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ABSTRACT

Due to their kinematics, car-like mobile robots cannot follow an arbitrary path. Besides
obstacle avoidance, the path planning problem for such platforms has to satisfy two
‘additional constraints: a lower bounded radius of turn, and a non holonomic constraint.
When the robot is not circular, precise maneuvering always implies working in' the
configuration space of the vehicle. Due to the complexity of the problem, the planning of
a path involves computer intensive methods, and rarely allows for real time applications.

However, in a convex polygonal cell, maneuvering can be comgletely handled within
geometric reasoning. In this simplified environment, joining two configurations may require
maneuvers only at the beginning and at the end of the trajectory. The method consists of
computing the possible maneuvers either starting frorn the initial configuration, or arriving
at the final configuration. Just a few boundary configurations have to be checked to avoid
collision. Maneuvers related to the initial configuration and to the final configuration can
be connected by a straight trajectory because of the convexity of the cell, which allows
precise maneuvering computation, without using the whole configuration space.

We describe a general environment by means of a graph connecting overlapping convex
cells. To find a path between two configurations, the graph is searched in order to list the
cells that have to be traversed. Then, intermediate configurations are computed inside the
intersection of two adjacent cells. Finally, the trajectories generated inside each cell are
assembled to produce global collision free paths in complex environments.

I. INTRODUCTION

Path planning for an autonomous mobile robot often leads to working in the a imissible
configuration space, in other words, in the set of collision-free configurations of tie robot.
However, the method consisting of growing the obstacles so that any arc within the
remaining space should be a collision-free trajectory, can obstruct some passages, and
does not allow for precise maneuvering. In constrained area, an approach which takes into
account the shape and orientation of the robot, is the only possible one, even if it involves
much more computer intensive methods, due to the difficulty of representation and search
of the configuration space. ‘

Demonstration robots or surveillance robots often have holonomic motion system, i.e.
any infinitesimal variation of their configurations is achievable. Therefore, they can perform
any trajectory in their admissible configuration space. However, sturdy mobile robots often
feature kinematic constraints that further complicate the path planning problem. This

kind of platforms can only achieve a subset of the set of arcs included in their admissible
configuration space. ‘
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J. P. Laumond proved that a mobile robot with a non-holonomic constraint such as
a car like-robot, remains fully controllable [1]. It means that it is possible to join two
configurations located in the same connected component of the admissible configuration
'space by means of a collision-free trajectory respecting the car-like robot kinematics.
Although it is an important theoretical result, the proof given by Laumond does not
provide a realistic trajectory because of the number of maneuvers involved. ‘

The aim of this paper is to present a new navigation algorithm for car-like robots.
The novelty of the method is that it allows for accurate and efficient maneuvering, while
remaining very fast and suitable for real time applications. :

The first part of this paper discusses a set of liypotheses that enaule us to design
trajectories in the admissible configuration space of the robot without requiring prohibitive .
computations. In the second part of the paper we describe an algorithm generating
collision-free trajectories and maneuvers in a convex polygonal cell. Using the previous
results, we present in the last section of the paper a global navigation algorithm together
with its computer simulation. ‘

II. STATEMENT OF THE PROBLEM

We address the problem of path planning for car-like robots. Among the numerous
papers that have investigated the path planning problem, few mentioned the type of robots
they consider from a kinematic point of view. This feature can be disregarded for holonomic
robots, but many actual robots have a motion system that turns them into non-holonomic
vehicles. The usual paradigm of path planning which is the “piano movers problem”, is
irrelevant in vhis case since we have constraints on the type of movements which can be
made. ’

A car-like mobile robot is a front-wheel-drive four-wheel vehicle. We denote by L the
distance between the 2 axles of the wheels, by 6 the angle between the major axis of the
robot and the x axis of the absolute reference frame, by ¢ the steering angle (i.e. the
orientation of the front wheels with respect to the major axis of the robot), by M the

