
Proceedings of the 1991 E E E
Intemational Conference on Robotics and Automation

Sacramento, California - Apd 1991

DEMO 89 - THE INITIAL EXPERIMENT WITH THE
HERMIES-I11 ROBOT

D. B. Reister, J. P. Jones, P. E. Butler, M. Beckerman, and F. J. Sweeney

Center for Engineering Systems Advanced Research
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6364

Abstract

HERMLES-I11 is a large mobile robot designed for human
scale experiments. The initial experiment with the robot
(DEMO 89) was the cleanup of a simulated chemical
spill. To perform the experiment, the robot was required
to plan a path through an a priori known world, navigate
along the path (avoiding unexpected obstacles) and locate
and remove debris from a target area. This paper
describes the software system that was developed to
perform the experiment. The software system consisted
of 19 processes that operated on a distributed set of
hetrogeneous computers.

1. Introduction

The U.S. Department of Energy has provided support to
four universities (Florida, Michigan, Tennessee, and
Texas) and to the Oak Ridge National Laboratory
(O W) to pursue research leading to the development
and deployment of advanced robotic systems. The long-
term goal is to develop systems that can perform
surveillance, maintenance, and repair tasks in nuclear
energy facilities or in other hazardous environments [l].

The program team has divided the research effort among
the four universities and ORNL. In addition to its
research effort, ORNL has the responsibility of systems
integration; to integrate the robotic modules developed by
the research teams into operational prototypes. The third
generation Hostile Environment Robotic Machine
Intelligence Experiment Series (HERMIES -111) robot is
the primary testbed for systems integration.

In 1989, the objective of the systems integration
experiment was to autonomously clean up a simulated
chemical spill (see Fig. 1). Initially, the approximate
location of the spill is known. The robot uses its
knowledge of the environment to plan a path from its
current location to a location close to the spill. The robot
then follows the path to the spill, automatically sensing
and avoiding unexpected obstacles while on route. Once

it has arrived at the goal, the robot senses the debris and
uses a vacuum cleaner mounted on a manipulator to
remove it.

The next section describes the hardware used in the
experiment. The third section discusses the shared
memory communications system. The fourth section
outlines the software that was used in the experiment.
The fifth section details the lessons that were learned
during the successful performance of the experiment.

2. Hardware

A robotic system consists of effectors, sensors, and
computers. For our robotic system, we can subdivide the
hardware into two categories: onboard and offboard.
HERMIES-111 is a large mobile robot designed for human
scale experiments[2]. The chassis (1.6m X 1.3m X
1.9m) has two drive wheels and four comer caster wheels.
Currently, the robot is tethered and weighs 820 kg (when
battery powered, the weight will be 1230 kg). The
manipulation system consists of the CESAR
manipulator (CESARm) a 7-DOF compliant arm with
all revolute joints, a spherical wrist, and a low friction
back driveable drive train[31. The CESARm can reach
1.4m, has a load capacity of approximately 14 kg, and
has an unloaded tip speed of 3.0 m/s.

The sensor suite for HERMIES-111 includes: two CCD
cameras on padtilt platforms, a third CCD camera
mounted on the CESARm, a ring of 32 sonar
transceivers around the chassis, an Odetics laser range
camera on a pan platform, and encoders on all motor
driven shafts.

HEiRMIES-I11 has a dual computer system with both an
NCUBE hypercube computer and a VME bus based
system. The NCUBE system can have 16 nodes on an
IBM 7532 host. The host has 1.5 MB of RAM and each
node has 0.5 MB of RAM. Mass storage for the
NCUBE system is provided by a 40 MB hard disk, a 1.2
MB floppy disk, and a 0.4 MB floppy disk. The VME

2562
U.S. Government work not protected by U.S. copyright.

P l a g d '

n
Known

Obstacle

Spill Area

Fig. 1. Floor plan for DEMO 89, a robot experiment to
autonomously clean up a simulated chemical spill.

system has 5 Motorola 68020 processors and 11 MB of
RAM. Storage is provided by a 40 MB hard disk and by
a 0.8 MB floppy disk.

Our robotic system has two offboard computers: Silicon
Graphics IRIS-4D work station and Micro-Vax-I1
computer. The onboard computers and the offboard
computers are linked by an Ethernet. Another offboard
hardware component of the system is a three degree of
freedom force reflecting manual controller (joystick).
The joystick can be used to control both HERMIES-I11
and CESARm.

