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Abstract- In this paper parallel computation of manipulator forward dynamics

is investigated. Considering three classes of algorithms for the solution of

the problem, that is, the O(n), the O(n2), and the O(n 3) algorithms,

parallelism in the problem is analyzed. It is shown that the problem belongs

the class of NC and that the time and processors bounds are of O(log2n) andto

O(n4), respectively. However, the fastest stable parallel algorithms achieve

the computation time of O(n) and can be derived by parallellzation of the

O(n 3) serial algorithms. Parallel computation of the O{n 3) algorithms requires

the development of parallel algorithms for a set of fundamentally different

problems, that Is, the Newton-Euler formulation, the computation of the

inertia matrix, decomposition of the symmetric, positive definite matrix, and

the solution of triangular systems. Parallel algorithms for this set of

problems are developed which can be efficiently implemented on a unique

architecture, a triangular array of n{n+1)/2 processors with a simple

nearest-nelghbor interconnectlon. This architecture is particularly suitable

for VLSI and WSI implementations. The developed parallel algorithm, compared

to the best serial O(n) algorithm, achieves an asymptotic speedup of more than

two orders-of-magnitude in the computation the forward dynamics.

I. INTRODUCTION

The manipulator forward dynamics problem concerns the determination of

the motion of the mechanical system resultlng from the application of a set of

Joint forces/torques which is essential for dynamic simulatlon. The motivation

for devising fast algorithms for forward dynamics computation stems from

applications which require extensive off-line simulation as well as

applications which require real-time dynamic simulation capability. In

particular, for many anticipated space teleoperation applications, a faster-

than-real-time simulation capability will be essential_ In fact, in the

presence of unavoidable delay in information transfer, such a capability would

allow a human operator to preview a number of scenarios before run-time [I].

The forward dynamics problem can be stated as follows: Given the vectors

of actual joint positions (Q) and velocities (6), the external force (fE) and

moment (n) exerted on the End-Effector {EE), and the vector of applied joint
E
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forces/torques (_), find the vector of Joint accelerations [Q). Integrating

the vector of joint accelerations leads to the new values for O and Q, and the

process is then repeated for the next T. The first step in computing the

forward dynamics is to derive a linear relation (for the given manipulator

configuration described by the vector of Joint positions) between the vector

of Joint accelerations and the vector of applied inertial forces/torques.

Given the dynamic equations of motion as

ACQ)_ + C(Q, 6) + GCQ) + Jt(Q)F E = T (1)

and defining the bias vector b as

b = C(Q,Q) + G(Q) + Jt(Q)F E (2)

the linear relation is derived:

A(Q)Q = T-b = F (3)

where Q, 6, and Q are nxl vectors and F E, a 6xl vector, is a combined

representation of f and n . A(Q) is an nxn symmetric, positive definite,
E E

inertia matrix, and J is the 6xn Jacobian matrix (t denotes matrix transpose).

The bias vector b represents the contribution due to coriolis and centrifugal

terms C(fi, Q), gravitional terms G(Q), and the external force and moment.

Hence, in Eq. (3), F is the nxl vector of applied inertia forces/torques. The
bias vector b can be obtained by solving the inverse dynamics problem, using

the Newton-Euler (N-E) formulation [2], while setting the vector of joint

accelerations to zero. The computation of the vectors b and F represent the

common first step in any algorithm for solving the forward dynamics problem.

The proposed algorithms for the forward dynamics problem differ in their

approaches to solving Eq. (3), which directly affects their asymptotic

computation complexity. These algorithms can be classified as:

I) The O(n) algorithms [3]-[6] which, by taking a more explicit advantage of

the structure of problem, e.g., by using the Articulated-Body Inertia [3]-[4]
and recursive factorizatlon and inversion of the inertia matrix [5]-[6], solve

Eq. (3) in O(n) steps without explicit computation and inversion of the
inertia matrix.

2) The O(n 2) conjugate gradient algorithms [7, 10] which iteratively solve

Eq. (3) without explicit computation and inversion of the inertia matrix. The

conjugate gradient algorithm is guaranteed to converge to the solution in at

most n iterations which, given the O(n) computational complexity of each

iteration, leads to an overall O(n 2) computational complexity.

3) The O(n 3) algorithms [7] which solve Eq. (3) by explicit computation and

inversion of the inertia matrix, leading to an O(n 3) computational complexity.

