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Abstract

Deriving a terrain model from sensor data is an important task
for the autonomous navigation of a mobile robot. This paper
describes an approach for autonomous underwater vehicles using
aside scan sonar system. First, some general aspects of the type of
data and filtering techniques to improve it are discussed. We then
proceed to derive an estimated bottom contour, using a geometric
reflection model and information about shadows and highlights.
Several techniques of surface reconstruction and their limitations
are presented. We also describe a method of feature extraction
which is important for future data matching/fusion procedures.

1 Introduction

Underwater automation is becoming an increasingly important
area of research in robotics owing to a growing field of potential
applications. The goal of underwater automation is to build Au-
tonomous Underwater Vehicles (AUV) that are able to navigate
through an unknown environment, build maps, and act within the
environment without outside intervention. Like any autonomous
system, AUVs must have the capabilities of cognition, perception,
and action. Promising solutions have been proposed for cogni-
tion [11], and for low-level navigation [6]. Perception, however,
remains an open issue owing partly to the nature of the sensors,
and partly 1o the nature of the underwater world.

In this paper, we address the problem of perception for an
AUV, that is the building of representations of the environment
from sensor data. A sonar sensor is an obvious choice for un-
derwater machine vision applications since so far systems based
on light (laser, camera) do not compare in performance. Building
models from sonars for terrestrial navigation has been studied ex-
tensively [5]. Forunderwater navigation, many models have been
proposed for representing the terrain [7] and for gathering terrain
representations in a higher level data structure [3]. The problem of
processing the sensor readings to construct those representations
remains an issue due to the nature of the sensors [10]. In this pa-
per, we investigate algorithms for constructing a representation of
the bottom contour, the "qualitative elevation map’, that is suitable
for autonomous mapping and navigation. The representation can
be included in a comprehensive map representation system such
as the ones described in [11] or {3]. Our emphasis, however, is on
constructing reliable low-level terrain representation from sensor
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data. Some previous work in this arca has been done by Cuschieri
and Heber: [4) and Stewart [10). Rigaud and Marce developed
in [9] a method of acoustic data accumulation/fusion in order to
determine the absolute location of an ROV.

Currently we use data obtained by a side scansonarsystem. The
analog output data from the system is digitized and transformed
into images of standard dimensions of 450 rows x 500 columns.
Each row represents one scan of the sea bottom. The intensity of
thereturned echoesisrecorded as intensity of cach pixel at acertain
instant in time as the sound wave propugates along the bottom.
The intensity returned depends mainly on: Angle of incidence of
sonar beam on bottom surface, Reflectance properties of bottom
surface and Attenuation of ultrasound in sea water.

Taking into accountthe resolution of the sensor and velocity of
sound in water, each pixel represents 15 cm in column direction.
Right now it is assumed that the sonar fish travels along a straight
line. Thus adding several scans builds up an image by rows,
the translation between rows being 25 cm. Hence cach pixel
represents a projected arca of dimensions 25 ¢cm x 15 cm (row x
col). Fig. 5 shows the digitized sonar data.

Scction 2 describes methods, we have implemented for filtering
the raw data and extracting featurcs. Scction 3 describes meth-
ods for computing relative clevations and approximate surface
contours, using a particular surface reflection model.

2 Image Processing

Before attempting to reconstruct surfaces from sonar images, the
raw images must be processed. This image processing stage has
three goals: noise reduction, feature cxtraction, and shadow de-
tection.

2.1 Noise reduction

The images obtained tend to be very noisy (Fig. 5). The rcason
is that a side scan sonar docs not measure only the TOF of the
first echo received for computing the shortest distance to a certain
point in space, but rccords all echoes. Hence multiple echocs
from a single scatterer are recorded at different instances in time
and for each scan lead to falsc intensily peaks in space. Multiplc
echocs from several scatterers may add at the same point in space
and time and thus make the situation cven worse (speckle noise).
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Standard image operators, like gradient operators tend to fail if
applied to this type of data unless some prefiltering is done.

Our approach o noise reduction is to apply a series of filtering
operations, each of which addresses a particular type of noise.
This approach gives us control over the amount of smoothing,
noise reduction, and data enhancement that is achieved.

The following filters are currently applied:

2-D 3x3 Median Filter: The purpose of this filter is to remove
isolated spurious measurements (spikes or dropouts) without dis-
turbing the rest of the data.

