The first environment contains problems of so called group technol- 
ogy (GT) (see in [1]-[3]. Its philosophy is to perform necessary opera- 
tions of processing a part by a group (cell) of machines which are physi- 
cally close-by as much as possible in oder  to minimize the total handling 
time. Before such a technology can be applied, all the parts to be pro- 
duced in a machine shop with lots of machines have to be sorted out into 
several families. Each family of parts is formed by judging the degree of 
similarity in size, geometry, method of manufacture, etc. Above all, all 
the operations involved in each family should be related to only a partic- 
ular group of machines. Obviously, these are also known as classification 
problems. 

The second one is tied with problems of the so called process plan 
selection [5][6].  Due to the very flexibility of an FMS, for each part there 
exists a number of different process plans and each plan specifies 
different requirements for tools, auxiliary devices, as well as operations 
(for example, machining operations) to be performed altogether at a 
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given cost. Moreover, since there usually will be several parts to be 
manufactured at the same time, there may exist a contlict in using a sin- 
gle machine for manufacturing more than one part due to the choice of 
some possible combination of so many relevant process plans. Therefore, 
a mission for the production planner is to select one out of all possible 
combinations of all process plans so that the minimum number of 
fixtures, grippers, fedders, and tools will be required. In another words, 
the corresponding total cost will be the minimum over all possible 
choices. 

Very often in a realistic situation, not only a subset of a set of pro- 
cess plans has to be chosen but also the sequence among process plans in 
that chosen subset has to be determined as well. This constitutes the third 
environment to be considered here where the class of problem, originated 
from that mentioned above, is terms as process plan sequencing prob- 
lems. Of c w m ,  the sequence to be selected here wi l l  correspond to the 
minimum total cost as has been requested previously. 

All these problems mentioned so far are NP-complete and, hence, 
the complexity of solving these problems is considerably high if its so 
called “optimal” solution is attempted. Thus, introduction of some good 
heuristics which can reduce complexity will be preferable in solving 
these problems in real practice. The efficient approach proposed here is 
based on the concept of minimum spanning tree [4] mixed with some 
relevant heuristics. For illustration of the performance, some computer 
simulation examples are provided with satisfactory results. 

II. Problem Formulations 

A. Group Technology Problem 

Group technology is an approach that seeks to identify those attri- 
butes of a population that permit its members to be collected into groups, 
sometimes called families, so as to take advantages of their similarities in 
manufacturing and design. In a manufacturing system part similarities are 
of two types: design attributes (such as geometric shape and size) and 
manufacturing attributes (the sequence of processing steps required to 
make the part). Suppose there rue k parts, p, . . . h, which need to be 
manufactured and each part has m attributes. Then a kxm matrix PI can 
be built to indicate the parts’ information. Every entry PI,, is a number or 
a character, which represents the value of ith attribute of part p.. For 
illustration, table 1 shows the information about ten parts each of which 
has twelves attributes. 

Since each attribute has different effect to identifymg a part, the 
Hamming distance has been modified by introducing the weight 
coeficient w; for each attribute i. Recall that the weighted Hamming dis- 
tance between any two parts, say, p, and pb is defined as: 

wl*dl + wZ+dz + . ’ ’ + wm*4, 
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where di is the difference of the ith attribute between the two parts. 
Based on the part information matrix PI, we can first calculate the Ham- 
ming distance between every pair of parts, then a weighted Hamming dis- 
tance matrix WH which indicates the degree of difference among every 
parts can be created accordingly. Thus, based on the part information 
matrix, we define the weighted Hamming distance matrix WH of which 
each entry, say, (ab) denotes the weighted Hamming distance between 
part pa and pb. Accordingly, the matrix WH registers the degree of dis- 
similarity among all parts. For example, table 2 is the weighted Ham- 
ming distance mahix associated with the part information matrix shown 
in table 1. In this special case, if the ith attribute is a numerical value, 
then 4 = I Pki-PIb, I ,  else 4=0 when PI,=PI, and di=l otherwise. 

By these definitions, a group technology problem can be stated as: 
Given a kxk weighted Hamming distance matrix WH, group those k parts 
into f families where f is a given number. 

