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Deriving a terrain model from sensor data is an important task 
for the autonomous navigation of a mobile robot. This paper 
describes an approach for autonomous underwater vehicles using 
a side scan sonar system. First. some general aspects of the type of 
data and filtering techniques to improve it are discussed. We then 
proceed to derive an estimated bottom contour, using a geomemc 
reflection model and information about shadows and highlights. 
Sevcral techniques of surface reconstruction and their limitations 
are presented. We also describe a method of feature exrraction 
which is important for future data matching/fusion procedures. 

and fleberr [4] and Sfeworf [lo]. Rigaud and .%force dcvclopcd 
in [9] a mcthod of acoustic data accumulition/fusion in ordcr to 
determine the absolutc location of an ROV. 

Currently we use data obtaincd by a sidc scan sonar sys tcm. Thc 
analog output data from the systcm is digitizcd and transformed 
into images of standard dimcnsions of 450 rows x 500 columns. 
Each row rcprcsents one scan of thc sca bottom. Thc intcnsity of 
thercturned cchoesisrccordcd as intcnsityofcachpixel at acertain 
instant in time as the sound wave propsgatcs along thc bottom. 
The intcnsity returned depcnds mainly on:  Anglc of incidcncc of 
sonar beam on bottom surfacc, Reflcctnncc propcrtics of bottom 

~~ 1 Introduction surface and Attenuation of ultrasound in sca watcr. 
Taking into accountthc rcsolution of tlic scnsor and vclocily oi 

Right now it is assumcd that thc sonar fish uavcls along a straight 
line. Thus adding several scans bul,ds up  an by rows, 
the translation bctwccn rows being 25 cm. Hcncc cach pixcl 
represents a projected arcs of dimensions 25 cm 15 cm (row 

Underwater automation is becoming an sound in water, each pixel rcprcpnts 1 j cm in column direction. 
area Of research in robotics Owing to a growing Of potentid 
applications. The goal of underwater automation is to build Au- 
tonornous Underwater Vehicles (AUV) that are able to navigate 
through an unknown environmenf build maps. and act within the 
environment without outside intervention. Like any autonomous col). Fig. shows digitized sonar d:,ls. 
systcm, AUVs must have the capabilities of cognition, perception. 
and action. Promising solutions have been proposed for cogni- 
tion [ 1 I]. and for low-level navigation [6]. Perception, however, 
remains an open issue owing partly to the nature of the sensors, 
and partly to the nature of the underwater world. 

Section 2 dcscribcs mcthods. we havc implcmcntcd for filtering 
the raw data and extracting fcaturcs. Scction 3 dcscribcs mctli- 
ods for computing rclativc clcvations ;ind approximatc surfacc 
contours, using a particular surfacc rcllcciion modcl. 

In this paper, we address the problem of perception for an 
AUV. that is the building of representations of the environment 
from sensor data. A sonar sensor is an obvious choice for un- 
dcrwater machine vision applications since so far systems based 
on light (laser, camera) do not compare in performance. Building 
models from sonars for terrestrial navigation has been studied ex- 
tensively [ 5 ] .  For underwater navigation, many models have been 
proposed for representing the terrain [7] and for gathering terrain 
reprcsentations in a higher level data structure [3]. The problem of 
proccssing the sensor readings to construct those representations 
remains an issue due to the nature of the sensors [lo]. In this pa- 
per, we investigate algorithms for constructing a representation of 
the bottom contour. the 'qualitative elevation map', that is suitable 
for autonomous mapping and navigation. The representation can 
be included in a comprehensive map representation system such 
as the ones described in [ 11) or [3]. Our emphasis. however, is on 
constructing reliable low-level terrain representation from sensor 

2 Image Processing 
Before attempting to rcconsmct surfxcs from s o n u  imagcs. the 
raw images must be proccsscd. This imngc proccssing St3gC has 
three goals: noise reduction, fcaturc cxtrnction, and shadow dc- 
tection. 

