Proceedings of the 1991 IEEE
Intemational Conference on Robotics and Automation
Sacramento, California - April 1991

Efficient Adaptive Hybrid Control Strategies
for Robots in Constrained Manipulation

Jong-Hann Jean!

and Li-Chen Fu!»?

Department of Electrical Engineering!
Department of Computer Sicence & Information Engineering?
National Taiwan University, Taiwan, R. O. C.

Abstract

This paper addresses the problem of adaptive hy-
brid controller design for constrained robots with the
consideration of computational efficiency. Two effi-
cient control schemes respectively based on Lagrange-
Euler and Newton-Euler dynamics formulation are pre-
sented. Detailed analyses on tracking properties of
joint positions, velocities, and constrained forces are
derived for both the Lagrange-Euler approach and the
Newton-Euler approach. Although control laws in
these two approaches are developed independently, a
tight connection between them is signified, which high-
lights a possible bridge over different general adaptive
approaches respectively based on the two dyamics for-
mulations.

1. INTRODUCTION

Many industrial applications of robotic manipula-
tor systems may involve tasks in which the manipu-
lator end-effectors are required to make contact with
the environment. Typical examples of these tasks are
such as contour following, grinding, scribing, writing,
deburring, as well as all assembly related tasks. During
the execution of such tasks, the motion of robot end-
effectors can be viewed as being constrained by the en-
vironment and contact forces will build up to maintain
satisfaction of the constraints. Owing to the nature of
these tasks, accurate control of robot positions as well
as contact forces should be taken into account for the
success of task execution.

Recently, there have been considerable theorecti-
cal researches [1]-[6] which deal with such applications.
Although these researches indeed provide a theoreti-
cal framework served as a basis for the study of robot
performance of constrained tasks, all of those results
are based on a critical assumption that full knowledge
about the complex dynamics of the constrained robot
is available. From a practical point of view, the inertial
properties and gravitational loads vary from a task to
another and, hence, may not be precisely known in ad-
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vance. Care, therefore, should be taken in that if there
is uncertainty about the robot dynamics, the controller
so designed may give degraded performance and may
even incur instability. This is the reason why adaptive
control strategies have been proposed to handle the
uncertainties in the robot dynamics.

Several adaptive control schemes for robot motion
control have been developed to assure the stability of
the overall system inspite of the nonlinear imprecise
knowledge of the system dynamics. The methods are
roughly classified into two categories: one is based on a
decomposition of the robot dynamics into the product
of a nonlinear implementable function matrix and a
constant vector which consists of unknown system pa-
rameters [7]—[9] whereas the other directly deals with
a form of the robot dynamics as a function vector [22].
In the former, estimates of those parameters are used
to synthesize the control input and are updated on line
based on a measure of tracking errors. In contrast, the
latter introduced a concept of function learning instead
of that of parameter learning.

Although these schemes can be shown to achieve
trajectory tracking, the computational complexity for
their implementation is considerably high. Therefore,
more recently, several researchers addressed the prob-
lem of computational efficiency for realizing the above-
mentioned adaptive control schemes. Walker [10] uti-
lized the method proposed in [8] to obtain a more effi-
cient solution for manipulators containing closed kine-
matics loops via an adaptive control algorithm based
on their Newton-Euler dynamics formulation. Sadegh
and Horowitz [11] presented a modified version of their
previous work [9] to allow off-line computation of the
aforementioned nonlinear function matrix using the de-
sired joint positions and velocities instead of the actual
measurements. Both of these works lead the adaptive
controller design toward a more practical direction.

For constrained robots, an adaptive control scheme
has been proposed in the recent work [12], in which
the dynamic model proposed in [1] and a parameter
adaptation law similar to the one proposed in [8] were



used to derive conditions to ensure the asymtotic track-
ing of joint positions and the boundedness of force er-
rors. However, no conditions for the asymtotic track-
ing of joint velocities, and constrained forces were con-
cluded. In addition, the complexity for implementing
this scheme still remains high. v

This paper addresses the problem of adaptive hy-
brid controller design for constrained robots with the
consideration of computational efficiency. Two effi-
cient control schemes respectively based on Lagrange-
Euler and Newton-Euler dynamics formulation are pre-
sented. Detailed analyses on tracking properties of
joint positions, velocities, and constrained forces are
derived for both the Lagrange-Euler approach and the
Newton-Euler approach. Althougth control laws in
these two approaches are developed independently, a
tight connection between them is signified, which high-
lights a possible bridge over different general adaptive
approaches respectively based on the two dyamics for-
mulations. This facilitates robot control theorists to
realize the spine of any adaptive control methodology
irregardless of dynamics formulation of the target sys-
tem.