B. Process Plan selectioa Problem 
Most of the planning methods for automated manufacturing systems 

are based on the assumption that for each part there is only one process 
plan (defined as a sequence of operations) available. But in practical 
situation (e.g., in an FMS) one can generate a set of different process 
plans, whose attributes as well as costs may vary from one to the others. 
The former are defined as the auxiliary devices (such as fixtures, grippers, 
feeders. and tools) that each plan specifies whereas the latter is the 
manufacturing cost induced by that particular plan. By this observation, 
every process plan can be identified with its attributes (i.e., required auxi- 
liary devices) and the associated cost. Suppose there are n auxiliary dev- 
ices in a manufacturing system and at certain time there are p process 
plans to manufacture k parts, then the following incidence row vector is 
defined for each process plan Pi, la9 : 

x, = [X,i.X2,. . ' ' J " i ]  

Where 

1 if the auxiliary device t is used in Pi 
0 otherwises 

and a row vector C is used to denote costs of all the process plans, i.e., 

c = [Cl,C,, . ' ' .C,I 

where Ci is the cost for process plan Pi. An example for demonstration is 
shown in figure. 1. 

Like the first class of problems, after figuring out the incidence 
vector for each process plan, we can then construct a pxp weighted Ham- 
ming distance matrix D measuring dissimilarity among the plans. Each 
entry 4, denotes the weighted Hamming distance between process plan Pi 
and Pj. Now the process plan selection problem can be defined as fol- 
lows: Choose from the set U={l, ..., p )  a subset S=(j,, ,..., j,) which con- 
tains one representative process plan j, for each part i, lSjiSp, i=l, ..., k, 
such that the following is minimized: 

C 4,,.je+ CCi, (1) 
CJil.j,)€As JiES 

where As={(jl,j2), (j,,j3), ..., (jk-l,jk)). In words, to manufa- k parts 
we choose from the set of p process plans a subset of k process p l w  
(counting the multiplicity) such that the total costs of these chosen p l w  
plus a measure dissimilarity over those plans is minimized. 

c. p r e s s  plan sequencing h o b l e m  
The class of problems considered here is originated from that given 

in subsection B but also takes into account the importance of the process- 
ing order of the manufacturing plam selected. This additional considera- 
tion will become imperative when the setup efforts caused by switching 
from one process plan to another are comparable to the total costs of the 
relevant process plans. 

By use of the previous notation, we now formulate the problems as 
follows: Corresponding to the subset S=(jl, ..., jk), we define the set of 
all possible permutations of the ordered kth tuple G I ,  ..., jk) as n(S) of 
which each element is denoted as n=(il, ..., ik)En(S). Then, the objec- 
tive is to minimize 

C dj,,d,, + CCji (2) 
( i , & ) ~ W )  j,ES 

where B(n)={(il,i2), h i 3 ) ,  ..., (ik-l,ik)) over all possible S c U and all 
possible n(S). 

m. Solving Problems of Classification and Selection Using Modified MST 

In section 2, we have formulated the three classes of problems to 
be studied here. Later in this section we will show that by simply intro- 
ducing some suitable m&cations to the MST according to the problem 
nature, all these problems can be solved efficiently. It is noteworthy, 
however, that certain heuristics will have to be introduced when Concepts 
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of MST are to be used to solve these NP-complete problems in general. 
Hence, the optimalily of solutions will be traded with the efficiency of 
reaching good solutions. 

A. Group Technology F’roblem 

Recall that this class of problems are characterized mainly by the 
weight Hamming distance matrix WH. The objective is to group k parts 
in total into f families. Then, it is quite straightforward to build a graph 
G=(V,E) according to the mauix WH. Specifically, V corresponds to the 
set of parts and each element of E, say, (v,w) denotes the weighted edge 
between the part py and pw Now we are ready to propose an approach of 
solving the problems in the following: 

Algorithm A 

Stepl: According to the weighted Hamming distance matrix WH, build 
a corresponding undirected complete graph G=(V,E). 

Create a minimum spanning tree S=(V,T) of G. 

For index = I to f-1 do Step3.1 and Step3.2: 

Step3.1: 

Step3.2: 

Now the graph S=(V,T) is an unconnected graph with f com- 
ponents. 

Step2: 

Step3: 

Choose an edge (v ,w) in T of the largest weight; 

Delete (v ,w ) from T. 
Step4: 

After a minimum spanning tree is constructed in Step2, (f-I) edges 
of the tree with the larger weights are deleted so that S becomes an 
unconnected graph with f components. Each component thus corresponds 
to a family of parts. For example, there are totally ten parts which are 
shown in table 1 and table 2, and they are to be grouped into three fami- 
lies. Figure 3 shows the partial and the final result of our approach where 
three families are found as: 

Remark: To balance the load of these families the above algorithm 
should be modiIied to meet this constraint. At first an integer number lp 
indicating the lowest number of parts in every family must be given (or 
be calculated by some rule), then Step3 can be modified as follows (the 

lpz,ps.ps.p61. and {pr,psl. 