However, any analysis of the relative efficiency of these algorithms

should be based on the realistic size of the problem, i.e., the number of

Degree-Of-Freedom (DOF), rather than the asymptotic complexity. In fact, the

comparative study in [3]-[4] shows that the O(n 3) Composite Rigid-Body

algorithm is the most efficient for n less than 12. It should be pointed out
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that efficiency of the O(n 3) and O(n 2) algorithms has been recently improved

[9]-[10]. However, despite these improvements, even the fastest O(n 3)

algorithm is far from providing the efficiency required for real-time or

faster-than-real-Lime simulation. This observation clearly suggests that the

exploitation of a high degree of parallelism in the computation is the key

factor in achieving the required efficiency.

The analysis of the efficiency of the different algorithms for parallel

computation is more complex than that for serial computation. In the next

section, the three classes of algorithms are analyzed based on their

efficiency for parallel computation and it is shown that the O(n 3) algorithms

are also the most efficient for parallel computation. However, parallelization

of the O(n 3} algorithms represents a challenging problem since it requires the

development of parallel algorithms for computation of a set of fundamentally

different problems, i.e., the N-E formulation, the inertia matrix, the
factorization of the inertia matrix, and the solution of triangular systems.

Lee and Chang [15] were first to investigate the computation of the

forward dynamics by parallelization of the O(n 3) algorithms. Considering an

SIMD architecture with n processors interconnected through a generalized-cube

network, a modified version of their O(log2n) algorithm in [16] and an O(n)

parallel version of the Composite Rigid-Body algorithm were developed for

computation of the N-E formulation and the inertia matrix. A parallel O(n z}

Cholesky algorithm and the O(n) Column-Sweep algorithms were also proposed for

the factorization of the inertia matrix and the solution of the resulting

triangular systems, leading to an O(n 2} complexity of the overall computation.

However, the main drawbacks of the proposed algorithms reside in the

complexity of the required interconnectlon network and the O(n 2) communication

complexity which mainly results from the excessive data alignment needed for

different algorithms.

In this paper, we present a set of efficient parallel algorithms for the

computation of the forward dynamics, using the O(n 3) algorithms, which can be

implemented on a two-dimensional array of n(n+l)/2 processors with a nearest

neighbor interconnection. The overall of communication complexity, even with
such simple interconnection structure, is limited to O(n} and no additional

data alignment between the computation of the different algorithms is

required, which further reduces the overhead in the parallel computation.

A new algorithm for computation of the inertia matrix is developed which,

though not efficienL for serial processing, achieves the best performance for

parallel computing in terms of both computation and communication complexity

while demanding simple architectural features for its implementation. The

parallel algorithm for computing the inertia matrix achieves the time lower

bound of O(log2n}+O{1} on the processor array. Synchronous data-flow parallel

algorithms are also developed for factorization of the inertia matrix and the

solution of the resulting triangular systems on the processor array.
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This paper is organized as follows. In Section II, parallelism and time and

processors bounds in the computation of the forward dynamics are investigated.

In Section III, parallel algorithm for computation of the inertia matrix is

developed. In Section IV, parallel computation of the bias vector and the

linear system solution are briefly discussed. Finally, some concluding remarks
are made in Section V.

II. PARALLELISM IN FORWARD DYNAMICS COMPUTATION

A. Time and Processor Bounds in the Computation

The analysis of time and processors bounds in parallel computation of a

given problem is of fundamental theoretical importance. It can determine the

inherent parallelism in the problem and the bound on the number of processors

required for exploiting maximum parallelism and achieving the time lower

bound in the computation. However, besides the theoretical importance, it can

also provide, as is the case for forward dynamics problems, useful insights

into devising more practical and efficient parallel algorithms (in the sense

of both computation time and number of processors) for the problem.

Let P denote the class of problems that can be solved sequentially in a

time bounded by a polynomial of the input size, n. Also, let NC (for "Nick's

class" [18]) stand for the class of problems that can be solved in parallel

in a time of O(log_n), for some constant k, with a number of processors

bounded by a polynomial of n. One open question regarding the complexity of

parallel algorithms is whether P = NC, which is thought to be very unlikely

[19]. It is clear that NC _ P. For k = 1, the time of O(log2n)+O(1) represents

the natural time lower bound in the computation. However, most of the

kinematic and dynamic problems in robotics belong to the class of NC [g].