Modified Median Filter with variable window size : The previ-
ous median filter removes one pixel wide spikes and dropouts but
does not remove spurious data that occupies a larger region. Us-
ing a larger median filter would remove larger regions but would
also eliminate important details in the image. To get around this
problem, a modified median filter is applied, removing only val-
leys, i.e. negative extrema, but leaving peaks intact. The idea
being that peaks are likely to comrespond to a point of interest,
whereas valleys are mostly drop outs or arise due to speckle noise.
Also, peaks due w noise generally tend to be much lower and will
be removed by filling up the valleys between them. The filter is
applied several times; increasing the window size each time.

Graduated Non Convexity (GNC) Filter : Once isolated spu-
rious returns are removed, the next stage is (o remove some of
the speckle noise that is essentially a random distibution in the
data. A standard smoothing operator would do the job but it would
aiso smooth out discontinuities in the data that may correspond to
important features. A good compromise between smoothing and
edge preservation is achieved by the GNC algorithm {1]. The gen-
eral concept of this algorithm is to find a function that minimizes
an energy that combines the distance between the function and
the input data, a measure of the smoothness of the function, and a
measure of the average extend of the discontinuities. The result is
such that edge discontinuities are preserved while the remaining
surface is smoothed.

The GNC Filter is applied once again for each column to ensure
greater consistency between rows. The effect of the applied filters
are shown in Figure 1.

2.2 Shadow Detection

Shadows are an imponant source of information in a sonar image.
Similar w optic shadows cast by objects when illuminated from
one direction, acoustic shadows are formed behind large elevations
or objects on the sea floor. Sound waves travel generally along
a straight line over short distances in the same medium. The
pnnciples of acoustic shadow formation are therefore essentially
the same as in geometric optics. Hence no distinct echoes can be
observed in an acoustic shadow zone since it is shielded by the
preceding contour. Therefore shadows are an important source of
‘nformation in a sonar image, since they indicate the presence of
an object or a change in bottom contour. Ideally the signal level
within a shadow region should be zero. In reality, however, this is
10t true because of the previously discussed problems with noise.

The occluding edge in front of a shadow region is in most cases
<haracterized by a sharp drop in signal level. The algorithm uses
41-D window and operates on each row individually. It classifies
1 pixel as belonging to an occluding edge if a sharp signal drop is
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detected and signal values within the prospective shadow region
are below a certain threshold. The shadow is then defined as the
region between the occluding edge and the point where the sign
of the slope of the signal tumns from negative o positive. A lot of
false shadows are nevertheless detected by this procedure. They
are eliminated as follows: By using a histogram, the probable
signal values for real shadows are determined, since here values
are more evenly distributed than in other regions. Because of
noise in the data that has not been smoathed by the applied filters,
it is also possible that an occluding cdge is detected even though
there is no real shadow. These false shadows are climinated by
comparing the average signal valucs preceding and following the
occluding edge. Since the sonar fish moves quite closc 10 the
bottom, shadows lend to be long for arcas of distinct elevation.
Hence, if the signal level does not stay low for quite some distance
with respect to the signal level preceding the occluding edge, the
detected shadow is classified as being false and removed.

A clustering algorithm then assigns cach shadow detected in a
row o a particular shadow group in the image. The resulls are
shown in Figure 6.

Finally it should be mentioned that shadows can also be used
o locate and predict the shape of featurcs on the sea bottom.
Especially, if we have more than onec viewing direction of the
same area, approximate boundaries of objects or elevations can be
extracted.

3 Estimation of Bottom Contour
3.1 Introduction

Recovering the bottom contour from side scan sonar data poses a
highly underconstraint problem, which may not lead 1o a unique
solution without making strong assumptions about the obscrved
surface. Some of the difficultics encountered are discussed in the
following paragraphs.

The sonar data provides essentially three parameters:

1. The oricentation, x-y position and depth Zr of the sonar fish
for each scan line.

2. Therange R to a surface patch.

3. The intensity (echo level) of the received echo for that par-
ticular surface patch.

It should be noted that the known range R is the slant range to
a particular surface patch, but that the angle of inclination ¢ to
the horizontal is not known. Hence the reflecting surface patch
can lie on any part of an annular scction with range R as radius.
The horizontal and vertical exiension of the annular section is
determined by the horizontal and vertical field of view of the
sonar at range R, i.e. the aperture of the sonar {sce Fig. 2).