I;iddlt)a of the axle of the rear wheels, and by N the middle of the front wheels axle (see
ig. 1). ' ~

Fig.1: Radius of curvature of the trajectory of M.
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There are two main kinematic constraints for this type of robots. The first one comes

from the fact that we assume no slippage of the wheels. Therefore the direction of the
velocity of the icar axle is that of the vehicle: '

dzy dym B
‘dt‘sm9— i cosf =10
Since -
{xN=:rm+Lcosﬂ
YN =ym + Lsinf
we have ‘
-—d:L'N .v dva - : -
7 sin 6 + o cos §—L6=0 . (1)

Equation (1) involves the velocity of the robot, but since it is not integrable it does
not affect the coordinates of the robot themselves [2] This constraint is therefore a non
holonomic constraint. ,

The second constraint concerns the steering angle of the front wheels. If the steering
angle is constant, the vehicle moves along a circle. Since the steering angle of a car-like
robot is limited, the radius of the circle is always greater than a certain value Rpmin which
is the minimum radius of curvature of any achievable trajectory. Figure 1 provides the
expression of the value of R, the radius of curvature of the trajectory along which the
- vehicle is moving, as a function of the steering angle. Therefore,

L
SN @rmgz

As well as the kinematics, the size and shape of the vehicle are also often ignored in
many path planning algorithms. The most common approach is to grow the obstacles and
to design a trajectory as if the robot were a point. For the case of a circular autonomous
robot this method is quite accurate [3]. The accuracy is due to the fact that the map of
the free space that is obtained by an isotropic growth of the obstacles by the radius of the
robot coincides with the admissible configuration space of this particular robot. However,
few actual platforms are circular; the only assumption that will be made in this paper is
that the robot can be modeled by a polygon the vertices of which we denote by (Ri)i<icn
so that [R;, Ri+1] should be an edge of the robot for every i in {1..n} and (Rn4+1 = R)).
Building the configuration space is much more difficult with a polygon shaped vehicle than
with a circular shaped one and the representation of the admissible configuration space
becomes much more complex [4]. :

In this paper, we assume the environment to be known and described by polygons. The
navigation algorithm requires a decomposition of the environment that will be explained
in the third section. Additionally, dynamics and control are not explicitly addressed as
the basis of our approach lies in the geometric and kinematic aspect of the problem.

|R| 2> Rmin =
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III. CAR-LIKE ROBOT MANEUVERING IN A CONVEX CELL

As mentioned in the previous section, working in the admissible configuration space
of a non circular robot is extremely numerically intensive and rarely allows for real time
applications. However, different attempts have been made in order to simplify the problem.

. Lozano-Perez proposed to discretize the orientation of the robot, and to compute the
configuration space corresponding to each orientation [6]. Once the conﬁguratxon space
has been built this way, it still must be sear¢hed in order to find a possible path. ‘

Another approach described by Barraquand and Latombe [6] consists of 'discretizing

-the whole configuration space of the robot (i.e. orientation and position), and performing
a dynamic search in the discretized configuration space, with the number of maneuvers as
a cost function. Both methods have the common drawback of trading off accuracy and
computational cost.

‘We describe below a new method generating the maneuvers reqmred for a car-like
robot to join two configurations by a collision-free trajectory, respecting the kinematic
constraints of the platform. Our method takes explicit advantage of (i) the partitioning
of the environment in convex cells and (ii) the use of predefined trajectories, and thus
avoids the time consuming search usually reqmred to compute a path. The difference
between the previous methods mentioned and ours is that by partitioning the environment
in convex cells, we can globalize the search for trajectory, and realize the trajectory with
large segments and arcs instead of minute increments. This is an important time saving
feature. For this first step, the environment is simplified; namely, we assume that the
robot has to move inside a polygonal convex cell. We explain in the next paragraph how
this result can be generalized to @ polygonal environment. ‘

