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Abstract

This paper analyzes the experimental and simulation results of a minimum-time trajectory

control scheme for a two-link flexible robot. An off-line optimization routine determines a

minimum-time, straight line tip traje_:tory which stays within the torque constraints of the

motors and ends in a quiescent state, i.e., no vibrational transients. An efficient finite-element

model is used in the optimization to approximate the flexible arm dynamics. The control

strategy described here is used to determine the feedback gains for the position, velocity,

and strain gage signals from a quadratic cost criterion based on the finite-element model

linearized about the straight line tip trajectory. These feedback signals are added to the

modeled torque values obtained from the optimization routine and used to control the robot

arm actuators. Tile results indicate that this combination of model-based and error-driven

control strategies achieves a closer tracking of the desired trajectory and a better handling

of modeling errors (such as tip payloads) than either strategy alone.
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1 Introduction

The issue of control of flexible structures is important for many applications involving high-

speed, accurate motion of long, slender structural members. As robotic manipulators are

applied to weightsensitive applications such as high-speed manipulation, space exploration,

and mobile vehicles, many robotic systems will be designed with lighter weight and more

flexible materials than present day robots. Future robotic arms will also be expected to

accurately position larger payloads, toperform their motion at higher bandwidths, and to

exert larger external forces on their surroundings. All of these conditions will increase the

structural bending of the links.

This additional flexibility greatly complicates the task of controlling these structures due

to the complex dynamics involved. For both rigid and flexible robots, model-based control

can greatly improve the speed and transient response of a robotic system. Feedforward

and computed torque control have been used to improve trajectory tracking of rigid robots

[1]. Open-loop control based on off-line modal analysis [2] and input preshaping [3] have

been used to accurately position single-link flexible structures. Additional work has been

done on applying singular perturbation approaches [4] to the control of multi-link flexible

manipulators.

In these model-based approaches, the key to successful control is in the accuracy of the

analytical model. System identification of a flexible link robot is even more difficult than the

non-trivial problem of determining t_becorrect model parameters of a rigid robot [5]. Whereas

a rigid robot's dynamics are defined by a set of second order ordinary differential equations,

a flexible robot's dynamics are defined by a set of fourth order partial differential equations

with corresponding boundary conditions [6]. A flexible structure contains state variables not

only in the form of joint angle positions and velocities but also in the form of link curvatures

and their derivatives. Additional sensors, such as strain gages and accelerometers, have been

added to single link arms to control additional flexible states [7][8].

The objective of this research is the minimum-time control of the tip position of a robot

arm with two planar flexible degrees-of-freedom along a straight line, subject to motor torque

limits and a quiescent end point state. Among the model-based control strategies considered

is an open-loop controller with torque trajectories, computed off-line by an optimizing pro-

gram [9][11]. The off-line optimization is used to calculate the motor torques necessary to

rrlove the tip of the arm along a minimum-time, straight line trajectory while staying within
the physical limits of the motors. A finite-element model of the two-link arm was used to

simulate the arm's forward and inverse dynamics [10]. The performance of this method

depends heavily on the accuracy of the dynamic model of the structure.
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To improve the performance of this open loop control, a sensor-based control scheme

has been developed and will be described in this paper. This closed loop strategy involves

feeding back to the motor the errors in position, velocity, and curvature, i.e., the difference

between these actual quantities as measured by on-line sensors and the desired values as

dictated by the optimization routine. In previous work [11], the strategy for obtaining the

feedback gains was basically through experimentation. Although the results obtained were

quite satisfactory, this method is not easily duplicated on other structures and trajectories.

These concerns motivated the approach described in this paper in which an optimal control

strategy is used to determine the feedback gains.

The procedure to determine these gains starts by linearizing the finite-element model

about the desired trajectory. This is done by choosing points along the trajectory and

obtaining a linear time-invariant model about each of these points through a Taylor series

truncation. The quadratic cost criterion is chosen based on physical knowledge of the robotic

system, and the appropriate Riccati equation is computed to obtain the set of feedback gains.