Combining and matching different data sets, as mentioned be-
fore, provides a means to eliminate wrong data and gain more
knowledge about the area of interest. However, since we only
know the slant range for cach surfacc paich but not the direction
of measurement, it is virtually impossible to find corresponding
data points between two images accurately. In order 1o avoid this
correspondence problem we would actually need a fixed x-y-z po-
sition in space for cach data point. Hence we will use the return
signalintensity (echo level) at a certain range to compute the angle



of inclination a of the surface normal for a particular reflecting
surface paich. o is measured with respect to the line of sight to the
respective surface patch (see Fig. 3 ). Once a is known, we can
attempt to find the actual bottorn contour. The reflectance model
and method of surface reconstruction is described in detail in the
following sections.

3.2 Surface reflection model

Sound waves behave in many ways similar to electromagnetic
waves like light waves. They propagate according to Fermat’s
principle and obey Snell's law of refraction. In the case of reflec-
tion we can distinguish between diffuse and specular reflection.
The wavelength of sound is much longer compared to the wave-
length of light. Hence surfaces appear much smoother to sound
than to light since the ability to resolve two neighboring peaks on
a rough surface depends on angle of incidence o and wavelength
A. A surface will reflect an incident sound wave specularly when
the following condition is true:

Hcosa < A/4 1

where H is the period of the surface irregularities.

Also for specular reflection, angle of incidence is equal to an-
gle of reflection. Further, for a rigid reflecting surface, pressure
(amplitude) of incident wave is equal to pressure of reflected wave.

However, real surfaces are generally non-rigid reflectors and a
part of the incident sound energy will be transmitted into the new
medium. The amount of incident intensity reflected depends on a
material property of the two media and is given by the reflection
coefficient k,:

. I, c2 — p1c 2
k= = = [P?_?'_f_’u] )
1A p2C2 + p1€1

where /, is the reflected intensity, /; is the incident intensity, p;
and c; are the density of medium j and the velocity of sound in
medium j, respectively.

Source and receiver are at the same position for a side scan
sonar. Therefore the sensor only receives the intensity reflected
back in a direction towards it. To determine the angle of reflection
from the received intensity we use a model similar to the one pro-
posed by Torrance-Sparrow, described in {8]. The model is based
on geometrical optics but it also gives a fairly good approximation
of the behavior of sound waves for the environment considered
here.

The present model takes into account two components of re-
flection, diffuse and specular. The diffuse lobe is represented by
the Lambertian model. A Lambertian surface scatters incidenten-
ergy uniformly in all directions. The energy radiated is therefore
determined by the incident energy which is proportional to cos a,
where o is the angle of incidence. The specular lobe represents
specularreflection from arough surface. The surface is assumedto
be a collection of facets whose slopes are described by a Gaussian
distribution model. The surface thus described, scatters incident
energy in the form of a lobe that is symmetric about the specular
direction (see [8] for details). Since source and receiver are at
the same position for a side scan system, « is angle of incidence
and also angle of reflection. The relationship between reflected

intensity /, and « can then be written as a linear combination of
the two:

2
I, =Ca cosa + CuyG(a) cols = exp (—EZ—%)) 3)
The constants Cz and Cy denote the relative strength of the dif-
fuse and specular component and are also a measure of the surface
albedo k,. o4 is a factor that describes surface roughness. G(a)
is a geometric attenuation factor (refer to [8] for a detailed expla-
nation). For the sonar sensor geometry, it is given by:

G(a) = min(1, 2 cos’ a) 4)

(See Fig. 3 for a definition of a).
3.3 Inclination of the surface normal

The sonar actually measures the time of flight for a reflected sound
pulse which is then converted to distance:

.
d=cu— 5
c3 &)

where ¢, is the velocity of sound in water. A change in ¢. affects
the propagation of sound in water and the accuracy of our mea-
surement. Parameters affecting c., sorted in order of importance,
are: Temperature, Salinity and Depth (Pressure). (Refer to {12]).

Since the sonar fish is towed relatively close to the sca bottom,
variations due to changes in pressure can be neglected. Morcover
the presently used side scan sonar covers only a short range, which
means that temperature and salinity distributions will be fairly uni-
form and hence can be neglected too. However, a salinity gradient
affecting measurements will exist in areas where {reshwater and
sea water mix.

Therefore it can be assumed that in our case the sound waves
travel along a fairly straight line and attenuation of the signal is
mainly due to geometrical spreading losses.