A convex cell is a region of a two-dimensional plane bounded by line segments such that
the angle between each adjacer " pair of lines is less that 180° (as measured fruin inside the
polygon). Convex cells have t} ¢ property that any interior point can be reached from any
other interior point by a stra’ ght line which is entirely in the cell. Thus, inside a convex
cell, a mobile robot can travel between any two configurations on a same siraight line and
with the same orientation by a single straight line motion. This property makes convex
cells an interesting representation of the environment for path planning purpose. It can be
noticed that in a convex cell, the polygonal descmpt]on of the robot can be replaced by its
convex envelope (the smallest convex polygon containing the robot), without affecting the’
generality of the algorithm. This may simplify the descrlptlon of the vehicle, and reduce
the execution time of the algorithm.

Let us denote by C the convex cell in which the robot has to move. The cell C can be
a room or simply an area limited by obstacles. C is assumed to be convex.

We denote by (Ci )1<.<,, the extremities of the segments limiting the cell, so that
[Ci, Ci41] should be an edge of the cell for every i in {1..n} (Cpy; = Cy).

The particular geometry of the environment provides the followmg straxghtforward

- result that is used in the design of the trajectory.

Proposition:

~ A configuration is admissible (i.e. collision-free) if and only if all the vertices of the robot
are inside the cell. '

M



Proof:
If
Vi € {1.m},R; € C,
| ﬂheﬁ | ‘
7 € {1..m}, [R,’,R.‘+1] € ,C

because C is convex. Therefore the configuration is admissible. The reciprocal is obvious.
' Because of this result, we can tell if a path is collision-free only by checking that at
any morient, the vertices of the robot remain inside the cell.
In such a simple cnvironment, the only problem that can occur is when there is not
- enough space for the robot to reach its desired orientation. Maneuvering and backing up
must then be considered. We described in a previous paper a method to join two given
configurations of a car-like robot [2]. No obstacle was taken into account; therefore, when
there is enough space in the cell, this method can be used easily. If the vehicle moves with
a constant steering angle, the trajectory performed is a circle. For a given configuration
of the vehicle, a circle can be drawn on both sides of the platform, corresponding to the
trajectory achieved when the steering angle of the front wheels is maximum. The radius of
these circles is Ry, the minimum radius of curvature allowed on any achievable trajectory.
Therefore, an optimal trajectory must avoid these circles to avoid additional maneuvering. -
In order to find a short path providing a continuous orientation for the vehicle, a circle
related to the initial configuration and a circle related to the final configuration must be.
- connected by a straight line segment, tangent to the circles. Generally, since there are
four pairs of circles, there are sixteen such tangents. Only eight correspond to compatibly
oriented circles. This method is particularly interesting in our case because it provides
a family of possible trajectories. The shortest one may not be collision-free but another
one can be available that remains within the admissible configuration space (see Fig. 2).
However, this is the easy case, in which at least one of the eight trajectories is collision-free.

Fig 2 One of the aight basic trajectories Is collision-free.
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The method can be adapted to the case in which maneuvering is required, i.e. when it
is impossible to find a common tangent to two circles inside the cell (see the configurations
in Fig. 5). In this case, the circles of minimum radius of curvature are not entirely inside
the cell. The vehicle can move only along arcs of circles before colliding with an edge of
the cell. The length of the arcs is determined by checking the trajectories of all the vertices
of the robot, since it is only with a vertex that the collision can occur. When the steering
angle of the wheels is maximum, all the vertices move along circles that have the same
center but different radii. Therefore, it is easy to compute the boundary configurations on
the circles of minimum radius of curvature (see Fig. 3). ‘

'Fig. 3 : Computation of the boundary configurations. Fig 4:

Computation of the boundary configuration atter maneuvering.