Furthermore, it is possible to devise parallel algorithms which achieve the

time lower bound of O(log2n)+O(1) in solving these problems [8,14,16,17]. In

the following, we study the time and processors bounds in the computation of

the forward dynamics by different algorithms.

Using the N-E formulation, the bias vector can be computed in a time of

O(log2n)+O(1) with O(n) processors [15]-[16]. This implies that the time and

processors bounds in the forward dynamics computation are determined by those

in the solution of Eq. (3). Note that, with O(n) processors, the integration

of the computed Joint accelerations can be performed in a time of 0(I).

The solution of Eq. (3) by the O(n) algorithms results in a set of first-

order nonlinear recurrences which can be represented (at an abstarct level) as

X i = Ci + _2(Xi+1)/_z(Xi+ I) = Ci + _(Xi÷I) (4)

where C i is constant, _I and _2 are polynomials of first and second degree,

and deg _ = max (deg _I' deg _2) = 2. It is well-known that, regardless of the

number of processors, the computation of nonlinear recurrences of the form of

Eq. (4) and with deg _>I can be speeded up only by a constant factor

[20]-[21]. This is due to the fact that the data dependency in nonlinear
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recurrences and, particularly, those containing division, is stronger than In
linear recurrences [22]. Hence, the parallelism in the O(n) algorithms is

bounded, that is, their parallelization leads to the O(n) algorithms which are

faster than the serlal algorithm only by a constant factor. Note that a rather

simple model was used for presentation of the nonlinear recurrences of the

O(n) algorithms while they are far more complex than those usually studied
in literature, e.g., in [21]-[22] (see [8] for a more detailed discussion).

For the conjugate gradient algorithms in [7], [10], the computation of

each iteration, as is shown in [15], can be done in a time of O(log2n) with n

processors, leading to the O(nlog2n) parallel algorithms. This implies that

the parallelism in conjugate gradient algorithm is unbounded. Asymptotically,

however, the parallel conjugate gradient algorithms are slower than the best

serial algorithms, the O(n) algorithms, for the solution of the problem.

The inertia matrix can be computed in O(log n)+O(1) steps with O(n 2)

processors [8], [11], [13]. The implication of this result is that it further

reduces the analysis of the time and processors bounds in the forward dynamics

problem to that in a more generic problem, the linear system solution. Csanky

has shown that the linear system can be solved in O(1og_n) steps O(n 4 )with

processors [23] This implies that the forward dynamics problem belongs to
the class of NC. Note that, using Cramer's rule, the linear system solution

can be computed in O(log n) steps with O(n!) processors [20]. But such a

result has neither theoretical nor practical importance.

However, Csanky's algorithm is unpractical since, besides using too many

processors, it is numerically unstable [25]. The best stable algorlthms for

linear system solution achieve a time of O(n) with O(n 2) processors [24]-[25].

Hence, parallelization of the O(n 3) algorithms results in the stable O(n)

parallel algorithms with O(n 2) processors, which indicates an unbounded

parallelism.

The above analysis shows that the forward dynamics problem belongs to the

class of NC and that the best known upper bounds on the time and processors

are O(log_n) and O(n4), respectively. Practically, however, the fastest (and

stable) parallel algorithm for its computation is of O(n). With respect to
these results the main question is, given the fact that both the serial O(n)

and O(n 3) algorithms result in the O(n) parallel algorithms, which one is more

efficient for parallelization?

Let _In+_l denote the polynomial complexity of the serial O(n) algorithms.

There is a limited parallelism in both coarse grain and fine grain (in

matrix-vector operation) forms in these algorithms [8]. Exploitation of this

parallelism leads to the parallel algorithms with polynomial complexity as

a2n+_2 where, due to the limited parallelism, al is reduced to a2 only by a

small factor. Furthermore, exploitation of both coarse and fine grain

parallelism requires additional architectural complexity. For the O(n 3)
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algorithms, the polynomial complexity of the resulting parallel O(n) algorithm

is of the form a3n+_3[log2n1+_3 where a3 is smaller than aI by more than two

orders-of-magnitude. As a result, while the algorithm is asymptotically faster

than the serial O(n) algorithms and their parallel versions by a high constant

factor, it is also more efficient for small n. The price to be paid for this

efficiency, of course, is an architecture with O(n 2) processors. However, the

efficiency of the parallel algorithm and the suitability of the architecture

for VLSI and WSI implementation strongly support the choice of O(n 3)

algorithms for parallel computing.