This means, that the initial intensity /, of the pulse sent at time
t = 0 does not stay constant over the whole range but changes
proportional to a ElT fall off with increasing distance R from the
sensor. The attenuation is then given by the following formula:

_ ]
T 4nR*
I, being the intensity of the received signal for an ideal reflector,
taking into account gecometric spreading losses, and 7 being the
horizontal ficld of view of the sonar. k4 is a factor adjusting for
the area of the scatterer as it appears to the sonar [2].

To keep the signal valucs of the received intensity within a
convenientrange, they are generally converted to decibel:

I T.ka(2R 1an(n/2)) ©)

E, =10logl,, E,=10logl,

where, for a specific range, /, is the reccived signal intensity, £
is the echo level of the received signal from the sonar and E, the
initial echo level.

It is assumed that the time varying gain of the side scan system
performs an idcal correction for geometric attenuation on the re-
ceived signal according to eqt. 6. Then/; is the received intensity,
scaled to unity and compensated for spreading losses:

Ir=10%%" Er=K, (E, —E.) M
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where K, is a factor to adjust the scale of the digitized signal.

Substituting [ at a centain range into Equation 3, the angle of -

inclination o between the sensor’s line of sight and the surface
normal at that point can be estimated. Since Equation 3 cannot be
directly resolved for a, a look up table is calculated for positive
values of alpha (Equation 3 is symmetric). The constants Cg, Cy
and o« are surface reflectance parameters, which are estimated at
the moment. The estimation is done by visually comparing our
knowledge about the actual surface with the surface reconstructed
by the methods described later. The reflectance parameters are
then adjusted as necessary. Eventually, we intend to derive tables
containing these parameters for different types of surfaces.

3.4 Reconstruction of the approximate sur-
face contour

The following parameters are now available to help in estimating
the bottom contour:

o Position and orientation of sensor in world coordinates
o Angle of inclination of the surface normal

¢ Range corresponding to each computed angle of inclination

Nevertheless the problem is still underconstrained and even
though we have computed the angle a, we do not have a unique
orientation of the surface normal for each surface pawch. The
surface normals possible for a particular angle o will actually
form a cone around the line of sight. Since the actual reconstructed
surface is a combination of individual patches and there still is a
number of orientations for each patch, there will also be a large
number of different surfaces possible. A global minimization
procedure imposing smoothness constraints on the surface can
thus be used to find the final estimate of the bottom contour. An
alternative solution is to assume boundary conditions, specifically
the slope of the terrain at the first recorded echo, and to propagate
the angular constraint to the entire map. We now describe two
such propagation aigorithms: a 1-D algorithm that integrates the
angular constraints aiong each scan line separately, and a 2-D
algorithm that integrates the constraint over the whole map at
once.

At the starting point, which corresponds to the closest measured
range, the following assumptions are made:

o The nearest (first) echo recorded corresponds o the depth
below the sensor, i.e. angle ¢ between line of sight and
X-axis =90°, and Z¢ = Z,.

e The surface normal at this point is along the line of sight of
the sensor, i.e. o = 0. This assumption means that all the
orientations are computed relative to the orientation of the
surface at the first recorded data point.

Also all surface normals are taken to lie in the x-z plane, with
@ being measured counterclockwise from the surface normai (see
Fig. 4),

Now for a point at position X; and range R; the gradient tan ¢
of the surface in x-direction is calculated from angle o.

¢=arcsini—5, =m/2—(a+¢)

The surface at X;, R; can thus be represented by a straight line
segment as shown in Figure 5. To find the next point at X4, an
intersection is found between this straight line and a circle with
radius Ri,1, the sensor being at the center. The advancing wave
front is modeled here as the section of a circle rather than as an
annular section. This simplification is made since the horizontal
field of view of the sensor is only 2°. Similarly all following n
points for a scan line are found and the resulting 1-D surface seg-
ment is represented by a combination of line segments. Shadows
are included as shown in Fig. 4. The line of sight ¢ is known at
the occluding edge and the extraction of the shadow length was
described in Section 2. The method is repeated for each scan line.

Since there are generally no large surface discontinuities in a
local area between neighboring scan lines, the surface built up
by the 1-D segments will be reasonably smooth. The method is
obviously prone to error accurnulation and its performance will
also decline with the percentage of surface inclined in y-direction.
Nevertheless if there is an inclination in y-direction, it will stll
show up as a general tendency.