In this case, the states represent errors about the nominal trajectory in position, velocity, and

curvature. Thus, minimizing the cost criteria will result in optimal tracking of the desired

trajectory. The set of feedback gains obtained can be scheduled according to the part of

the trajectory the tip is currently traversing. This control strategy is particularly useful for

manipulators performing repetitive maneuvers. A similar strategy was implemented for a

two-link flexible manipulator traversing a circular trajectory [15]. Only computer simulations

were undertaken with no experimental results, and there was no minimum-time objective for

the h_.aneuver. However, the results do include feedforward torque values obtained from the

inverse dynamics, and the combination of_LQR feedback with the feedforward torque values

yields much better results than either strategy alone.

This paper is organized as follows. Section 2 briefly describes the finite-element model

and the optimization routine used to obtain the modeled torque, joint angle, joint velocity,

and curvature values. Previous work on a feedforward method of control [11] is discussed

in Section 3. In Section 4, the methodology by which the feedback gains were obtained is

detailed including an explanation of how the cost criterion was chosen. Section 5 describes

the results of a computer simulation study used to narrow down the set of gains to attempt

on the actual system. These results also brought forth some details to consider in actual

implementation such as observation and modeling errors. Finally, Section 6 presents the

experimental results obtained on the two-link flexible robot at Sandia, National Laboratories.
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2 Structural Model and Optimizing Program

The dynamics of flexible arms can be derived via Hamilton's principle. The resulting non-

linear integro-partial differential equations are unwieldy to deal with directly. An assumed

modes method in which the flexure variables are expanded as a series of mode shapes can be

used to reduce the dynamics to a set of nonlinear ordinary differential equations [12][13]. In

this paper, a finite-element model [9] is used to obtain a set of nonlinear ordinary differential

equations.

In the finite-element model of the two-link flexible arm, the structure was divided into

11 elements. Figure l(a) shows the Sandia two-link manipulator, and Figure l(b) illustrates

the geometry of the structure. The first element corresponds to the 1st joint or hub of the

manipulator. The second element corresponds to the first bracket. The next three elements

represent the 1st link div:ded into three equal segments with each segmeqt having its own

strain gage. The next three elements correspond to the second bracket, second joint, and

third bracket. Finally, the last three elements are the 2hd link divided into three equal

segments, again with each segment having its own strain gage. The brackets are modeled as

very stiff links with stiffness terms EI (Young's modulus times the area moment of inertia)

of 105. The motion of the manipulator is assumed to take place entirely within the horizontal

plane.

The dynamic equations of the finite-element model can be compactly written in the

following form

M(O)O + C(O)t_2 + K(O)Ix =/3v (1)

where 0 is a column vector containing the angular positions of the 11 finite elements, and

T = [rl r2]r is the external torque vector where rx and 7"2are the applied torques at the

joints. The term t_2 is an l lxl vector where each element is the square of 0i. The mass

matrix is M(O) = [M_,jcos(O_ - Oi)I, i = 1,...,11, j = 1,... ,11, the centrifugal matrix is

C(O) = [Mi,jsin(Oi - 03')], i = 1, ..,11, j = 1,...,11, and the stiffness matrix is K(O) =

[-K_,jsin(O_- Oi)I, i = 1,..., 11, j = 1,..., 11. The symbol I_ refers to a column vector

of 11 ones. The matrix/_ is an 11x2 matrix whose purpose is to transform the 2xl control

vector r into the 11xl angular position space. It is defined as

[ IT/_= 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 1 0 0 0 0 " (2)

The Mi,j and [(i,j are the mass and stiffness elements which are derived from the finite-

element model (see [9]) and are constants for a given structure (i.e., these elements depend

only upon physical parameters of the system). Note that the Oi are absolute angles in the
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inertial coordinate system. Because of this absolute referencing, Eq. (1) does not contain

Coriolis terms (0,#i, i ¢ j).

This model is efficient from a computational point of view since it only require_ one

evaluation of the mass and stiffness elements. It also has proven to be quite accurate in

modeling the behavior of the actual manipulator. The experimental results in [11] show that

the fundamental modal frequencies of the finite-elemer_t model closely approximate those of

the experimental apparatus (approx. 20 Hz and 8 Hz for the first and second links respec-

tively). In addition, the torque, angular velocity, and joint position profiles obtained by the

model closely approximate those of the experimental structure for corresponding maneuvers.