Once the vehicle has reached the extremity of the arc, it has to turn the front wheels
to the opposite steering angle and reverse its velocity. Then, it moves along another arc of
circle, tangent to the first one, inside the cell (see Fig. 4). The boundary configuration on
this new arc is computed using the same method as for the first arc. Once the extremity
of the new arc is reached, the same maneuver can be performed. The method consists of
finding a common tangent to an arc related to the initial configuration and an arc related
to the final configuration. If a tangent is found that provides the right orientation, a
collision-free trajectory has been designed (see Fig. §): the arcs of circle have been checked
for collision, and the segment joins two collision-free configurations on a same straight line.
The simplification of the environment enables us to avoid the computation of the whole
admissible configuration space. Only the computation of a few admissible configurations
is necessary. This algorithm is particularly suitable for mobile manipulators. Indeed,
the problem for these vehicles is that their geometry is variable: the manipulator can
be extended and may overlap the frame of the vehicle. Unlike methods in which the
configuration space is completely computed beforehand, changes in the vehicle geometry
can be taken into account. All we have to check is the vertices of the vehicle. By checking
also the vertices of the manipulator, we can handle the problem of variable geometry. The
search of the path is done by checking first the potential paths requiring maneuvers at the
end of the trajectory (see results of the simulation in Fig. 10). Indeed, the inaccuracy on
the final configuration involved by the maneuvers is increased if the maneuvers occur at the
beginning of the trajectory. One can notice that the algorithm can be parallelized. Sixteen
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computations can be run simultaneously corresponding to the pair of circles considered, and
the way the robot moves along them (backward or forward). However, the implementation
we made of this algorithm proved that the computation of a very complex trajectory (20
maneuvers) takes a few milliseconds; the parallelization is therefore irrelevant except for
more complex situations such as combined motion and manipulation.
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IV. PATH PLANNING FOR A CAR-LIKE ROBOT IN
‘A GENERAL POLYGONAL ENVIRONMENT

In this section we extend the results obtained for one polygonal cell to a more general
environment. Namely, the environment is now assumed to be a polygon containing
polygonal obstacles., Such an environment can always be partitioned Enot uniquely!)
in convex polygonal cells. The partitioning itself may be relevant for some particular
applications. Choosing one partitioning over another will then have to do with satisfying
additional constraints or finding the extremum of certain functionals related to the problem
at hand. We chose the method developed by Crowley [7]. The reason of this choice is that
this method features some results of optimality concerning the size of the cells. It provides
a partitioning with a reasonable number of cells with reasonable sizes. This is of great
interest since in order to be useful, a cell must be large enough to accommodate the
vehicle. The convex cells are defined by an algorithm that divides the navigable space
with segments originating at each vertex which is convex with regard to the navigable
space. At each convex vertex, two segments are computed by projecting the segments
which make up the vertex. A third segment is projected to the nearest visible vertex. The
shortest of these three segments is selected as an edge of a cell. The algorithm continues
until no convex vertex remains without being associated to a cell boundary (see Fig. 6).

y—
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Then one can build a graph connecting the adjacent cells through which a path is
possible. According to our previous analysis, a convex cell is the most suitable environment
to check collisions. Outside of a convex cell, it requires time consuming algorithms, hence
the idea of always remaining in a convex cell by using overlapping cells. The problem is
to find a collision-free trajectory crossing the boundary edge between two adjacent cells,

Given two connected cells Cy and C; the intersection of which is empty, let us denote
by C1, (resp C3) the biggest convex cell included in C; U C; and containing Cy, (resp C,).
It is very convenient to place a subgoal in €] N C4. We notice that this decomposition
allows for and requires nonvoid intersections of adjacent cells, Moreover, the intersections
are supposed to be large enough to accommodate the robot (see Fig. 7).



9

If this is the case, then the algorithm described in the previous section will move the.
' robot between the initial configuration and the intermediate configuration within the cell
Ci. The intermediate configuration in this cell is then taken as initial position in the cell .
- C} and the trajectory is continued until the final configuration is reached.