(a) Gragh G=(V,E) @) A M i n i ”  Spanning Trce Of G 

Figure 2. An Elample or Minimum Spanning Tree. 

(a) After Step 2 @) Ahcr Step 4 

Figure 3. An Example of Grouping Resuit. 

other steps remain unchanged): When the next largest edge is chosen, we 
must check after deleting this edge whether there exists a subtree whose 
number of node is less than lp, If it is, then this edge must be kept, and 
is deleted it otherwise. As before, after deleting f-  1 edges Step3 is then 
terminated. 

B. Process Plan Selection Problem 

The problems to be considered here are not only characterized by a 
weighted Hamming distance matrix D (as before) but also a cost vector C 
of all relevant process plans and a variable k which indicates the number 
of total parts. Likewise, an undirected graph G=(V,E) is constructed 
according to the matrix D and the vector C as well, where V now 
denotes the set of process plans whereas the weight of each edge in E, 
say, (v.w) is defined as 

C k  
I (v.w) I = C , + C , + ~ d , ,  = C,+C,+k&w 2 

(k-1) 
(3) 

where C; denotes the number of 2-combinations of a k-set. The choice 
of the weight function is due to the fact that the total weight of any solu- 
tion tree (with (k-I) tree branches) out of the graph G will generally be 
more close to the value given hy the objective function in (1) than when 

d,, instead of -d,w is used in the calculation (3). Based on the graph, 

a modified MST is constructed and gives a desired result. The detailed 
algorithm is shown below: 

c2“ 
k- I 

Algorithm B-1: 

Stepl: According to the pxp weighted Hamming distance matrix D, 
the number of parts to be processed k. and the cost vector C, do 
Stepl.1 and Stepl.2 to build an undirected complete graph 
G=(V,E). 

Stepl.1: For each process plan Pi builds a vertex Vi in V so 
that the number of vertices in V is p. 

Stepl.2: The weight of the edge (v.w) is given by (3). 

Let F be a set called forest, which is a set of trees. Initially, F 
is set to be empty. 

Do Step3.1 through Step3.3 repeatedly until F becomes a tree 
with k vertices. 

Step3.1: 

Step3.2: Delete (v,w) from E. 

Step3.3: Test whether the edge (v,w) can be legally added 
into the forest F and then add it if can. 

Now the forest F contains only one single tree. ”his implies 

Step2: 

Step3: 

Choose (v.w) an edge in E of lowest cost. 

Step4: 

2150 
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that the set of process plam represented by the corresponding 
vertices in that tree is a valid selection for processing the total 
k paris. 

I 
w m  _I 

Table 4. The Weight of Every Edge E ii in the Graph G=(V,E) Built 
b) Example?.. 

(a) After Adding h e  @) After Adding L e  (c) Aftcr Adding the 
Edgeof?, O f  h 'Drird Edge of the Fonh 
Smallest \\tight. Smalles~ Weight. Smallest weight. 

Figure 4. Running Algorilhm B-1 and C-1 lor Example2. 

Algorithm 0-2: 

Stepl: According to the p*p weighted Hamming distance matrix D, the 
number of parts wanted to be processed k, and the cost vector 
C, do Stepl.1 and Stepl.2 to build an undirected complete 
graph G=(V.E). 

Stepl.1: For each process plan Pi builds a vertex Vi in V so 
that the number of vertices in V is p. 

Stepl.2: The weight of the edge (v,w) is given in (3). 

Let F be a set of forests. Initially there is only one empty set in 
F, i.e., an empty forest. 

De& a variable fn as the number of forests in F. Initially fn is 
set to be one. 

Do Step4.1 through Step4.4 repeatedly until one of the forests 
in F is a tree with k vertices. 

Step4.1: Choose (v.w) an edge in E of lowest cost. 
step4.2: Delete (v.w) from E. 
Step4.3: For i=l to fn, test whether the edge (v,w) can be 

legally added into the forest Fi and then add it if 

Step2: 

Step3: 

Step4: 

Can. 

Step4.4 If the edge (v,w) can't be legally added in any 
forest Fi then do Step4.4. I and Step4.4.2. 

(a) After Adding the 
Edge Of IhC S d C S t  
Weight 

(b) After Adding thc 
Edge ofthe Second 
Smalles~ Wcighhr 

F1 F2 

(c) After Adding the Edge of the Third SmaUesl Weight. 

F1 F2 

(d) After AddinL Ihc Edge ofthc F m h  Smallerl \\'eight. 

Figure 5. Running Algorilhm 0-2  and C-2 for Eiarnplrl. 
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Step4.4.I: 

Step4.4.2: 

fn t fn + I. 

Clear the forest Fh to be empty, and, 
then, add the edge (v,w) into this 
new forest. 