3. Communications

All robotic systems consist of a collection of effectors
and sensors, together with a number of processes that
control them, and that control each other. These
processes communicate with one another by sharing data.
To transfer data between processes and between the three
computcrs (HERMIES-111, Silicon Graphics, and Vax),
we have developed a shared memory communications
system that will be outlined in this section.

Each of the three computers has a copy of the shared
memory. The shared memory was divided into a number
of blocks. Using a concept from the C programming
language, each block of shared memory is a structure.
We adopted the policy that only one process is allowed to
write data into each of the structures that comprise shared
memory. All processes may read any block of shared
memory.

Shared memory is communicated between machines on a
structure-by-structure basis. The five routines that
provide the complete interface to the communications
system are: mem-attach, get-read-ok, read-done,
get-write-ok, and write-done. The function mem-attach

returns a pointer to a structure that contains pointers to
all of the structures in shared memory. The functions
get-read-ok and read-done are used for reading the
contents of shared memory while get-write-ok and
write-done are used for writing. The get-read-ok
function waits until all writing has been completed while
the get-write-ok function waits until all reading has been
completed. After new information has been placed in a
structure, the write-done function broadcasts the
information to the other computers.

The entire system is controlled by a single variable
(mode), and there is only one process in the system that
determines the value of this variable (Process Monitor).
Decisions on the change from one mode to the next are
made by this process based on the current value of the
mode variable, and a state-dependent inspection of the
contents of shared memory. Individual processes inspect
the value of the mode variable and respond in an
appropriate manner. The modes and processes for DEMO
89 are discussed in the next section.

4. Software Design

The details of the modes and processes depend on the
tasks that are to be performed. For DEMO 89, there
were 53 modes and 19 processes. This section describes
the modes and processes.

The tasks to be performed in the experiment are
illustrated in Fig. 2. The six tasks are:

1. Database Query
2. Path Planning
3. Path Execution
4. Debris Removal
5.
6 .

Manual Control of the CESARm
Manual Control of the Platform.

Performance of the tasks required the 19 processes listed
in Table 1. For each of the processes, Table 1 specifies
the number of states (control modes) for which the
process is active and the members of the project team
that developed the process. The following paragraphs
describe the purpose of each process.

The arm controller moves the arm during the three arm
motions required for the experiment: to home position,
to snap position, and spill sweep. In addition, the arm
controller reads the encoders and calculates the current
position of the arm.

Carrot monitors the position of the platform. The path
produced by the off line planner consists of setpoints and
via points. The platform moves through setpoints and
stops at via points. As the platform approaches a
setpoint, carrot provides the next point on the plan to the
local planner. As the platform approaches a via point,
carrot does not provide the next point on the plan until

2563

the platform has attained the position and orientation
specified by the via point.

The communications system replicates and distributes the
contents of shared memory whenever one of the processes
changes the values in a region of shared memory. The
database provides information on the a priori knowlcdge
available to HERMIES-I11[4]. Displayer updates images
from the CCD camera, the range camera, the sonars, and
the floor map on a TV screen while the platform is
moving.

World model
in i t ia l izat ion

INT-MEMORY
distributed

database
in i t ia l izat ion 4

MAIN-MENU
Main Option
Selection

Debris Removal

Manual Control
Platform

Manual Control

Fig. 2. Control modes for the main menu.

Filter determines the setpoints for the arm controller and
the wheel controller. The setpoint depends on the control
mode; for example, during the mode PLAT-MAN-LIVE,
the setpoint comes from the Joystick Reader; during the
mode EXE-LIVE, the setpoint comes from the local
planner; and during the mode SPILL-PLAT-LIVE, the
setpoint comes from the sweep planner. In addition,
filter insures that the setpoints are within the legal
limits.

The joystick can be used to control either the CESARm
or the platform[5]. The joystick reader reads analog
values from the joystick and produces setpoints (in
Cartesian coordinates) for the arm or the platform. In
addition, the joystick reader provides force feedback
commands for the joystick.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Process
Arm Controller
carrot
Communications
Database
Displayer
Filter
Image Snapper
Joystick Reader
Local Planner
Off Line Planner
Process Monitor
Range Analyzer
Range Snapper
Sonar Analyzer
Sonar Scanner
Spill Finder
Sweep Planner
User Interface
Wheel Controller

States
7
1

53
2
7

10
2
6
1
1

53
2
2
1
1
2
1

22
3

Source
Texas/ORNL
ORNL
ORNL
Florida
ORNL
ORNL
ORNL
Texas
Michigan
Michigan
ORNL
ORNL
ORNL
ORNL
ORNL
Tennessee
ORNL
Florida
ORNL

Table 1. Processes required by the experiment.