The paper is organized as follows: In section 2,
the dynamics formulation of a constrained robot is in-
troduced. In section 3, the adaptive hybrid control
scheme using Lagrange-Euler approach and the track-
ing properties of the overall system are presented. The
Newton-Euler approach which is a counterpart of the
previous one is given in section 4 and so is the connec-
tion between them. Finally, some conclusions as well
as discussions are stated in section 5.

2. DyNAMIC MODEL

Consider a rigid robot whose end-effector is in con-
tact with the environment modeled as a rigid friction-
less surface. To restrict the robot end-effector to keep
contact with the surface amounts to im})osing kine-
matic constraints on the robot. Let p € R' and ¢ € R®
respectively denote the Cartesian coordinate of the
end-effector and the joint coordinate of the robot arm.
The constraint surface can be naturally represented in
terms of the algebraic equation of the coordinate p,
namely, m(p) =0, where 7 : R' — R". To relate the
Cartesian coordinate of the end-effector with the joint
coordinate of the arm, we assume the forward kine-
matics of the robot is known a priori and is expressed
as p = h(q), where h: R® ~ R'. Define the function
#(-) by the relation ¢(q) = m(h(¢)) so that the con-
straint equation can be rewritten as

¢(g) = 0. (2.1)

For convenience of our subsequent development,
we will assume the constraints are nonredundant in
the sense that 0¢(g)/0q¢ is assumed to have full row
rank r(r < n). The number of degrees of freedom is
then equal to m = n ~ r. Furthermore, if we properly

rearrange and partition the vector ¢ into ¢ = [¢7 ,47]",
where ¢; € R™ and ¢ € R™, then, by implicit function
theorem [15], there is a unique function Q : R™ +— R’

and an open set O C R™ such that
¢(Q(q2), 92) =0 for all q2 € 0. (22)

Moreover, if the constraint surface, or, equivalently, the
function ¢ is sufficiently smooth, then derivatives of
with respect to ¢ up to the second order will exist.
This shows, locally in the open set O, the equation

71 = Qq2) (2.3)

is a unique solution of (2.1). As a matter of fact, an n-
tuple vector ¢ € R" x O satisfies the constraint equation
(2.1) if and only if it satisfies the equation (2.3). Thus,
(2.1) and (2.3) can be identified as the same constraint
equation for suitable choice of domain, and, in the rest
of our paper, we will directly deal with constraints of
the form in (2.3).

The constraints imposed on joint velocities and
accelerations of the robot can be obtained by differen-
tiating equation (2.3) into the form

41 — E(g2)d2 = A(g2)d =0, (24)
41 = E(q2)§2 + F(q2, 42) 42, (2.5)
Alg2) =[I, —E(g2)]
E(q2) = 09(q2)/0q2
F(q2,42) = dE(q2)/dt (2.6)

According to the D’Alembert’s principle and La-
grange’s multiplier rule [16], the equation of motion for
the constrained robot system has the following form

M(q)i+C(q,9)i+G(g) =7+ AT, (2.7)

where M(gq) denotes the generalized inertia matrix,
C(q,¢)q denotes the vector of centrifugal and Coriolis
forces, G(g) denotes the vector of gravitational forces,
T is the vector of nonconservative generalized forces,
A € R" is the vector of Lagrange’s multipliers associ-
ated with the constraints, and AT\ is the constraint
force vector.

To facilitate our subsequent analysis, we reformu-
late the equation of motion (2.7) as follows. First, de-
compose the equation of motion (2.7) into the following
form

My My iix] [Cﬂi] Gl] [Tl] T
. . = A X
[Mm Mzz] [42 + Cag *les n|t
After substitution of the constraint equations
(2.3)-(2.5) into (2.8), it follows that

(M11(g2) E + Mi2(q2))d2 + M11(g2) F g2
+C1X(q2)g2a+Gr =1+ X (2.9)
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(M21(g2)E + M23(g2))d2 + Ma1(g2) F g2
+C2X (g2)42 + G2 = 12 — ET X (2.10)

X =00/0n= "] @y
m

Note that M;;(g2) is, in fact, Mi;(Q(g2),q2), 4,7 =
1,2, in equations (2.9) and (2.10), which despite the
abuse of notations emphasize the complete dependence
of these submatrices upon ¢s.