2.1 Noise reduction 
Thc imagcs obtsincd tcnd to bc vcry noisy (Fig. 5). Thc rcason 
is that a sidc scan son= docs not mcisurc only rhc TOF of thc 
first ccho rcccived for computing thc shortcst distancc to a ccrt3in 
point in spacc, but records all cchocs. Hcncc multiplc cchocs 
from a singlc scattcrcr arc rccordcd a t  diffcrcnt instanccs in timc 
and for each scan lcad to f a l x  intcnsiLy pcaks in spacc. hlultiplc 
echoes from scvcral scattcrcrs may add a t  thc samc point in space 
and timc and thus mnkc thc situation cvcn worsc (spccklc noise), 
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Standard image operators, like gradient operators tend to fail if 
applied to this type of data unless some prefiltering is done. 

Our approach to noise reduction is to apply a series of filtering 
operations. each of which addresses a particular type of noise. 
This approach gives us control over the amount of smoothing, 
noise reduction, and data enhancement that is achieved. 

The following filters are currently applied: 
2-D 3x3 Median Filter: The purpose of this filter is to remove 

isolated spurious measurements (spikes or dropouts) without dis- 
turbing the rest of the data. 

Modifred Median Filter with variable window size : The previ- 
ous median filter removes one pixel wide spikes and dropouts but 
does not remove spurious data that occupies a larger region. Us- 
ing a larger median filter would remove larger regions but would 
also eliminate important details in the image. To get around this 
problem. a modified median filter is applied, removing only val- 
leys, Le. negative extrema, but leaving peaks intact. The idea 
bcing that peaks are likely to correspond to a point of interest 
whereas valleys are mostly drop outs or arise due to speckle noise. 
Also. peaks due to noise generally tend to be much lower and will 
be removed by filling up the valleys between them. The filter is 
applied several times; increasing the window size each time. 

Graduated Non Conuexity (GNC) Filter : Once isolated spu- 
rious returns are removed, the next stage is to remove some of 
the speckle noise that is essentially a random dismbution in the 
data. A standard smoothingoperator woulddo the job but it would 
also smooth out discontinuities in the data that may correspond to 
important features. A good compromise between smoothing and 
edge preservation is achieved by the GNC algorithm [I]. The gen- 
eral concept of this algorithm is to find a function that minimizes 
an energy that combines the distance between the function and 
the input data. a measure of the smoothness of the function, and a 
measure of the average extend of the discontinuities. The result is 
such that edge discontinuities are preserved while the remaining 
surface is smoothed. 

The GNC Filter is applied once again for each column to ensure 
greater consistency between rows. The effect of the applied filters 
m shown in Figure 1. 

2.2 Shadow Detection 
Shadows are an imponant source of information in a sonar image. 
Similar to optic shadows cast by objects when illuminated from 
one direction, acoustic shadowsare formed behind large elevations 
or objects on the sea floor. Sound waves travel generally along 
3. straight line over shorr distances in the same medium. The 
principles of acoustic shadow formation are therefore essentially 
:hc same as in geometric optics. Hence no distinct echoescan be 
observed in an acoustic shadow zone since it is shielded by the 
PrCCCding contour. Therefore shadows are an important source of 
:nfmnation in a sonar image. since they indicate the presence of 
3n object or a change in bottom contour. Ideally the signal level 
Whin a shadow region should be zero. In reality, however, this is 

true because of the previously discussed problems with noise. 
The occluding edge in front of a shadow region is in most cases 

;hmCtcrized by a sharp drop in signal level. The algorithm uses 
1 -I)  window and operates on each row individually. It classifies 
P l W  as belonging to an occluding edge if a sharp signal drop is 

detected and signal values within thc prospective shadow rcgion 
are below a ccrtain threshold. Thc shadow is thcn defined as the 
region between the occluding cdgc and the point where thc sign 
of the slope of the signal turns from ncgativc to positive. A lot of 
false shadows arc ncvcrthclcss dctcctcd by this procedurc. Thcy 
are eliminated as follows: By using a histogram. the probable 
signal values for real shadows are dctcrmincd, since hcrc values 
are more evenly distributed than in othcr regions. Because of 
noise in the data that has not been smoothed by the applicd filters, 
it is also possible that an occluding cdgc is detected even though 
there is no real shadow. These falsc shadows are climinatcd by 
comparing the average signal valucs prcccding and following the 
occluding edge. Since the sonar fish rnovcs quite closc to the 
bottom, shadows tend to be long for areas of distinct elcvation. 
Hence, if the signal Icvcl does not stay low for quite somc distance 
with respect to the signal lcvcl prcccding thc occluding cdgc, the 
detected shadow is classified as bcing falsc and rcrnovcd. 