These results motivated the idea oi' conibining the physical model with optimization tech-

niques to generate torque histories that would follow a giventrajectory inminimum-time

with minimal endpoint vibratioxt at the end of the slew. The goal is to track a specified

straight-line path from rest-to-rest in minimum-time with no endpoint vibrations at the end

of the maneuver while staying within the torque limits.

The optimization problem can be formally stated as follows [9]

minimize: J = t.¢

with respect to: the finite-element model, the actuator torque limits, and initial conditions

subject to:

0

0 = KE(tl) (3)

0 SE(tl) •

o
o

where x and y are the cartesian coordinates of the tip of the 2nd link or of the specified

stcaight line trajectory, and tI is the time it takes to complete the slew. The first two

constraints assure the final tip position is met. The third constraint is an equality tracking

constraint that keeps the tip position on the specified line. The next two constraints require

the final kinetic and strain energies to be zero (i.e., final position at rest). The last two

constraints force the final joint accelerations to be zero. The actuator torque limits were

taken into account by limiting the torque values to 80% of the physical limits. This allowed

room for additional feedback to be applied to the motors.

The optimizing program itself is a recursive quadratic programming algorithm and has

been implemented on a CRAY X-MP at Sandia. It uses the aforementioned finite-element
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model to obtain the optimal torque profiles and the corresponding angular position and

velocity values for ali 11 elements at each sampling instant a.long the trajectory. The min-

imum time found by the algorithm to perform the slew was 2.058 seconds• These optimal

torque, angular position, and angular velocity values are then used in various control schemes

described here to perform the desired maneuver on the actual structure.

3 Feedfor '.ard Control

As stated in the introduction, model-based control strategies can be very effective in im-

proving the speed and transient response of a manipulator, but they are hampered by the

accuracy of the model. Likewise, error-driven approaches have the advantage of getting

to the desired final state but because the errors start out small, the initial torques will be

small resulting in slow response time and significant overshoot. These realities motivated the

strategy in [11] referred to here as feedforward control. This approach combines the advan-

tages of model-based and sensor-based control by feeding back the errors in joint position,

joint velocity, and curvature as measured by shaft encoders, tachometers, and strain gages,

respectively. It also feeds forward the desired torque values as determined by the optimizing

program. This strategy is illustrated in Figure 2 and motivates the approach undertaken in

this paper.

Results in [11] show significant improvement in tracking the desired trajectory (a straight

line oi roughly 1.5 meters in length) than either open loop control based entirely on the

modeled torque values or closed loop control based entirely on error feedback. When a

modeliag error consisting of a 0.275 kg tip mass is added, the improvement is even more

pronounced. One of the drawbacks to the feedforward approach is that the feedback gains

are determined experimentally. This implies a great deal of trial and error experimentation.

The strategy in this paper is to choose these gains based on the model by minimizing a

quadratic cost criterion. Linear optimal control theory is utilized to obtain these gains

from the linearized finite-element model. The advantage of this approach is that it is easily

duplicated for different structures and trajectories.

4 LQR Control

In order to apply linear quadratic regulator theory, the dynamics in Eq. (1) must be put

into state space form and then linearized about the desired trajectory. The state variables



are chosen to be the 11 element positions and the 11 element velocities. That is,

zi=Oi,i= 1, ..,11, zi+ll=0/,i=l,...,ll (4)

where zi are the new state variables. Rewriting Eq. (1) we obtain

tj = M(O)-X[r - C(O)tJ_ - g(o)I1] (5)

thus arriving at the following state space description

kl ] z12 0 0
!

_ J zx3 0 0
; [ ....

• , ,e

kll z22 + 0 0= (6)

1Z12

! i ) M(z)
k22 ]°

which can be written in the more compact form

= f(z)+ g(z)r. (7)

The matrix M(z) is simply the matrix M(0) with the 01's replaced with the appropriately

numbered states zi. The control vector r is as described earlier, and the matrix S(z) is the

matrix S(O) = -C(O)O 2 - K(O)I1 with 0 replaced by the state vector z as follows

r _,_,_t[Ml,isin(z/_ zt)z_+lx + IQ,isin(zl- zi)]

_i_t[M2,i sin(zi- z2)z_+al + I(2,1sin(z2- zi)]
S(z) = . . (s)

_i=l[Mll, ilxsin(zi- zx,)zha x + Klx.isin(zlx - zi)]

The state space Eq. (7) is a 22hd order nonlinear ordinary differential equation. This

equation must be linearized about the trajectory in order to obtain a linear model useful for

applying quadratic regulator theory. To do the linearization, we note that a function f(z)

can be expanded as a Taylor series about an operating point _, in the following manner

of
f(z) = f(2) + _ Iz=a(z - 2) + O((z - _,)2). (9)

Since Eq. (7) is affine in the control v, we only need to llnearize about the state and not

the control. We let x represent the perturbation in the state z abot,_ the operating point 2.