Premultiplying the matrix E(g2)7 to (2.9) and
adding the resultant equation to (2.10), we then ob-
tain the following equation

M({g2)d2 + C(q2, d2)dz + G(g2) = 7 (2.12)
where

M=E"M\E+E" Mis+ MorE + Moy

C=E "M F+ETCiX + My F +CoX

é = ETGl -+ G2

Te = ET(‘]Z)TI + T2,

where we note that the constraint forces disappear.
It is noteworthy the combinations of (2.12) and (2.9)
are exactly the dynamical equations in reduced form
derived in [1}. These two equations characterize re-
spectively the motion of the robot and the evolution of
constraint forces acting on the robot.

3. ADAPTIVE HYBRID CONTROLLER:
LAGRANGE-EULER APPROACH

Suppose the desired motion of robot can be de-
scribed in joint coordinate by a vector function gq4(t) =
[q14(t)T, g2a(t)T]T, where g14(t) = Q(gaa(t)) for con-
sistency with the imposed constraints. Furthermore,
the desired constrained forces fy(t) can be charac-
terized by some multiplier function A4(t) as fq(t) =
AT (ga(t))A4(t), where the multiplier function A4 can
be physically interpreted as the desired contact forces
in the constraint coordinate [1]. Our objective is
then to design an adaptive hybrid controller to achieve
asymptotic tracking of both joint positions and con-
strained forces, that is, to yield

ast — oo

q(t) — qa(t) and f(t) — fa(?)

Using the notations defined in (2.9) and (2.10), we
can define

(M1 E+ M)t + (M F + CiX)u
+G1 = w{ (g2, 42, %, @)0;

(3.1)
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(M1 E + Mas)ii + (Mo F + Co X
+G2 = wy (g2, 42, &, )02

(3.2)
which lead to the following equation
61

5]

(3.3)

T
1

T

M(g2)i + C(gz, do)it + G(g2) = [ETw] w]

|

where w(qz, g2, %, &) is a known function matrix and 6
consists of the dynamic parameters of the constrained
manipulator. .

Define the auxiliary signals g5, and §,, as

= wT(Q2:q2y it: ﬁ)aa

(3.4)
(3.5)

Gor = Q24 — kr 2
Q'Zr = q.2 - d2r
where §a = g2 — ga4 is the positional tracking error and

k. is a positive constant. Note that the signal ¢y, is

designed such that if 62, is square-integrable, then g,
approaches zero as time goes to infinity {17]. Design
the control signals as

71 = w] (42,42, dar, G2r )01 + & (3.6)
T2 = w; (42,42, G2r, G2r)02 — E" &
- I<v&2r - qu (37)

k= Kp(d=Ag) — A,

where él and éz denote the estimates of #; and 8, and
K,, K, and K; are positive definite matrices. The
parameter adaptation law is then designed as

é = —I“lw(lh»q'm q.2r7‘.1'21')62r, r> 0: (38)

The main result of this section is stated in the

following theorem. The detailed proof is provided in
23).
’[I‘h]eorem 3.1: Consider the constrained robot sys-
tem whose dynamics are governed by (2.7). Given
the bounded desired trajectory goq such that its first
and second derivatives are also bounded almost every-
where. Then the following will be true provided the
adaptive control laws (3.6)-(3.8) is used.

1. (a) Signals g3, ¢2 and f are bounded and the
asymptotic positional tracking will be ensured,
ie.,

Jim(q—4ga) =0

(b) Force errors are bounded and the bound is

proportional to the norm of the inverse of the gain

matrix Ky, i.e.,

A=Al < e IEF|

for some o > 0.



9. If the third order derivatives of ga4 is alsa bounded
almost everywhere up to the third order, then
(a) Joint velocities and accelerations track the de-
sired ones asymptotically, i.e.,

tlirgo(q —g4) =0 and tlggo(q —4q) =0.

(b) The parameter error vector 6=6-9 asymp-
totically falls into the null space of w7 (g2, 42, §2r, G2r),
ie.,

lim w7 (g2, 2, Gor, 2r)0 = 0.
3. If w(qu, qzd,qu) which is obtained by replac-
ing g2, g2, 4, and i with ¢34, §24, d2d, and ¢og
in (3.3) respectively, is persistently exciting(PE)

[11][18][19], then
(a) the parameter errors converge to zero, i.e.,

lim 6(t)=0
(b) force errors A = A — g converge to zero, i.e.,
lim At)=0

For the consideration of computational efficiency,
we modified the control law as

71 = W] (g24, 424, G2a)01 + & (3.9)
T2 = wy (q24, G2d, G2a)02 — E" &
= Koo, — Kpd2 = 012 ar
(3.10)
and the adaptation law as
0 = ~T7'w(q2a, 424, G20) 2> (3.11)

where the function matrix w(qa4, §2d,§24) is off-line
computed prior to the control, then similar results can
be obtained. The following corollary will summarize
these results and the proof is provided in [23].