III. PARALLEL COMPUTATION OF INERTIA HATRIX

A. Basic Algorithms for computation of inertia matrix

From Eq. (3) the elements of the inertia matrix can be computed as

a = a = F (5)
tj jl j

for the condition given by

_l = l and _k_l = 0 For k 2 n (6)

Two physical interpretations can be thought for the above condition, with each

interpretation leading to a distinct class of algorithms as

I) The first i-I links do not have any motion, that is, they are static, and

the accelerations and the forces/torques of the last n-i+l links result from

the unit acceleration of link i. This interpretation leads to the first class

of algorithms, designated as the class of Newton-Euler Based (NEB) algorithms,

in which the diagonal and lower off-diagonal elements of the inertia matrix

are computed. In [7] an algorithm of this class is presented, designated as

the Original NEB (ONEB) algorithm, which computes the inertia matrix by
successive applications of the N-E formulation.

2) The last n-i+l links can be considered as a single composite rigid

system, since they do not have any relative motion, which is accelerating in

space, leading to the exertion of forces and moments on the first i-I static

links. This interpretation leads to the second class of algorithms, designated

as the class of Composite-Rigid Body (CRB) algorithms, in which the diagonal

and upper off-diagonal elements of the inertia matrix are computed. In [7] an

algorithm of this class, designated as the Original CRB (OCRB) algorithm, is

presented in which the center of mass and the first and the second moment of

mass with respect to the center of mass of a set of composite systems are

computed.

The comparative study in [7] shows that the OCRB algorithm achieves a

significantly greater efficiency over the ONEB algorithm. In [8]-[9], we have

developed an algorithm, designated as the Variant of CRB (VCRB) algorithm,

which avoids the redundancies in the OCRB algorithm and represents the most

efficient algorithm (to date) for computing the inertia matrix. Note that,

however, due to the symmetry of the problem, both interpretations and hence

both classes of algorithms should lead to the same results and computational
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Fig. 1. Comparison of different algorlthms for computation of inertia matrix

efficiency. In [8]-[9]° we have shown that, by introducing or reducing the

redundancy in the computation, the algorithms of the two classes can be

transformed to one another and, particularly, to the most efficient one, the

VCRB algorithm. Figure 1 shows the relative serial efficiency of and

redundancy in different algorithms.

Although the results presented in Fig. 1 answer the question of the

serial efficiency of different algorithms, it does not indicate which

algorithm provides the most suitable features for parallelization. For serial

processing, removing any redundancy increases the computational efficiency.

For parallel processing, however, depending on its impact on the data

dependency in the computation, this may increase or decrease the efficiency.

The fact that arbitrary algorithms can be developed by introducing or removing
different types of redundancy in the computation represents an additional

degree-of-freedom that can be exploited to derive an algorithm which, though

perhaps not efficient for serial computing, is the most suitable for

parallelization. In [8], [12], we have shown that the NEB algorithms are more

suitable for parallel computing than the CRB algorithms. In fact, they not
only achieve a better computational complexity {in the parallel sense} but

also require a less complex communication and synchronization mechanism. This

better efficiency for parallelization mainly results from the fact that the

evaluation of the columns of the inertia matrix by the NEB algorithms is order

independent and hence can be done in parallel.

B. A Variant of Newton-Euler Based (VNEB) Algorithm

Four different types of redundancy can be recognized in the ONEB algorithm,
which can be eliminated, respectively, by [8], [9], [13]:

1) Choosing a more suitable coordinate frame for projection of the equations.

2) Optimizing the N-E formulation for the condition given by Eq. (6}.

3) Using a more efficient variant of the optimized N-E formulation.

4} Introducing a two-dimensional recursion in the computation.

Note that the first redundancy resides in the extrinsic equations and

results from the choice of coordinate frame for projection of the intrinsic

equations while the second, the third, and the fourth redundancies reside in

the intrinsic equations and are inherent in the formulation. As stated before,

by removing all redundancies in the intrinsic equations, the ONEB algorithm

can be transformed to the VCRB algorithm. However, removing any type of

redundancy in the NEB algorithms, as far as the order independence property
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is preserved, will also increase the efficiency of their parallel versions.