Now there is at least one forest F, in F become a tree with k 
vertices. If there exists more than one such trees in F then find 
a tree F,,,, with smallest cost according to the cost function (1). 
Then the set of process plans represented by the corresponding 
vertices in F,, is a valid selection for processing the total k 

Parts. 

Steps: 

The major difference between algorithm B-2 and B-1 is that F in 
algorithm B-2 is a set of forests instead of a set of trees, and a new forest 
Fmcl with a single edge (v,w) must be constructed if the edge (v,w) can't 
be legally added into any forest Fi, I l i l fn .  For illustration figure 5 shows 
the forests built by algorithm B-2 for example 2. Figure 5(b) shows that 
the second smallest edge (v4, vg) can't be legally added into the forest FI 
and, hence, a new forest F2 is then constructed. In figure 5(c) the third 
smallest edge (v1,v7) can be legally added into both Fl and F2 so that it 
is incorporated into both of them. At last, there are two spanning trees, 
F, and F2, with four vertices as shown in figure 5(d). After the total cost 
of these two trees is calculated, the set of process plans (P1,P4,P7P9} is 
the final solution which is also the optimal solution. 

C. Process Plan Sequencing Problem 

The necessary information for this problem is the same as the 
above one, i.e., a weighted Hamming distance matrix D, a variable k 
indicating the number of parts wanted to be processed, and a cost vector 
C. The algorithms for solving this problem are similar to that for solving 
the previous problem except that the testing procedure is different and the 
weight in every edge when building the corresponding graph G is also 
different. Specifically, the weight for the edge (v,w) is defined as the sum 
of C,, C,,,, and 2 * 4 ,  in view of the fact that the total weight of edges in 
a sequence is twice of that given by (2) according to this weight 
definition. Furthermore, when the edge (v,w) is chosen, we must test after 
it is added whether the forest can form a valid sequence instead of 
whether it can form a valid spanning tree. Two algorithms for solving 
this class of problems are shown as follows. 

Algorithm C-1: 

Step I : 

Step2: 

Step3: 

Step4: 

According to the pxp weighted Hamming distance matrix D, 
the number of parts to be processed k, and the cost vector C, do 
Stepl.1 and Stepl.2 to build an undirected complete graph 
WV,E) .  
Stepl.1: For each process plan P, builds a vertex Vi in V so 

that the number of vertices in V is p. 

The weight of edge (v,w) is the sum of C,, C,, and 
2*4.w. 

Stepl.2: 

Let F be a set of trees, that is, a forest. Initially, F is an empty 
set with no element. 

Do Step3.1 through Step3.3 repeatedly until F becomes a 
sequence with k vertices. 

Step3.1: 

Step3.2: Delete (v,w) from E. 

Step3.3: Test whether the edge (v.w) can be legally added 
into forest F and then add it if can. 

Now the forest F contains only one sequence S. This implies 
that the order of process plans represented by the corresponding 
vertices in S is a valid sequence for processing the total k parts. 

Choose (v,w) an edge in E of lowest cost. 

Algorithm C-2: 

Stepl: 

Step2 

Step3: 

Step4: 

According to the pxp weighted Hamming distance matrix D, 
the number of parts to be processed k, and the cost vector C, do 
Stepl.1 and Stepl.2 to build an undirected complete graph 
G=(V,E). 

Stepl.1: For each process plan Pi builds a vertex Vi in V so 
that the number of vertices in V is p. 

Stepl.2: The weight of edge (v,w) is the sum of C,, C,, and 

Let F be a set of forests. Initially, there is only one empty set 
in F which indicates that there is an empty forest in F at first. 

Define a variable fn as the number of forests in F. Initially  ti^ is 
set to one. 

Do Step4.1 through Step4.4 repeatedly until there is a forest Fi 
in F being a valid sequence with k vertices. 

Step4.1: 

2* 4.w 

Choose (v,w), an edge in E of lowest weight. 

(40.8) 0.1123 0.1697 40.032 0 %  2 %  16.85% 14.11% SI.OR% 2.314% 

(40.10) 0.1233 0.3887 56.152 0% 0% 13.81% 9.82% 215.1% 3.528% 

(50.10) 0.1967 0.4231 803.43 0% 0% 16.18 % 13.14 % 174.4 % 2.512 'b 

(50.12) 0.2217 0.7082 1261.6 0% 0% 14.53 % 10.11 % 219.3 % 3.695 % 

run time : CPU run time (sec) on VAX 8530 
OPT': exhaustive mehod for finding optimal roluiion. 
DRATIO' : diflercncc ratio hhveen approximate solution and optimal solution. 