Corollary 3.2: Consider the constrained robot sys-
tem whose dynamics are governed by (2.7). If the
adaptive control laws (3.9),(3.10), and (3.11) are used,
and K,, Kp, and ¢ are sufficiently positive, then all
the results in Theorem 3.1 hold.

4. ADAPTIVE HYBRID CONTROLLER:
NEWTON-EULER APPROACH

Although, an efficient adaptive control strategy
based on Lagrange-Euler dynamics formulation has
been introduced in section 3, a drawback of this
method is that a large volume of memory space will
have to be allocated in order to save w(qaa, 424, G24)

over the entire desired trajectory go4. Furthermore,
the number of parameter estimates may be consider-
ably large also when the robot dynamics become more
complex. With this observation in mind, in this sec-
tion we will start with the Newton-Euler formulation
to speed up the calculation of the robot dynamics.
Subsequently, we will show that the former Lagrange-
Euler approach can be modified into a Newton-Euler
approach but with a similar concept in designing the
controller. The presentation to be given here will be
based on the spatial notation introduced by Feather-
stone [20] and will borrow some conceptual develop-
ment of the scheme proposed by Walker [10].

Denote the i-th joint variable and its associated
actuator input respectively as ¥; and p;, where the
lower order joint is closer to the base and the higher
order joint is closer to the end-effector. The spatial
inertia matrix of link 7, denoted as I; , with respect to
the coordinate associated with link ¢ is a constant 6x6
matrix of the form:

I = (f_i_x)T meil3
= Ji X

where mc; is the total mass of link ¢, r; is the total mass
of link ¢ times the position vector of center of mass
of link Z, 7;x denotes a 3x3 skew symmetric matrix
which satisfies (r; X )w = r; x w for any constant vector
w € R?, and J; is the moment of inertia matrix of
link 7 with respect to link ¢ coordinate. The spatial
inertia matrix of link ¢ is uniquely determined by ten
independent parameters; they are the six independent
components of the matrix J;, the three components
of the vector r;, and the total mass m,;. For ease of
reference, these parameters are grouped into a single
10x1 vector, m;. It is easy to check that the matrix
I; can be represented as a linear combination of these

parameters,
10
L= Rymi
k=1

where Ry is a 6x6 matrix containing only zeros and
ones.

Let the spatial transformation matrix from link
i to the base be ¢X;, then the spatial inertia matrix
of link ¢ with respect to the base can be computed
through the relation

I =oX; L : Xo

In the Newton-Euler formulation, the equations of
motion for a general closed kinematic mechanism can
be described by a recursive inverse dynamics algorithm
[10]. For our case, the inverse dynamics algorithm for
dynamical equation (2.12) can be summarized as the
following steps.

(S1) Given the desired positions, velocities, and accel-
erations of the independent joint variables, ¢s, cal-
culate the corresponding ones of the dependent
joint variables, ¢, through equations (2.3)-(2.5).
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(S2) For each link, determine p;, the é-th actuator input
needed to achieve the desired motion, from two
recursions as follows.

Outward loop:

vp=0 1i=1,...,n
v = v + 5t
U = Vi1 + 8:9; + vy xs:9;

where s; denotes the spatial vector represen-
tation of the i-th joint axis.
Inward loop:

far1=0, j=mn,...,1
F; = I;v; +vj>21jvj + Lig
fi=F; + fina
pi =5;fi

where ¢ = [0 0 9.8 0 0 0]7 and the symbols

* and x represent the spatial transpose and
the spatial cross operator [20] respectively.

(S3) Determine the vectors 71 and 73 from the compu-
tation results of p;,# = 1,...,n. Then the vector
7. can be obtained through (2.12).

The adaptive hybrid controller to be proposed
here can then be given in terms of a algorithmic pro-
cedure involving three steps.

(C1) Given the desired position trajectory qad, the de-
sired force trajectory Ag, and the auxiliary signals

g2r and g, which are defined in (3.4) and (3.5)

respectively, we compute the following signals,

(4.1)
(4.2)

d1r = E(g2)dor
d1r = E(q2)dor + F(q2, 42)42r-
(C2) Generate the control signals p;r,i = 1,...,n, as

follows:
Outward loop:

i=1,...