The local planner moves the platform, while avoiding
obstacles detected by the sensors[6,7]. The inputs to the
local planner are the next setpoint from the a priori path
and a sensor based map of the environment of the
platform.

The off line planner creates a detailed path through a set
of via points (determined through the user interface). The
off line planner uses an a priori world model that includes
obstacles and "redzones", areas that are potentially
dangerous and to be avoided.

The process monitor determines the mode of the system
(the system has 53 modes). During each mode several
processes are active. When all of the processes have been
completed, the process monitor changes the mode to the
next value in the state transition diagram.

Three sets of sensors can be used during the experiment:
the laser range camera, sonar, and video. Each sensor had
a process to acquire an image and a second process to
analyze the image. Using the image acquired by the
range snapper, the range analyzer updates the floor map.
The sonar scanner acquires data from the sonar belt that
are used by the sonar analyzer to update the floor map.
The image snapper acquires an image from the arm
mounted CCD camera that is used by the spill finder to
map the location of the spi11[8,9].

The sweep planner coordinates the spill cleanup. At the
start of the cleanup the robot is near the spill. The first
step is to move the arm, snap an image, and locate the
spill. If the spill finder does not find a spill, the cleanup

2564

Start Manual

ARM-MAN-CARTES1 AN
Cartesian

oosition control

PLAT-MAN-START
Start Platform
Manual Control

RM-MAN-WRIST

I ' I

End Manual
Control

Fig. 3. Control modes for the manual control of the
arm.

is completed. If there is a spill, the robot is moved to a
comer of the spill and the arm sweeps up the spill. If the
spill is large, the platform may be moved several times
to clean up the spill. When the sweeping is completed,
another image is acquired and analyzed. If any remaining
debris is detected, the cleanup continues.

The user interface both allows the user to control the
actions of the robot and displays the movements of the
robot[lO]. The user interface is the primary active
process during the main menu (Fig. 2) and during
planning. During all motions by the robot, the user
interface displays the position of the platform and arm in
the context of the current world model.

The wheel controller moves the platform to track the
setpoints received from filter. In addition, the wheel
controller reads the encoders and calculates the current
position and orientation of the platform.

The main menu allows the user to choose one of the six
tasks illustrated in Fig. 2. All of the tasks except
database query require the sequential execution of several
of the 53 control modes. The modes that are active for
five of the six tasks are displayed in Figs. 3 to 7: manual
control of the arm in Fig. 3; manual control of the
platform in Fig. 4; path planning in Fig. 5; path
execution in Fig. 6; and spill cleanup in Fig. 7.

Four processes are active for all five of the tasks:
communications, filter, process monitor, and user
interface. The additional processes that are required for
manual control of the arm are arm controller and joystick
reader. For manual control of the platform, the additional
processes are wheel controller and joystick reader. For
path planning, the extra processes are off line planner and
joystick reader.

PLAT-MAN-LIV I Platform Live

I
.. . ~

P MT-M AN-EN D
End Platform I Manual Control I

Fig. 4. Control modes for the manual control of the
platform.

Path execution requires eight additional processes: carrot,
displayer, local planner, range analyzer, range snapper,
sonar analyzer, sonar scanner, and wheel controller. The
spill cleanup requires six additional processes: arm
controller, displayer, image snapper, spill finder, sweep
planner, and wheel controller.

6

6
Go To

Main Planning Menu
PLAN-W-MOUSE
Affirm mouse plan

Fig. 5. Control modes for path planning.

2565

Fig. 6. Control modes for path execution.

SPILL-STAR
Start Debris

Removal

PILL-ARM-HOME x Arm Home

++ SPILL-MAP-SNAP SPILL-VER-SNA + SPILL-SWEEP

Spi l l Ver i fy

Fig. 7. Control modes for the spill cleanup.

5. Conclusions

The software system described in the previous section
was constructed and successfully performed DEMO 89.
This section discusses two lessons that we have learned
and plan to apply to future experiments. The lessons are
to avoid having a single mode variable and to minimize
our use of heterogeneous computers.

In the present system, the behavior of the system depends
upon a single variable, the mode variable. Almost all
processes read this variable to determine the appropriate
behavior based on its value. This policy has some
advantages and some drawbacks. The primary advantage
is that it is extremely simple. A programmer can easily

write a program which behaves in a certain way when the
mode assumes a certain value. Furthermore, it is
straightforward to write a process monitor that determines
the next value of the mode variable in all possible
circumstances.