Tahle 5. Fcrlormance of Algorllhm D-1 and D-1. 
(avcrapc value lor 50 inslanccs each problem solved) 
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Steps: 

sin: 
(p.W 

Step4.2: Delete (v.w) h m  E. 
Step4.3: 

Step4.4: 

For i=l to ti, test whether the edge (v,w) can be 
legally added in forest Fi and then add it if can. 

If the edge (v.w) can't be legally added in any 
forest Fi then do Step4.4.1 and Step4.4.2. 

Step4.4.1: fn c fn + 1. 

Step4.4.2: Clear the forest F, to be empty then 
add (v.w) in this new forest. 

Now there is at least one forest Fi in F become a valid 
sequence with k vertices. If there exists more than one such 
sequences in F then find a tree Fmi, with the smallest cost 
according to the cost function (2). Then the sequence of process 
plans repmented by the corresponding vettices in Fmin is a 
valid one for processing the total k parts. 

DRATIO@ nlio or finding 
oplimal snlulion 

computer mn lime 

c-2 I O F r  I c-l I c-2 I c-l I c-2 c-l 1 

For example, after the edge (vI,v4) is added into the forest shown 
in figure 61a) the forest in figure 6(b) is not 3 valid sequence although it 
is a valid tree. Application of these two algorithms to example 2 are 
shown in figure 4 and figure 5 respectively. Then forests built by these 
algorithms are found to be the same as the ones built by algorithm B-1 
and B-2 because the weights C;/(4-1) (used in algorithm B-1 and 8-2) 
are equal to 2 (use in algorithms C-1 and C-2). In figure 4 the process 
sequence obtained is P+P9+P,+P7 (or P7-+P,+P9+P5) which is the 
optimal solution. In figure 5(d) two valid sequences are obtained. After 
their respective costs are calculated, the final solution is the same as the 
above one. 

IV. Computer Simulation Examples 

In this section, we implement some simulation programs of the 
algorithm B-I, B-2, C-I, and C-2 on VAX 8530 to solve the relevant 
problems. Comparison between results of our approachs and the optimal 
solutions is performed and shown. In order to analyze the performance of 
these algorithms, random problems of various sizes (p,k) were generated. 
Here p is the number of process plans and k is the total number of parts. 
The cost C,, for each 1 4 5 ~ .  were uniform in interval (0,15) and the 
Hamming distances were random integers in [1,10]. Table 5 and 6 sum- 
marize the results obtained. 

The first column of table 5 shows the computer run time of three 
algorithms: B-I. B-2, and a exhaustive search method to find the optimal 
solution (say, OPT method). Since the process plan selection is NP- 
complete, the run time of OPT method grows greatly as the problem size 
increases. The result shows that algorithm B-1 and B-2 are both very 
efficient because of the little run time. The second column demonstrates 
the percent of finding the optimal solution of algorithm B-1 and B-2. It is 
shown that it will become more and more difficult to find the optimal 
solution for these methods as the problem size increases. The third 
column lists the difference ratio between the optimal solution and that 

(a) Oribinal Forest. (b) An h a l i d  Sqwncc.  

Figure 6. Example of an In la l id  Sequence. 

run tim : Cmr mn lime (SE) on VAX 8530. 

om' : clhaustire method lor finding optimal solution 

DRATIO" : differma nlio belmn approximate solution and optimal solution. 

Tahle 6. Pcrrormanca or Algorithm C-1 and C-L 
(average value lor IO Instances each problem solved) 

our approach found. The result shows that the value obtained from algo- 
rithm B-2 is about ten to fourteen percent off the value of best solution, 
and the solution obtained kom algorithm B-1 is a little worse than that 
from algorithm B-I. The last column reveals that the improvement of 
solution quality is about 2 to 6 percent of algorithm B-2, but the com- 
puter time needed is much longer than that of algorithm B-1 as the prob- 
lem size increases. Finally it seems to make the application of algorithm 
B-2 worthwhile. 

The similar results are shown in table 6 for algorithm C-1 and C-2. 
To sum up, we can see that algorithm C-1 is a very efficient and satisfac- 
tory method when applied to the process plan sequencing problem. 

V. Conclusion 

An efficient method of solving problems of classification and selec- 
tion using minimum spanning tree in an FMS is proposed in this paper. 
Computer simulation examples an then provided which shows a satisfac- 
tory result. Especially, the total computational time spent is also econom- 
ical. The application of this method to these classes of problems will be 
quite promising. Ongoing research will be on considering the very flexi- 
bility nature of an M S  and then extending this method to solve more 
dynamic and general problems in an M S .  
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