A clustering algorithm thcn assigns each shadow dctcctcd in a 
row to a particular shadow group in thc image. Thc results arc 
shown in Figure 6. 

Finally it should be mentioned that shadows can 3 k O  bc used 
to locate and prcdict the shape of fcaturcs on the sca bottom. 
Especially, if we have more than one vicwing dircction of thc 
same area, approximate boundarics of objccts or elevations can bc 
ex trac tcd. 

3 Estimation of Bottom Contour 
3.1 Introduction 
Recovering the bottom contour from sidc scan sonar data poscs a 
highly undcrconstraint problcm. which may not lcsd 10 a unique 
solution without making stTong assumptions about the obscrvcd 
surface. Some of the difficultics cncountcrcd are discussed in the 
following paragraphs. 

The sonar data provides esscnrially thrcc parameters: 

1. The orientation. x-y position and dcpth ZF of the sonar fish 
for each scan line. 

2. The range R to a surface patch. 

3.  The intensity (echo level) of thc rcccived echo for that par. 
ticular surface patch. 

It should be noted that the known range R is the slant rangc to 
a particular surface patch, but that thc anglc of inclination p to 
the horizontal is not known. Hcncc the rcflccting surfacc patch 
can lie on any part of an annular scction with rangc R as radius. 
The horizontal and vertical cxtcnsion of thc annular section is 
dctcrmincd by the horizontal and vcrtical field of vicw of thc 
sonar at range R, i.e. the apcrturc of the sonar (SCC Fig. 2). 

Combining and matching diffcrcnt data SCU, as mentioned be- 
fore, provides a means to eliminate wrong data and gain more 
knowledge about the area of interest. However. since we only 
know the slant range for each surfacc patch but not thc direction 
of mcasurcmcnt, it is virtually irnpassiblc to find concsponding 
data points bctwccn two irnagcs accurarcly. In ordcr to avoid this 
corrcspondcnccproblcm we would actually nccd a fixed x-y-z po- 
sition in spacc for each data point. Hence we will use thc rctum 
signal intensity (ccho Icvcl) at 3 ccrtain range to computc the angle 
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of inclination a of the surface normal for a particular reflecting 
surface patch. a is measured with respect to the Line of sight to the 
respective surface patch (see Fig. 3 ). Once a is known. we can 
auempt to find the actual bottom contour. The reflectance model 
and method of surface reconstruction is described in detail in the 
following sections. 

3.2 Surface reflection model 
Sound waves behave in many ways similar to electromagnetic 
waves like light waves. They propagate according to Fermat's 
principle and obey Snell's law of refiaction. In the case of reflec- 
tion we can distinguish between diffuse and specular reflection. 
The wavelength of sound is much longer compared to the wave- 
length of light Hence surfaces appear much smoother to sound 
than to light since the ability to resolve two neighboring peaks on 
a rough surface depends on angle of incidence a and wavelength 
X. A surface will reflect an incident sound wave specularly when 
the following condition is true: 

H c o s a  5 X/4 (1) 

where H is the period of the surface irregularities. 
Also for specular reflection, angle of incidence is equal to an- 

gle of reflection. Further, for a rigid reflecting surface, pressure 
(amplitude) of incident wave is equal to pressureof rcflectedwave. 

However, real surfaces are generally non-rigid reflectors and a 
part of the incident sound energy will be transmitted into the new 
medium. The amount of incident intensity reflected depends on a 
material property of the two media and is given by the reflection 
coefficient k,: 

where I, is the reflected intensity, I; is the incident intensity. pj 
and cj are the density of medium j and the velocity of sound in 
medium j ,  respectively. 