The position of the intermediate configuration is chosen on the line joining the two
vertices defining the intersection ( A and B on Fig. 7). On this line and within the
intersection, the nearest position from either the next boundary edge to be crossed or the
final configuration if the trajectory comes to its end, is determined. The chosen orientation
is either the direction of the next boundary edge to be crossed or the direction of the final
configuration. When the intersection between two adjacent cells is not large enough to
accommodate the vehicle, an artificial cell is used. It consists of the intersection between
C) U C; and the region determined by the perpendiculars to the bisectrices of the two angles
generating Cj N C; (see Fig. 8). The same method to generate intermediate configurations
is used to define two more subgoals, corresponding to the intersection between C{ and the
artificial cell, and between the artificial cell and C}. : :

Fig.8: Use of an artificlai czll,

Several remarks are in order: |

1) The cells can be shrunk by a tolerance factor i/n order to make up for unavoidable
problems of self location of the platform. :
2) Given a certain partitioning procedure (like| the one described above), one can

execute a search of trajectories in order to eliminate the ones that pass through
“uncomfortable” cells.

3) If all the trajectories have to pass through “unicomfortable” cells, then more refined
ways of assigning the trajectories are necessary, sjch as creating several artificial cells
overlapping two “uncomfortable” cells. ’ ‘

4) Global sufficient conditions (of geometric nafure) can be given that ensure assage
of the robot through straits. Such a condition requiyes that the distance between obstacles
be larger than the longest diagonal of the vehicle. This condition can obviously be further
refined and is currently being investigated. 5 | ‘

5) The set of canonical trajectories used in our algorithm Stwo arcs of circle connected
to a straight line) has some interesting properties of optimality regarding the length of
the path ﬁS], and the space required. It is particularly suitable for very constrained
environments, In a more spacious environment, and without sacrificing the geometric
simplicity of the algorithm, it is possible to design trajectories witﬁ a continuous
curvature (2], that enable the vehicle to have a smoother motion.
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The algorithm has been implemented in C in a 3-D simulation on a Silicon Graphics
work station. We used a graphics simulation package called IGRIP to simulate a .
forklift vehicle operations and movements. It is a four-wheel platform equipped with
a manipulator. The kinematics of the platform allows a choice between several modes
of motion, including one featuring the characteristics of a car-like platform. The
implementation of the algorithm has been organized as follows. The algorithm consists
of two different parts: the first one lists the cells that have to be crossed. In order to
search the graph we used the Dijkstra algorithm [9]. The second part is a loop on the
selected ‘cel%sr; each step calls a recursive procedure that computes the trajectory in the
current cell by adding; maneuvers as long as no path is found. We carried out a simulation
of an autonomous mode of motion. An operator indicates a goal and the vehicle reaches
this goal using the trajectory generation algorithm described in this paper. Figure 9
exemplifies the maneuvers inside a convex cell. Figure 10 shows a trajectory using a three
cell decornposition of the environment to generate a trajectory.

: PAE LT

final

conflguration
”

final
configuration

Prd

—".

A3 S, Intermediate

v ~a N\ oonfiguratio
P 2en Y \‘ \‘ \‘ 0 n

Id ) .
- ) )
| [ .
% \.5 Cenca
frer)

4
']
1
I P

! \
cinca

Fig.10: Trajectory in a 3 cell envircnma;y, :




1
V. CONCLUSION

We have developed a new method to provide a fast algorithm for the navigation of
car-like robots in a general polygonal environment. The method is based on (i) the
decomposition of the environment in convex polygonal cells and (ii) the navigation in such
convex polygonal cells by using simple preassigned trajectories. Since these trajectories
are formed by long line segments and circle arcs, the preassignment task requires much
less time than in previous approaches where the trajectories were a reunion of minute
increments. ' :

The method is very consistently geometrical, simple to understand and to implement,
and lends itself to various generalizations and refinements: we are currently working on a
sensor based navigation version of this method. The fact that our algorithm is not specific
to a given vehicle and can be used in different situations (teleoperated mode, autonomous
mode in known environment, autonomous mode in unknown environment) makes it even
more attractive. ‘
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