That is,

z=_+z. (10)
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Substituting Eqs. (9) and (10) into Eq. (1) and truncating second and higher order terms

we obtain the following linearized model

of
=_zz [_=_x+g(_')r = Az+Br (11)

,

where x now represents deviations from the desired trajectory which we would like to drive
to zero•

The matrices A' and B can be computed as follows

0 0 ... 0 : 1 0 ... 0

0 0 ,.. 0 ! 0 1 ... 0
+ • + + + • + • +

, • • • • • + • +

Of 0 0 ... 0 ' 0 0 ... 1 (12)

Ht H2 .................. H22

0 0 ... 0

0 0 ... 0

B =g(z) I_-+-- 0 0 ... 0 (t3)
, + • . . • + . , • • ++

M(z)-t I=---,+,9

where Hi is a gradient vector computed as

O(M(z)'tS(z)) [_=_= M(z)__OS'(z) M(z)_tOM(z) ]H+= Oz, Ozi Ozi M(z)-tS(z) Iz=_ (14)

and 2 has the units of radians and radians/sec. The gradients that are needed to compute

the above are included in the appendix.

Since the desired trajectory is a straight line, the operating point _, must be chosen as

a fixed point along this trajectory. 'ro choose this operating point as the trajectory itself

would result in a. linear time-varying system that would be diffic,._lt to analyze. Thus, it was

decided that the linearization would be done aboul; a series of points along the trajectory,

e.g., every 200 milliseconds. This implies that theLe will be a different set of gains for each



operating point. The control algorithm then calls for an update of gains each time a new

operating point is reached. Furthermore, it will be assumed that at each operating point the

linearized system reaches steady state so that the Riccati equation that must be solved is an

algebraic one. This will result in constant gains so that again the linearized system will be
time-invariant.

The linear quadratic regulator problem is to minimize a quadratic cost criterion

I _0°° uTj = + R.)t (15)
with respect to the control vector u subject to the system's dynamics

& = Ax + Bu. (16)

The solution to this problem involves solving an Algebraic Riccati Equation (ARE) [14] for
a matrix P

0 = ATp + PA- PBR-1BTP + Q (17)

which results in the feedback equation

u = -R-1BTpx. , (18)

Thus, the gains are equal to .-R-iBTp, and our linearized system (Eq. (11)) matches the

form of Eq. (16) with v as the control vector u.

Once the operating points £,have been chosen the only variables in the LQR problem are

the choice of Q and R matrices. The Q matrix is a 22x22 matrix which places penalties on

the states of the system. It was decided for simplicity that Q would be a diagonal matrix

which implies that there is no penalty on cross-state interaction. The larger these diagonal

elements are the more important it is that the corresponding state be driven to zero (i.e.,

the actual state be driven to the trajectory). The R matrix is 7_x2and again it was chosen

to be a diagonal matrix. The larger the element is the more penalty is placed on that

particular motor. This is useful if one motor is considerably more expensive to run than the

other. Once these matrices are decided upon, the schedule of gains can be determined. For

computational purposes, the system software pa@age MATLAB was utilized. The complete

block diagram of the LQR control strategy is illustrated in Figure 3. In the next t _vosections,

simulation and experimental results are presented which use gains that were calculated from
the information in this section.

5 Simulation Results

For the simulations, a program implementing the finite-element model in [9] was utilized to

determine which schedule of gains resulting from a wide choice of Q and R matrices would be

9



best for the experimental setup. The simulations Were also undertaken to see if estimating

many of the 22 states that are not measurable is feasible or if perhaps some of these states

can be ignored altogether. It is also important to determine the accuracy of the model since

the feedforward torque values used on the actual system were obtained from the model. A

C program run on a SUN 4 workstation did the simulations using a 1 millisecond sampling

interval and read in the optimizing values of torque, angular position and velocity, as well as

the optimal gain schedule. The results are tabulated in Tables 1-3 according to the different

sets of gains obtained by using different Q and R matrices. Also tabulated in Tables 1-3 are

results obtained when a modeling error represented by a 0.275 kg tip mass is added as well

as observation noise in estimating the states.