Source and receiver are at the same position for a side scan 
sonar. Therefore the sensor only receives the intensity reflected 
back in a direction towards i t  To determine the angle of reflection 
from the received intensity we use a model similar to the one pro- 
posed by Torrance-Spmw. described in [8]. The model is based 
on geometrical optics but it also gives a fairly good approximation 
of the behavior of sound waves for the environment considered 
here. 

The present model takes into account two componenu of re- 
ffcction, diffuse and specular. The diffuse lobe is represented by 
the Lambettian model. A Lambertian surface scatters incident en- 
ergy uniformly in all directions. The energy radiated is therefore 
dctermincd by the incident energy which is proportional to cos a. 
where o is the angle of incidence. The specular lobe represents 
specularreffection from arough surface. The surface is assumed to 
be a collection of facers whose slopes are described by a Gaussian 
distribution model. The surface thus described, scatters incident 
energy in the form of a lobe that is symmetric about the specular 
direction (see [8] for details). Since source and receiver are at 
the same position for a side scan system. CY is angle of incidence 
and also angle of reflection. The relationship between reflected 

intensity I, and a can then bc writtcn as a l i neu  combination of 
the two: 

1 
I, = Cd cos a + C,i G(a)  - cos (Y 

The constants Cd and C,, denote the relative smcngth of the dif- 
fuse and specularcomponent and are also a measure of the surface 
albedo k,. na is a factor that dcscribes surface roughness. G ( o )  
is a geomemc attenuation factor (rcfcr KI [8] for a detailed cxpla- 
nation). For the sonar sensor geometry, it is given by: 

~ ( o )  = min(1, 2 cos* a) 

Inclination of the surface normal 

(4) 

(See Fig. 3 for a definition of a). 

3.3 
The sonar actually measuresthe time of flight for areflectcd sound 
pulse which is then convcrtcd to distancc: 

I- 
d = c , -  (5 ) 2 

where C ,  is the velocity of sound in watcr. A changc in c, alfccts 
the propagation of sound in watcr and thc accuracy of our mea- 
suremcnt. Parameters affecting c,. sortcd in ordcr of importance, 
are: Temperature. Salinity and Dcpth (Prcssurc). (Rcfcr to [12]). 

Since the sonar fish is towed rclativcly close to the sea bottom, 
variations due to changes in prcssure can be neglected. Moreover 
the prcscntly used side scan sonarcovcrs only a short range, which 
means that temperature and salinity disuibutions will be fairly uni- 
form and hence can be ncglcctcd too. Howcvcr. a salinity gradient 
affccting measurcmcnts will cxist in arcas whcre frcshwatcr and 
sea watcr mix. 

Therefore it can be assumed that in our case thc sound waves 
navel along a fairly straight line and attenuation of the signal is 
mainly due to geomemcal spreading losses. 

This means, that the initial intensity I,, of the pulse scnt at timc 
t = 0 does not stay constant over the whole range but changes 
proportional to a & fall off with incrcasing distance R from the 
sensor. The attenuation is thcn givcn by thc following formula: 

I, = - I 0 k ~ ( 2 R  1 tan(q/2)) 
4 7rR4 

I, bcing the intcnsity of Ihc rcccivcd signal for an idcal rcflector. 
taking into account gcomctric sprcading losscs, and 7 bcing the 
horizontal field of view of thc sonu. k A  is a factor adjusting for 
the arca of the scatterer as it appcars to the sonar [2]. 

To keep the signal valucs of the rcceived intensity within a 
convcnicnt range, they are gcnerally convcrtcd to dccibcl: 

E, = 1OlogI,, E, = 10 log I, 

where, for a specific range, I, is thc rcccivcd signal intcnsity. E 
is the ccho lcvel of the rcccivcd signal from thc sonar and E, the 
initial echo lcvel. 