There are two disadvantages of relying upon a single
mode variable. First, it compromises the reusability of
the code for other purposes. In the event that the
scenario changes, or that it grows more sophisticated in
time, all appearances of the mode variable read in all
processes must be guaranteed to be upwardly compatible.
The impossibility of a omniscient migration path makes
this element of the design ultimately unattractive, The
second problem is that a single variable cannot assume
more than one value at a time. Although this is exactly
what is desired in the finished system, it creates an access
conflict during the construction phase. That is, as the
project nears completion, teams working on still separate
branches require total control of the variable for extended
periods of time.

To eliminate these problems, we plan in the next design
experiment to replace the mode variable with a state
vector. A state vector is a more fine-grained description
of the behavior of the system,. Each process will inspect
a single variable which describes its desired mode. The
primary negative tradeoff for this modification is
envisioned to be an increase in the complexity of the
process monitor, which will now have to determine a
number of variables simultaneously. However, our
judgement is that this increase in complexity will be
justified, since it impacts only one process.

Since the computers in this experiment involved 24
CPUs in computers delivered by four different
manufacturers with five different operating systems, three
different architectural styles (serial, shared memory and
distributed memory), three different internal
representations of numbers, and three different
communications technologies, we have accumulated
considerable experience with heterogeneous distributed
systems during the execution of this project.

In general, our experience has been negative. Each
component of the computer system that is different from
the others introduces its own collection of idiosyncrasies
and increases the time and effort required to build the
system. For the solution to a particular problem to be
generally available on all stations in a heterogeneous
system, it must conform to the least common
denominator over all systems. Thus, the use of
heterogeneous systems reduces the sophistication of the
solution.

Nevertheless, certain principles for adapting to
heterogeneous environments are useful. It is desirable to
minimize reliance upon operating systems services and

2566

other machine specific resources, such as compiler
specialization. Any code which contains a call to an
operating systems service is non-portable, and should be
avoided, or, if it is necessary, isolated into a routine
which bring the interface to the operating system out to a
commonly available syntax. For example, the routine
mem-attach in the present system makes use of
operating systems services, but this usage is isolated
from applications processes.

6. References

F. J. Sweeney, et al., " D O E M University
Program in Robotics for Advanced Reactors
- Program Plan: FY 1990 - FY 1994,"
DOE/OR-884/R2, U. S. Department of
Energy, Oak Ridge, Tennessee, 1990.

C. R. Weisbin, et al., "HERMIES-111: A step
toward autonomous mobility, manipulation,
and perception," Robotica , vol. 8, pp. 7-12,
1990.

R. V. Dubey, J. A. Euler, and S. M.
Babcock, "Real-Time Implementation of a
Kinematic Gradient Projection Optimization
Scheme for Seven-Degree-of-Freedom
Redundant Robots with Spherical Wrists,"
(submitted to J . Robotics and Automation),
CES AR-88/36.

G.R. Dalton, et al., "Concurrent Use of
Database and Graphics Computer Workstations to
Provide Graphic Access to Large, Complex
Databases for Robotics Control", Trans. Am.
Nucl. Soc., vol. 61, pp. 407, 1990.

J. T. Lovett and P. J. Bevill, "A Universal
Bilateral Manual Controller Utilizing a
Unique Parallel Architecture," Trans. Am.
Nucl. Soc., vol. 61, pp. 409, 1990.

J. Borenstein and Y. Koren, "Real-time
Obstacle Avoidance for Fast Mobile Robots
in Cluttered Environments," 1990 IEEE Int.
Conf. Robotics and Automation, pp. 572-
577,Cincinnati, Ohio, May 13-18, 1990.

J. Borenstein and Y. Koren, "The vector field
histogram: fast obstacle avoidance for mobile
robots." LEEE Journal of Robotics and
Automation, in press.

C. Chen, M.M. Trivedi, and C.R. Bidlack,
"Design and Implementation of An
Autonomous Spill Cleaning Robotic
System," Proceedings of the Applications of
Artificial Intelligence VIII Conference,
Orlando, FL, April, 1990.

M.M. Trivedi and C. Chen, "Sensor-Driven
Intelligent Robotics," Advances in
Computers (Editor: Marshall Yovitts), vol.
30, Academic Press, New York, 1990.

C. D. Crane 111, et al., "Faster Than Real Time
Robot Simulation for Plan Development and
Robot Safety," Trans. Am. Nucl. Soc., vol. 61,
pp. 408, 1990.

2561