In this regard, only the removal of the fourth redundancy, which leads to the

introduction of a two-dimensional recurslon in the computation, results in the

loss of the order independence property of the algorithm. In the following, a

Variant of the NEB algorithm, designated as the VNEB algorithm, is presented

which is developed by removing the first three redundancies.

The derivation of the Variant of N-E Based (VNEB) algorithm is fully

discussed in [8],[9], [12], [13]. Here, for the sake of completeness, a brief

description of the algorithm is given. The algorithm is presented by the

intrinsic equations. In this paper, according to the Gibbs notation, vectors

are underlined once and tensors (tensors of order 2) twice. Also, in order to

simplify and, partlcularly, unify the derivation of the serial and parallel

algorithms, a set of notations, given in Table I and Fig. 3, are used. The

VNEB algorithm is then written as

For i = I, 2 ..... n

For J = i, i+I ..... n

__(J,i)= _zCi) (7}

_V(J,i) = _V(J-l,i) + _(J,l)xP_(J,J-l) = __(J,l)xP(J,l) (8)

_F(J+I,J,I} = M(J)_V(J,i} + __(J,i}x_H.(J} (9}

N_(j+I,j, i} = K(J)__(J. i} (IO}

For J = n, n-I ..... i

E(n+l,J,l) = F(J+I,J,I) + E(n+1,J+l,i) (11)

N_(n+l,J,l} = N_(J+I,J,i) + N(n+l,J+1,1} + P_(J+1,J}xE(n+l,J+l ,i} (12}

with F(n+1,n+1,1) = N(n+1,n+1,1) = 0

a = Z(J). N(n+1, J+1, i) (13)
Jl

C. Parallel Algorithm for Computation of Inertia Matrix

The serial computational complexity of evaluating the inertia matrix Is

of O(n2). No serial algorithm can achieve a better asymptotic complexity

since, given n inputs (Joint positions}, the evaluation of the O(n 2) outputs,

the elements of the inertia matrix, requires O(n 2) distinct steps in the

computation. Based on the VCRB algorithm, we have already shown that the

inertia matrix can be computed in O(log2n)+O(1) steps with O(n 2) processors

[8], [11]. It is interesting to note that not only the same bounds on time and

processors can be much more easily derived by parallelizatlon of the VNEB

algorithm but also the resulting parallel algorithm, compared to the parallel

VCRB algorithm, reduces the coefficients on the polynomial complexity.

For the implementation of the parallel algorithm achieving the time lower

bound, we consider a two-dimensional array of n(n+l)/2 processor-memory

modules represented as PR , for i = I, 2 ..... n and J = i. i+1 ..... n
lJ
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(Fig. 3 shows the array for n = 6). For the parallel algorithm, the equations

are projected onto the EE coordinate frame, coordinate frame n+l. An n DOF all

revolute Joints manipulator is considered for which the joint variables are

the joint angles, that is, Q] = ej. It is assumed that the joint variables O]

_r SOj and CO]) and constant parameters S_}, C_j, J+IP(J+I,J), J*IH(j),

]÷IK(J), and M(J) reside in the memory of all processors of Row j. The

analysis of the mapping the algorithm onto the architecture of Fig. 3 is fully

presented in [12]. Here, due to the lack of space, we only give the a brief

description of the algorithm in terms of its computational steps and cost.

For the parallel algorithm, the ith column of the inertia matrix is

computed by the processors of the ith column of the processor array. The fact

that _(j,i) = Z(i) for j = i, i+l ..... n, implies that global communication

of Z(i) among the processors of the ith column is required. This requirement

can be avoided by introducing two recurrences as

_(j,i) = _(j-l,i) = Z(i) (14)

P(j,i) = P(j-l,i) + P(j,J-I) (15)

Equation (14) does not need any computation while, for the parallel algorithm,

the computation of Eq. (15) is required. By computing Eqs. (14)-(15) as a set

of coupled recurrences, the terms m(j-l,i) can be considered as the data

associated with Eq. (15). Using such a scheme increases the communication

complexity of parallel evaluation of Eq. (15) but will result in the global

distribution of Z(i) among the processors of the ith column. The computation

of the parallel algorithm is then performed as follows.

Step 1:

I) Parallel compute R(J+I,J) by all processors of the jth row.