Some of the results not tabulated here indicated that trying to estimate the 9 velocity

states that are unmeasurable (the two joint velocities are measured by the tachometers) from

the position states via finite differences resulted in very poor performance and erratic results.

These results also showed that feeding back position states only with no velocity feedback

resulted in an undamped system that oscillated wildly, Therefore, it was decided that the

best approach for the experimental system was to use the two velocity states measurable

from the tachometers and not attempt to feed back the remaining 9 ve!ocity states. The R

matrix was chosen so as to put equal weight on both motor torques. After much simulation,

a value of 10 was chosen for the two diagonal elements. This choice of R proved to be the

most successful. Thus,

o 1o, ' (19)
The choice of entries for the Q matrix was more difficult. The first 11 diagonal elements

reprcsent penalties on the position states and the remaining 11 elements represent penalties

on the velocity states. It was initially decided to penalize the position states more in ordeL_

to keep the system on the desired trajectory. Ali 11 position states were assigned a penalty

of 10, and the penalty on the velocity states was varied between 0 and 1. Thus we have

10Ii1×11 0j1×11 ]Q = 011x11 7111x11
(o.0)

.i

where 7 is the parameter to be varied between 0 and 1.

In the tabulated data, six quantities of interested are listed. The peak torque for each joint

is tabulated to see that it stays within the physical limits of the structt're which are 7.0 aad

2.25 N-m for the first and _eco,d jofl_L_r_spectively. The peak position and velocity errors

among ali 11 elements over the entire simulation run were listed in degrees and degrees/sec.

Finally, the rms (root-mean-square) errors in positieq and velocity were tabulated in degrees

and degrees/sec. The simulation was run for 2058 sampling instants or 2.058 seconds, the

10
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same length of time the optimization was carried out to determine the modeled torque values.
Measurement noise was included in the simulations to model the effect of sensor noise. The

shaft encoder noise was mode',ed as zero mean uniformly random noise with variations of

4-0.1 degrees and the tachometer noise was also modeled as zero mean uniformly random

noise with variations of 4-1.0 degrees/sec. The estimated error in curvature as measured

from the strain gages was modeled as zero mean uniformly random noise with variations of

4-0.05 degrees. The computer results of the simulations are compiled in Tables 1-3. The plot

of tip position superimposed over the modeled trajectory for 7 = 0.1 is shown in Figure 4.

Also on the same graph is the corresponding experimental tip position for the same gains

(7 = 0.1). The discrepancy between the two plots, particularly the overshoot at the end,

is mostly due to modeling errors especially the underestimation of the magnitude of sensor

noise in the simulations. A row of dashes iii the tables implies the output became numerically
unbounded.

The results for 3' = 1 show that in the presence of sensor noise both' with and without

the tip mass the simulations become numerically unstable. This is primarily due to the fact

that for 3' = 1 both position and velocity gains are considerably larger (on the order of 10

to 100) than for smaller -),'s, resulting in large oscillations when sensor noise is introduced.

In addition, the lack of joint dampening in the model and the one millisecond integration

stepsize of the simulation are also contributing factors. In the absence of measurement noise,

the results are quite good with or without the modeling error. The results for 7 = 0.1 show

a much greater tolerance to measurement noise. Here, the system remains stable even with

the tip mass. This is partly due to the reduction of gain magnitude (roughly 1 to 10 for this

case). In particular, the velocity gains are sma!ler which reduces the effect of the tachometer

noise which was modeled as being much larger than the shaft position or strain gage noise.