It is assumed that the time varying gain of thc sidc scan system 
performs an idcal corrcction for gcomctric attenuation on thc rc- 
ceivcdsignal according to cqt. 6 .  Then 1: is thc rcccivcd intensity, 
scaled to unity and compcnsatcd for sprcading losscs: 

= 10" I€;), E: = KB . ( E ,  - E,) (7) 



where K, is a factor to adjust the scale of the digitized signal. 
Substituting at a certain range into Equation 3. the angle of 
inclination Q between the sensor's line of sight and the surface 
normal at that point can be estimated. Since Equation 3 cannot be 
directly resolved for Q. a look up table is calculated for positive 
values of alpha (Equation 3 is symmetric). The constants CQ. C,, 
and up are surface reflectance parameters, which are estimated at 
the moment. The estimation is done by visually comparing our 
knowledge about the actual surface with the surface reconstructed 
by the methods described later. The reflectance parameters are 
thcn adjusted as necessary. Eventually, we intend to derive tables 
containing these parameters for different types of surfaces. 

3.3 Reconstruction of the approximate sur- 
face contour 

The following parameters are now available to help in estimating 
the bottom conrour: 

Position and orientation of sensor in world coordinates 

Angle of inclination of the surface normal 

Range corresponding to each computed angle of inclination 

Nevertheless the problem is still underconstrained and even 
though we have computed the angle u. we do not have a unique 
orientation of the surface normal for each surface patch. The 
surface normals possible for a particular angle CY will actually 
form a cone around the line of sight. Since the actual reconstructed 
surface is a combination of individual patches and there still is a 
number of orientations for each patch, there will also be a large 
number of different surfaces possible. A global minimization 
procedure imposing smoothness constraints on the surface can 
thus be used to find the final estimate of the bottom contour. An 
altcmative solution is to assume boundary conditions, specifically 
the slope of the terrain at the first recorded echo, and to propagate 
the angular constraint to the entire map. We now describe two 
such propagation algorithms: a 1-D algorithm that integrates the 
angular constraints along each scan line separately, and a 2-D 
dgorithm that integrates the constraint over the whole map at 
once. 

At the starting poink which corresponds to the closest measured 
range, the following assumptions are made: 

The nearest (first) echo recorded corresponds to the depth 
below the sensor, i.e. angle y between line of sight and 
x-axis = 90'. and ZE = 2,. 

The surface normal at this point is along the line of sight of 
the sensor, i.e. Q = 0. This assumption means that all the 
orientations are computed relative to the orientation of the 
surface at the first recorded data point. 

Also all surface normak are taken to lie in the x-z plane. with 
* being measured counterclockwise from the surface normal (see 
Fig. 4). 

Now for a point at position X, and range Ri the gradicnt tan B 
O f  the surface in xdirection is calculated from angle u. 

e = x / 2  - + ZE 9 = arcsin - 
R '  

The surface at Xi. Ri can thus be represented by a straight linc 
segment as shown in Figure 5 .  To find the next point at X;+i,  an 
intersection is found between this straight line and a circlc with 
radius ,?;+I, the sensor k i n g  at the center. The advancing wave 
fiont is modeled here as the section of a circle rather than as an 
annular section. This simplification is made since the horizontal 
field of view of the sensor is only 2'. Similarly all following n 
points for a scan line are found and the resulting 1-D surface scg- 
ment is represented by a combination of line segmenk Shadows 
are included as shown in Fig. 4. The line of sight q is known at 
the occluding edge and the extraction of the shadow lcngth was 
described in Section 2. The method is repeated for each scan line. 

Since there are generally no large surface discontinuirics in  a 
local area between neighboring scan lines. the surface built up 
by the I-D segments will be reasonably smooth. The method is 
obviously prone to error accumulation and its performancc will 
also decline with the pcrccntage of surface inclincd in y-direction. 
Nevertheless if there is an inclination in y-direction. i t  will still 
show up as a gencral tcndcncy. 

The method was tcstcd on simulated data. consisting of Lhrce 
intcrsecting planes inclincd at diffcrcnt anglcs to cach other. The 
results obtained here proved to be reasonable enough as to scrvc as 
an input to furthcr proccssing. Thealgorithm was thcn uscdon rcsl 
data and the result is shown in Fig. 7. Sincc thc algorithm is only 
1-D. an inconsistency betwcen rows can be observed. espccially 
the further we get away from the starting point owing to error 
accumulation. 