For j = 1, Z ..... n

For i = I, 2 ..... j

PR : R(J+I, j) (16)
]i

21 Parallel compute R(n+l,J) by processors of the ith column.

For i = I, 2 ..... n

For j = i, i+l ..... n

For D = 1 step I until [log2(n+l-J) ], Do

m(j+2 _,j) = R(n+l,j)

R(J+2 _,j) = R(n+l,j) = R(n+I,J+ZD-I)R(J+2 D-I,j)

R(J+2 _,j) = R(j+2 _,j+z_-I)R(j+2 _-1,j)

EndDo

3) Rotate R(n+l,j) by processors of Row j to the processors of Row j-l.

For j = I, 2 ..... n

Fori=l, 2 ..... j

PR : R(n+l,j+l) (18)
]i

(17)

j+2D>j+Z_-Imn+l

j+2Dmn+1>j+2 D-_

n+l>j+2D>j+2 D-I
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with R(n+l,n+1) = U (Unit Matrix)

Note that, as the result of the above data transfer, both the terms R(n+1,j)

and R(n+1,j+l) reside in the memory of all the processors of the jth row.

4) Parallel compute n+Iz{J), n÷Ip(J+l,J), n+lH(j), and n÷IK(j) by all the

processors of the Jth row.

For j = I, 2 ..... n

For i = I, 2 ..... J

n+l_-
a) PR : Z[j) = R(N+I,J)Jz(J) (19)

]i

with JZ(J) = [0 0 I]t

n+Ip , = , ,b) PR : (J+1 J) R(n+1J+I)J+Ip(J+I J) (20)
]i

with J+IP(j+I,j) = [ai diS_ i diC=i] t

n+l- -
c) PR : H(j) = R(n+I,J+I)J+IH(J) (21)

]i

n+IK( j =d) PR : ) R(n+I,J+I)J÷IK(J)R(J+I,n+I) (22)
]l

Note that for the processors of the nth row Eqs. (21)-(22) do not need any

computation since the terms n+lH(n) and n+lK(n) are given constant parameters.

As the result of the computation of Step 1, all the vectors and the tensors

are projected onto the coordinate frame n+l. In the following, the absence of
superscripts denotes that the computations are performed in this frame.

Step 2:

1) Parallel compute P(J,I) and 6(J,1) by processors of the Ith column.

For i = I, 2, ..., n

For J = i, I+1 ..... n

For n = I step I until [log2(n+1-J)], Do

_(J+2n, i) = _(j-2_,i) = Z(i)

P(j+2W, J) = P(i,j)

P(J+2W, J) = P(i,j) = P(I,j+2 W-I) + P(J+2W-*,J)

P(j+2n, j) = p(j+2n j+2 _-I) + p(j+2n-l,j)

End Do

(23)

j+2n>j+2n-lz i

J+2nzi>J+2 n-* (24)

i>j+2n>j+2 n-1

2) Parallel compute V(j,i), F(J+l,J,i), N(J+1,J,i) by processors of the ith
column.

For i = I, 2 ..... n

For J = i, i+I .... n

PR : _'(j,l) = (_(J,l)xP(j,l) (25)
}i
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PR : F(J+l,J,i) = _(J,i)xH(J) + M(J)V(J,I) (26)
Jl

PR : N(J+I,J,i) = K(J)_(J,i) + H(J)xV(J,I) (27)
Jl

Step 3:

I) Parallel compute F(n+l,J,l) and N(n+1,j,l) by processors of the ith column.

For 1 = I, 2 ..... n

For J = I, I+I ..... n

For _ = I step I until rlog2(n+1-J)], Do

F(J+2@,J,I) = F(n+l,J,l)

F(J+Z@,J,I) = F(n+1,J,l) = F(J+2_,J+2@-I,i)+F(j+2@-I,J,I)

F(J+2@,J,I) = F(j+Z_,j+2@-I,I)+F(J+2D-I,j,I)

End_Do

For _ = 1 step 1 until rlogz(n+l-J)], Do (29)

N(J+Z_,J,I) = N(n+l,J,l) J+Z_>J +2_-l_n+l

N(J+2n, J,l) = N(n+l,J,i) = N(n+I,J+2@-I,I)+N(J+2_-I,j,I) +

p(j+Z_-l,j)xF(n+1,j+2@-1,1)

N(J+Z@,J,I) = N(j+Z@,j+Z_-I,I)+N(J+Z@-I,J,I)+

p(j+2@-l,j)xF(J+2_,J+2_-x,i)

(28)

j+2_>j+2_-l_n+1

j+2_>n+l>J+2 _-I

n+1>j+2_>j+2 _-I

J+2_->n+ 1>j+2 _-I

n+l>J+2@>j+2 _-I

End_Do

2) Parallel compute ajl by PRjI.