The final choice of -), = 0 produced results very similar to that of 7 = 0.1, though the

gains were much smaller in magnitude (less than 1). In this case there was no penalty placed

on the velocity states. This resulted in very small velocity gains, but the position gains were

also small. This may explain why the data with the tip mass are not as accurate as they

are for 7 = 0.1. The small gains do not provide enough of an error signal to compensate

for the modeling error. In all three cases, the peak values of joint torque remained within

the physical 1,imRsof the motors. It can also be observed from the tables that the addition

of the tip mass (which is a modeling error not accounted for in the finite-element model)

substantially degraded performance in tracking the desircd joint velocities. However, the

positions remained just a few degrees from their desired values. On the other hand, with

the exception of the V = 1 case, the addition of sensor noise only marginally decreased

performance.
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no tip mass 0.275 kg tip mass
,, , _.....

no noise with noise no nois_ with noise

peak torque (lst joint), N-m " 6.044 _ 6.253.....

peak torque (2hd joint), N-m 1.336 0.859

peak position error, deg 0.228 8.576

peak velocity error, deg/sec 17.888 _ 145.494
, , ,

rms position error, deg 0.061 1.856

rms velocity err'or, deg/sec 2.147 -- , 20.469

Table 1' Simulation results for 7 = 1.

no tip mass 0.275 kg tip mass
.... , i, ,.

no noise with noise no nome with noise

peak torque (lst joint),N-m 6.024 6.051 6:232 6.107

peak torque (2hd joint), N-m 1.222 1.24 0.878 0.86

peak position error, deg 0.175 1.4i3 9.259 9.59

pe._,kvelocity error, deg/sec 10.182 48.121 i'_i2.786 157.536

rms position error, deg 0.038 0.333 i":943 2.664

rms velocity error, deg/sec 1.404 5.103 21.322 20.803
.........

Table 2' Simulation results for 3' = 0.1.

no tip mass 0.275 kg tip mass
no noise with noise no noise with noise

,

peaktorque (lst joint), N-m 6.012 6.032 6.231 6.092

peak torque (2nal joint), N-m 1.23 1.222 0.99 0.972

peak position error, deg 0.207 0.689 9.647 11.59
..... I , ,,,,, I ,,_

peak velocity error, deg/sec 16.67 15.643 184.636 186'772
.......

rms position error, deg 0.041 0.171 1.962 3.05

rms velocity error, deg/sec 3.208 2.(_76 24.711 22'058
, ,

Table 3: Simulation results for 3' = 0.

12



In the above simulations, the gains were switched every 200 milliseconds for a total

of 11 sets of gains. Other simulations were run in which the gains were switched every 20

milliseconds a_td still more simulations were attempted with just one set of gains for the entire

2.058 seconds. The results of these variations in scheduling showed no noticeable difference in

performance regardless of how many times the gains were switched, i.e., the gains remained

fairly constant for different operating points along the trajectory. Thus, it was determined

for the sake of simplicity that one set of gains would suffice for the experimentation. The

conclusion of the simulations is that the gains corresponding to 7 = 0.1 will probably be best

for the actual structure because it was effective in handling both sensor noise and modeling

error.

6 Experimental Results

The complete robotic system includes the two-link flexible arm structure, two motor ampli-

fiers, two DC servo _...... o, two motor encoders, two motor tachometers, three strain gages

attached to each link, an accelerometer at the tip of each link (see Figure 1), and a VMEbus

computer system. The motor amplifiers and DC servo motors were chosen so that the con-

trol inputs to the system are the motor torques, i.e., the amplifiers essentially a:ct as current

regulators for the motors. The peak motor torques are 7 N-m (996 oz-in) for the motor

at the base and 2.25 N-m (318 oz-in) for the motor at the elbow. Given the weights and

moments of inertia of the links and the motor hubs, this translates to angular accelerations

of approximately 152 deg/sec 2 for joint 1 and 2918 deg/sec 2 for joint 2.

The links of the robot arm are made of aluminum. The flexible part of link 1 is 0.46m by

15.24cm by 4.76mm, and the flexible part of link 2 is 0.49m by 7.6_cm by 1.59mm. The EI's

of the links are 98.6 and 1.75 N-m 2 for the first and second links respectively. Assuming a

cantilever beam, the theoretical first modal frequencies of link 1 and link 2 are approximately

18.1 Hz and and 5.4 Hz, respectively. These are fairly close to the experimentally measured

natural frequencies of about 20 Hz and 8 Hz. These frequencies vary only slightly with the

position of the links.