In order to reduce these errors, we can ineoducc a furthcr 
geometric constraint and extend the prcsent method to 2-D: 

Let us represent the surface in cylindrical coordinitcs: p = 
u(R, y). where 

x = R c o s p ,  y = y ,  z = R s i n p  (8) 
At the data points (R,y). the dot product between the surfacc 
normal n' and thc range vector 8 in thc x-z plane is given by 

(9)  
Note that the starting points for all vectors 8 correspond to the 
respective positions of the sonar fish. 

Expressing n'as a function of the partial derivatives of the sur- 
face and substituting cylindrical coordinates in the above cquation. 
we finally get: 

2 .  ii = IlPJl cos Q 

If we can solve the above differcntial cquation. we can obtain thc 
azimuth anglc y as a function of R and y. which are known from 
thc data. In practice. wc havc to work with discrctc valucs of R and 
y,thatis: R=6R,26R,...,n6R,andy=6~,26y, ..., n6y. Thc 
functions y(R,y) and a(R,y) bccome arrays yji and oji whcrc 
j and i corrcspond to y = j 6 y  and R = i6R respectively. By 
using finite diffcrenccs. bccomcs vji*&vii and 9 bccomcs 
'9rl I -v.i 

6, ' . Substituting the finitc diffcrcnccs into equation 10 and 
observing that R = i 6R, we obtain: 

. 
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Equation 11 shows that cpji+l depends only on v j i  and vj+~i. 
Assuming that the values at the boundary, v j o  are known, this 
suggests an algorithm to propagate the values of 9 by, starting at 
column i = 1. iteratively computing ~ , i + ~  for allj’s as a function of 
the values computed at step i. Equation 11 gives a formal way to 
ensure both that the angular constraints are satisfied everywhere. 
and that the resulting surface is smooth. i.e. it has consistent 
values between scan lines. 

3.5 Remarks 
There sti l l  remain some additional problems in the approaches 
introduced so far. The main problem is that some of the param- 
eters of the reflectance model are difficult to estimate. However, 
it is possible to put bounds the acceptable values on the param- 
eters which would then be converted into bounds on the terrain 
shape through the reconsmction process. Finally, the reconstruc- 
tion algorithms tend to produce unsmooth surfaces due to the 
discretization of the signal and the approximation of derivatives 
by first-order differences. One improvement would be to include 
a smoothness constraint in the reconsmction algorithm in a way 
similar to [l]. 

4 Conclusion 
Side Scan Sonar data tends to be very noisy, making it difficult 
to achieve good results using standard image processing tech- 
niques. Using the described filtering methods, however, we were 
able to obtain reasonably smooth data, which still contained all 
the important information. From the filtered data, we can then 
extract features, like high intensity points, that can be used in fu- 
ture to match different sets of data. By using information about 
shadows, high intensity points and reflective properties. we have 
started developing algorithms to compute boundaries of objects 
and an approximate surface contour for the terrain scanned by the 
sonar. Due to the nature of side scan sonar data it will not be 
possible to build an accurate 3-D elevation map, but using the 
methods described in this paper. we are able to build what we 
call a ’Qualitative Elevation Map’. This map contains informa- 
tion about elevation constraints of the terrain surface, boundaries 
of distinct objects and regions with true and relative elevations. 
This map does not provide a detailed high resolution description 
of the environmenk but it contains enough information to enable 
an autonomous vehicle to navigate safely in unknown terrain. By 
matching data taken from different viewpoints, we will be able 
to reduce the amount of unknown areas and also eliminate false 
information due to noise. 

Hence our future work will consist of extending the present 
algorithms to compute all the information needed for the qualita- 
tive elevation map and developing a robust matching algorithm. 
Techniques have been demonstrated on data from a conventional 
side-scan sonar but our goal is to port them to a fast imaging 
sonar. The sonar mapping module will eventually be used in the 
navigation and mapping of a vehicle being developed at FAU. 
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Figurc 1: Echo signal of a scan bcforc and after filtering 
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Figure 2: Sonar field of view 
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Figure 3: Sensor geomecry 

Figure 4: Surface reconstruction 