For I = I, 2 ..... n

For J = I, 1+1 .... n

PR : a = Z(j).N(n+I,J,I) (30)
jl jl

As stated before, the time lower bound in, as well as the Computational

cost of, parallel evaluation of the inertia matrix, using the VNEB algorithm,

is determined by that of the parallel evaluation of the first column of the

inertia matrix. In other words, the computational cost of the n recurrences in

Eqs. (17), (23), (24), (28), and (29) is determined by that of the largest

ones, i.e., for i = I, which are of size n. Furthermore, the computational

cost of all the O(n 2) terms in Eqs. (16), (19)-(22), (25)-(27), and (30) is

determined by the cost of one term since for each column n terms are computed

in parallel and the computation for n columns, as will be discussed later, is

overlapped. Let m and a denote the cost of multiplication and addition,

respectively. The computational cost of the parallel algorithm is then

evaluated as follows:
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Step 1: The cost of Eq. (161 is 4m; The cost of Eq. (17) is (27m+18a)[log2n];

Eq. (18) represents a simple data rotation; Eq. (19) does not need any

computation; The cost of Eqs. (20), (21), and (22) is (9m+6al, (9m+6a), and

(54m+36a), respectively. The cost of this step is (27m+18a1[log2nl+(76m+48a).

Step 2: Eq. (231 does not need any computation; The cost of Eq. (24) is

(3a)[log2n]; The cost of Eqs. (25), (26), and (26) is (6m+3a), (9m+6a), and

(15m+12a), respectively. The cost of this step is (3a)[log2nl+(30m+21a).

Step 3: The cost of Eqs. (281 and (29) is (3a)[log2n ] and (6m+9a)[log2n],

respectively; The cost of Eq. (30) is (3m+2a). The cost of this step Is

(6m+12a)[log2nl+(3m+2al.

Adding the cost of Steps 1-3, the computation cost of the algorithm Is

obtained as (33m+33a)[log2n]+(109m+71a). As stated before, mapping the

developed parallel algorlthm onto the processor array is fully presented in

[12] where it is shown that, even using a simple nearest neighbor

Interconnectlon structure, a communication complexity of O(n) can be achieved.

Also, the mechanisms for global and local synchronization for the processor

array are presented. Figure 4 shows the resulting dlstrlbutlon of the

elements of the inertia matrix among the processors.

IV. PARALLEL COMPUTATION OF N-E FORMULATION AND SOLUTION OF LINEAR SYSTEM

As stated before, the bias vector can be computed by evaluating the N-E

formulation while setting the vector of joint accelerations to zero. We use

the parallel algorithm presented in [15] for computing the bias vector. This

computation is performed by the processors of the first column with the

equations being projected onto the frame n+i. Therefore, the results of the

computation of the first step except Eqs. (21)-(22) can be used while, similar

to the terms n+*K(J) in Eq. (22), the terms n+*J(Jl, for J = 1, 2 ..... n, are

also needed to be computed by the processors of the first column. The cost of

evaluation of the vector r is then obtained as 15a[log2nl+(141m+101a). With

the nearest neighbor interconnection among the processors of the first column

a communication complexity of O(n) is achieved. In order to achieve the proper

sequencing of the computation of the inertia matrix, the bias vector, and the

linear system solution, a data-drlven mechanism can be employed. That is, the

processors of all columns, except the processors of the first column, by

completion of the computation of their corresponding column of the inertia

matrix enter the wait state while the processors of the first column start the

computation of the bias vector and the vector F. The activity of the

processors of column 2 through column n in linear system solution is triggered

by receiving the corresponding data and by the completion of the computation
of the vector F.