The method was tested on simulated data, consisting of three
intersecting planes inclinced at different angles to each other. The
results obtained here proved to be reasonable enough as to scrve as
an input o further processing. The algorithm was then used on real
data and the result is shown in Fig. 7. Since the algorithm is only
1.D, an inconsistency between rows can be observed, espccially
the further we get away from the starting point owing to error
accumulation.

In order to reduce these errors, we can introduce a further
geometric constraint and extend the present method to 2-D:

Let us represent the surface in cylindrical coordinates: ¢ =
(R, y), where

x=Rcosp, y=y, z=Rsing (8)

At the data points (R,y), the dot product between the surface
normal 7 and the range vector & in the x-z plane is given by

R.-7=)R|jcosa ®)

Note that the starting points for all vectors R correspond to the
respective positions of the sonar fish,

Expressing 7 as a function of the partial derivatives of the sur-
face and substituting cylindrical coordinates in the above equation,
we finally get:

1 [9p)? 20\* 1

tan” o (‘a—R') - (‘a—y') = k? (10)
If we can solve the above differential cquation, we can obtain the
azimuth angle ¢ as a function of R and y, which are known from
the data. In practice, we have to work with discrete values of R and
y, thatis: R =6R,26R,---,néR, andy = 6y,28y,---,n6y. The
functions (R, y) and a(R,y) become arrays @i and a;; where
J and i correspond to y = jby and R = {6R respectively. By
using finite differences, %R? becomes 51"6,2;”/—‘ and % becomes
&";—;"ﬂ. Substituting the finite differences into equation 10 and
observing that R = { §R, we obiain:

Lan2a<"’i""“‘?°i‘)2_ Piri = By 2_(L)2(11)
&R by T \ié6R
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Equation 11 shows that ;.1 depends only on ;i and @je1 .
Assuming that the values at the boundary, wjo are known, this
suggests an algorithm to propagate the values of ¢ by, starting at
columni = 1, iteratively computing ;.1 for all j’s as a function of
the values computed at step i. Equation 11 gives a formal way to
ensure both that the angular constraints are satisfied everywhere,
and that the resulting surface is smooth, i.e. it has consistent
values between scan lines.

3.5 Remarks

There still remain some additional problems in the approaches
introduced so far. The main problem is that some of the param-
eters of the reflectance model are difficult to estimate. However,
it is possible to put bounds the acceptable values on the param-
eters which would then be converted into bounds on the terrain
shape through the reconstruction process. Finally, the reconstruc-
tion algorithms tend to produce unsmooth surfaces due to the
discretization of the signal and the approximation of derivatives
by first-order differences. One improvement would be to include
a smoothness constraint in the reconstruction algorithm in a way
similar to [1].

4 Conclusion

Side Scan Sonar data tends to be very noisy, making it difficult
to achieve good results using standard image processing tech-
niques. Using the described filtering methods, however, we were
able to obtain reasonably smooth data, which still contained all
the important information. From the filtered data, we can then
extract features, like high intensity points, that can be used in fu-
ture to match different sets of data. By using information about
shadows, high intensity points and reflective properties, we have
started developing algorithms to compute boundaries of objects
and an approximate surface contour for the terrain scanned by the
sonar. Due to the nature of side scan sonar data it will not be
possible to build an accurate 3-D elevation map, but using the
methods described in this paper, we are able to build what we
call a "Qualitative Elevation Map’. This map contains informa-
tion about elevation constraints of the terrain surface, boundaries
of distinct objects and regions with true and relative elevations.
This map does not provide a detailed high resolution description
of the environment, but it contains enough information to enable
an autonomous vehicle to navigate safely in unknown terrain. By
matching data taken from different viewpoints, we will be able
to reduce the amount of unknown areas and also eliminate false
information due to noise.

Hence our future work will consist of extending the present
algorithms to compute all the information needed for the qualita-
tive elevation map and developing a robust matching algorithm.
Techniques have been demonstrated on data from a conventional
side-scan sonar but our goal is to port them to a fast imaging
sonar. The sonar mapping module will eventually be used in the
navigation and mapping of a vehicle being developed at FAU.
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Figure 1: Echo signal of a scan before and after filtering



Figure 3: Sensor geometry
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Figure 7: Isoplot of reconstructed surface

Figure 4: Surface reconstruction
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