A VMi.based 68030 computer, encoder counter board, and I/O board are used to control

the system. The controller's sampling time is 1 millisecond. Two twelve bit encoder counters

measure the angles of the motors. Eight twelve bit A/D channels are used to measure the

tachometer of each joint, the six strain gages, and the two accelerometers. To reduce noise

in the system, the strain gage signals are first filtered by 100 Hz low-pass filters before being

sampled, and the accelerometer signals are filtered by 10 Hz low-pass filters. These filters

are present only in the experimental system and were not included in the simulations. Two

13



twelve bit D/A channels are used to output the desired torques to the motor amplifiers•

Experimental results have already been obtained utilizing the feedforward approach [11].

These results showed that open loop control using the modeled torque values only was not

adequate due to inherent modeling error as well as external modeling error such as a payload.

Error driven control only (such as PD control) also is not adequa:te due to large overshoots

if gains are small or instability i_"gains are large. But, the feedforward approach which

combines the two strategies yielded accurate tracking even with a payload•

The experimental results for the LQR strategy of Section 4 are obtained using the hard-

ware described above. A program written in C implements the LQR approach on the actual

system. Since the sensors available on the structure cannot possibly provide accurate me-_-

surements for ali 22 system states, an estimation scheme is necessary• As in the simulations,

only the two velocity states directly provided by the tachometers are utilized with the other

9 velocity states ignored. The 11 measured position states are constructed via the shaft

encoder and strain gage signals in the following manner

01 = el (21)

02 = 01 (22)

03 = 02 + c1,1 (23)

04 = 03 + q,2 (24)

0s = 04 +_,,3 (25)

06 = 05 (26)

0T = 06 + q2 (27)

0s = 0z (28)

09 = 0s + _,, (29)

0,o = 09 +e-_,2 (30)

011 = 01o + c2,3 (31)

where the e_,j are the curvatures as measured by the jth strain gage on the ith link, and the

ql are the ith shaft encoder positions. The strain gage measurements are just numbers repre-

senting D/A counts. These values are converted into angular measurements by multiplying

them by a curvature conversion factor. This factor is obtained by comparing simulated cur-

vatures (in units of radians/meter) to the experimental strain values for a pulse response

maneuver. The measurement is then multiplied by the length of the element (one-third of

the link length) to get the value in radians.

The actual error states are constructed by subtracting the desired values of these 11

states (determined by the optimizing program and the finite-element model as described in

14
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Section 2) from the above measured values. Each joint torque assumes full state feedback

(all 22 states except for the 9 ignored velocity states). In the experiments, gain switching

was attempted with no noticeable difference in results, therefore, only one set of gains was

employed for the actual maneuver.

In addition to the choices of Q and R matrices presented in the simulations, system

performance for other values was studied. These resulted in large overshoots at the end of

the tip trajectory, motivating further refinements la choosing Q. The R matrix remained

unchanged, but it was decided that more penalty should be placed on the two velocity states

to result in less overshoot (due to increased damping). In particular, the penalty on the first

joint velocity was increased 3ubstantially since most of the observed overshoot was in the

first link. The resulting Q matrix was

10111×1_ : 011×:1

Q= : 80 (32)
011xll : 0.8Isxs

! 4

: 0.814x4

The plots resulting from these gains ar,_ shown in Figures 5 and 6. Figures 5(a),(b)

show the tip position without and with the 0.275 kg tip weight, respectively. The results

are an improvement over the previous gains since there is less overshoot and hence faster

settling time. Also shown on these graphs are the tip position plots for the feedforward

method. It can be seen that the feedforward method results in less overshoot and better

tracking of the trajectory. But, the gains for the feedfot'ward method were hand-tuned (trial

and error experimentation) to get good performance. An important point to be made here

is that the LQR method could be used to obtain a good first choice of gains then some

hand-tuning could be implemented to further refine the gains. This would be much easier

than the feedforward method to implement because the LQR procedure provides a good

starting point. In fact, this was done with very little refining needed to get just as good

a performance as the feedforward approach. In both methods, it takes a little more than

the optimal time of 2.058 seconds to reach the quiescent point. This is because the error-

driven control component must assume the role of driving the system to the quiescent point

due to inherent modeling errors. Both methods require an additional 2 seconds to reach a
vibrationless state.