Figure 4 shows the organization of the data resulting from the computation

of the inertia matrix and the vector F. Given this data organization, we have

developed synchronous data-flow parallel algorithms for the full solution of

Eq. (3), that is, for decomposition of the inertia matrix, using the square-

root-free variant of the Cholesky factorization, and the solution of the
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resulting lower and upper triangular linear systems, which are presented in

detail In [12]. The computation cost of the solution of Eq. (3) is obtained as

(n-1)(3m+2a)+(lm+la), where the cost of division and multiplication is taken

to be the same. A communication complexity of O(n) is also achieved.

Adding the cost of evaluation of the inertia matrix, the bias vector and

the vector F, and the linear system solution, the computational cost of the

forward dynamics problem is obtained as (3m+2a)n+(33m+48a)[log2n]+(238m+171a).

The computational cost of the best serial O(n) algorithm, the Articulated-Body

algorithm [3]-[4], is evaluated as (380m+302a)n-(198m+173a) [15]. If the time

of muitiplication and addition is taken to be the same, then, for n = 6, the

developed parallel algorithms achieve a speedup of 6 compared to the best

serial O(n) algorithm. Note, however, that as n increases, e.g., for redundant

manipulators, the speedup also significantly increases. To see this, let us

write the computational cost of the serial O(n) algorithm and the parallel

algorithms as 682n+0(1) and 5n+O(log2n)+O(1), with the time of multiplication

and addition taken to be the same. It can be seen that, asymptotically, the

parallel algorithms achieve a speedup of more than two orders-of-magnitude.

For small n, the computational cost of the parallel algorithms is dominated by

the _logzn]-dependent and constant terms on the polynomial complexity. Hence,

for small n, the computational complexity of the developed parallel algorithms

can be practically considered as O(logzn)+O(1).

V. CONCLUSION

We developed a set of parallel algorlthms for computing the forward

dynamics problem. These algorithms exploit a high degree of parallelism in

the problem and achieve a significant speedup in the computation. Furthermore,

they can be efficiently implemented on a two-dimensional array of processors

with a nearest neighbor interconnection. This architecture is particularly

suitable for practical implementation using VLSI and WSI technologies. Due to

their simple architectural requirements, these algorithms, with some

modifications, can also be efficiently implemented on rather more

general-purpose architectures, e.g., a two-dimensional array of Transputers.

A key factor in our approach to the parallel computation of the forward

dynamics is the minimization of the resulting overhead. The overall

communication complexity is of O(n). The overhead is further minimized since

there is no need for any data alignment between the computation of different

algorithms and the intermediate data resulting from the different algorithms

are generated and consumed within the array. Also, the final result of the

computation, that is, the vector of joint accelerations, is computed by the

processors of the first column. Therefore, they can be output using the same

channels for inputting the data to the array (Fig. 5). This is particularly

critical for VLSI and WSI implementation since, by using only n bidirectional

Input/Output channels, the number of required pins is kept small.
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Zi+l

Fig. 2. Link, Frames, and Kinematic and Dynamic Parameters.

di & a Length, Distance, and Twist Angle of link i, respectively.al' ' i

Q" Q & _i Position, Velocity, and Acceleration of 5oint i respectively.1' |'

M(i) Mass of link i.

J(i) Second moment of mass of link i about its center of mass (C).
i

H(i) First moment of mass of link i about point O .
i

K(i) Second moment of mass of link i about point O .
i

Z(i) Axis of joint i

P(i,5) Position vector from point O to point O .
j i

R(i,5) A 3x3 matrix representing the orientation of coordinate frame j

with respect to coordinate frame i.

_(i,5) Angular acceleration of link i resulting from the unit

acceleration of joint 5.

V(i,5) Linear acceleration of link i (point O ) resulting from the unit
i

acceleration of joint J.

F(k+l,i,5) Force exerted on point O due to the acceleration of links i
l

through k, i.e., the links contained between points O and Oi k+!'

resulting from the unit acceleration of 5oint J.

N(k+l, i,5) Moment exerted on point 0 due to the acceleration of link i
i

through k, resulting from the unit acceleration of joint J.

Table I. Notation used in derivation of serial and parallel algorithms
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FIGURE 3. A Two-DIMENSIONAL PROCESSOR ARRAY (A) DATA INPUT TO
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FIGURE 4. ORGANIZATION OF DATA

RESULTING FROM COMPUTATION OF THE
INERTIA MATRIX AND THE BIAS VECTOR.

FIGURE 5. DATA OUTPUT FROM

PROCESSOR ARRAY.
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