Vo,r = 0, y

Vir = Vi—1,r + 8iVir

Oir = Vie1r + 80, Fvix8i0ir
Inward loop:

=0, 1
= I (b5 — uljr + ) + vi X Lvjr
=Fjr+ fis1r

*
= ijj,r

fn+l,r .7:7"1
Fr
fj,r
Pi.r

where fj is an estimate of Ij, p is a positive

constant, and v; » = v; — vj,,.

Parameter adaptation law:

.-l
mj = (—)wj,

g; >0

where w; is a 10x1 vector whose k-th com-
ponent is,

wik = 0 (Ri(9j,r —H0;,r)+0; X Revj,r +Rig;)

where Vjs Vjry iy and g; are the vectors v;,

¥ r, Vjr, and g with respect to link j coordi-
nate, respectively.
(C3) Determine the vectors 71, and 7o, according to
the computation results of p; », 2 =1,...,n. Then
the actuator inputs 7 are implemented as follows.

_ 1’1,,‘ K
- [)+[.5]
Although the form of this Newton-Euler approach
is quite different from that of Lagrange-Euler approach
given in section 3, the concept in designing respective
controller are, in fact, quite similar and the following

lemma will signify their relationship. For the proof of
this lemma, please see [23].

(4.3)

Lemma 4.1: The control law (4.3) can be rewritten

as
T :(MIIE + Mlg)’U -+ (MllF + CIX)q'Zr
+Gi1 45 (4.4)
T2 =(Ma1E 4 Maz)v + (M1 F + C2X)dar
+Gy—E"x (4.5)
where .
v = {or — pdor-

Remark: Clearly, Lemma 4.1 points out the con-
nection between the Lagrange-Euler approach and the
Newton-Euler approach, which is useful in the subse-
quent analysis as well as for better understanding of
the physical meaning of the underlying approach. As a
matter of fact, several adaptive control schemes based
on Lagrange-Euler dynamics have their counterparts
in the domain of approaches based on Newton-Euler
dynamics. The basic difference between them lies in
the way to update the estimated parameters.

Using the symbols defined in (3.1) and (3.2),
the positional error dynamics can be formulated from
(4.4)—-(4.5), (2.9)—(2.10) as the following:

M(qZ)(éZr + ”621‘) + 5(‘12) q.Z)(:i?r = wT (q27 Qz; q2’i;;v()$5§

Note that the vector of parameter errors 0 is derived in
a way that is different from the one in section 3. The
following theorem will summarize the properties of the
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constrained robot system after this Newton-Euler ap-
proach is applied. For the detailed proof of this theo-
rem, please refer to [23].

Theorem 4.2: Consider the same constrained robot
system as the one in Theorem 3.1. Then all the results
(1a)~(3b) of Theorem 3.1 will still hold provided the
adaptive hybrid control law (C1)—~(C3) is applied.

5. DIscussioN AND CONCLUSION

In this paper, we present efficient control strate-
gies for adaptive hybrid control of a constrained
robot system. Efficiency of the control law based on
Lagrange-Euler approach is obtained by off-line cal-
culation and prior storage of a complicated function
matrix along the desired trajectory. The price, how-
ever, is that the complicated function matrix should
be symbolically obtained in a closed form and, then,
a large volume of memory space will have to be al-
located to store these computation results especially
when the number of joints is large. On the other hand,
efficiency of the control law based on Newton-Euler
approach lies in that the control law is formulated as
an algorithm mainly consisting of two sets of recur-
sive calculations subject to a law of dynamical param-
eter adaptation, and each recursion only takes gener-
ally smaller amount of time in comparison with the
Lagrange-Euler approach. Furthermore, the number
of unknown parameters to be estimated can be con-
siderably reduced if partial knowledge of the robot is
known. Nonetheless, if the number of joints is small
or the overall dynamics of the constrained robot has
a simplified form, then the Lagrange-Euler dynamics
based approach can be more concise and may be more
efficient.

A connection between the Lagrange-Euler ap-
proach and the Newton-Euler approach has also been
pointed out. In the current literature, most research
works on the adaptive control problem of a robot are
based on the Lagrange-Euler dynamics formulation
since it is more concise than the Newton-Euler one
and, hence, more suitable for deriving the control law
and for stability analysis. However, under the Newton-
Euler dynamics formulation, we can have better under-
standing of the physical meaning of each component in
the dynamics, which may lead to better intuition for
designing control laws with better performance. How-
ever, no matter whichever dynamics formulation is un-
der consideration for controller design, such a bridge
suggested in this paper is always helpful to the robot
control theorists to realize the spine of any adaptive
control methodology.
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