Figures 6(a),(b) illustrate the torque profiles of each joint for the LQR method with the

modeled (open loop) torque profiles superimposed. Tile torque profile of the LQR control

15



shows how the errors in states perturb the modeled torque trajectory. These plots are

virtually identical to the torque profiles for the feedforward method [11], which indicates that

both methods have similar performance. The chattering in the torque profile is primarily

due to the velocity feedback which is noisier than the position feedback.

7 Conclusions

This paper presents a methodology for controlling a two-link flexible robot arm along a

specified path in minimum time. An optimization program plans the motion based on a finite-

element model_ motion constraints, and motor torque limits. To account for modeling errors,

an error-driven component, consisting of the errors between the actual state parameters and

the desired states according to the model, is added to the computed torque. An LQR

design strategy is implemented to determine the optimal feedback gains for this error-driven

component. Specific states and joint controls were penalized by increasing or decreasing

the corresponding entries in the Q and R matrices of the quadratic cost criterion. Based

on the experimental results, a promising strategy is to obtain an initiul set of gains via the

LQR method that is optimal for the given model and then improve on these gains by hand-

tuning them on the physical structure. This combination strategy will converge to a desired

performance level quicker than either method by itself.

This method of control would be best applied to manipulators performing repetitive

motion such as assembly robots or high bandwidth micro-manipulators (e.g., disk drive

positioning arms). While the optimization is time consuming, it would be cost effective if

the motion was to be repeated hundreds of times. Future work will look at improvements

to the LQR strategy such as considering feedback of integrated position states to reduce

noise effects as well as formulating the problem in discrete time. In addition, an LQG design

whereby a Kalman filter is used to estimate the states could alleviate the problem of full

state feedback necessary in the LQR method.
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Appendix

The gradients that are needed to compute the linearized state space model of the flexible

manipulator are as follows.

0 -M,,2 sin(z, - z2) .... M,a, sin(z, - z,,)

OU(z) -M2., sin(zt - z2) 0 ... 0
..... (33)

OZl . . '. .

-Mll,, sin(z1 - z11) 0 ... 0

t

0 M1.2sin(z, - z2) ... 0

OM(z) U2., sin(z, - z2) 0 .... M2.,1 sin(z2 - z,,)
Oz2 - : . '.. . (34),

0 -Mll,2sin(z2-z11) '" 0

0 0 '" M,,I,sin(z, - z,,)

OM(z) 0 0 ... M2,,, sin(z2 - z,,)

0zll : . . (35)

M,,., sin(z, - z,,) M,,,2sin(z_ - z,,) ... 0
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OM(z)
Ozl = [0111×11,i = 12,..., 22 (36)

11 cos(z1 z_)_+_+_=_ MI,_ z 2 11- - E_=_K_,_cos(z1 z_)

OS(z_._._) M2,x cos(z, - z2)z_2 - I'[2,, cos(zt - z2) (37)Ozl = :

M,,,, cos(zt - z,x)z_2 - Kax,xcos(z, - z,,)

Mx,2cos(zt- z2)z_3- l(,,2cos(z, - z2)

' - _=1,_#2 cos - x_xl "
OS(z) n M2,, (z2 z,)zhtx + _,=,,,#2 Ii.2,, cos(z2 - z;) (38)

Oz2 :

MI,xx cos(z1- zll)z_2 - Irt,x1 cos(z, - Zll)

OS(z______))= Ms,x, cos(z2- zax)z_2 - I_2,,, cos(z2 - z,,) (39)
Oz,,

,o _os(_,- z,)zh. , ,,, -"- E,=t M,l,i t + E_° It', cos(z,1 z,)

0

OS(z.____)= 2M2,, sin(z, - z2)z,2 (40)
Oz,2

2M1,,, sin(zt - z,x)zx2

2M,,2 sln(z2 - zl)zx3
0

aS(z)
= 2M3.2 sin(z2 - z3)z,3 (41)

OZ13

2Mll,2 sin(z2 - zaa)z,3

-2M1,1 ';in(z1 - zll)z22

-'2M2.11 sin(z2 - zlx)z22
aS(z)

= : (42)
0Z22

-2M1o.ll sin(zm - Zt1)
0

with the l_t 22 gradients being l lxl vectors.
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Figure l(a). Sandia two-link, flexible robot arm.
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Figure l(b). Geometry of finite-element model of the two-link flexible robot arm.
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