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Abstract 

HERMLES-I11 is a large mobile robot designed for human 
scale experiments. The initial experiment with the robot 
(DEMO 89) was the cleanup of a simulated chemical 
spill. To perform the experiment, the robot was required 
to plan a path through an a priori known world, navigate 
along the path (avoiding unexpected obstacles) and locate 
and remove debris from a target area. This paper 
describes the software system that was developed to 
perform the experiment. The software system consisted 
of 19 processes that operated on a distributed set of 
hetrogeneous computers. 

1. Introduction 

The U.S. Department of Energy has provided support to 
four universities (Florida, Michigan, Tennessee, and 
Texas) and to the Oak Ridge National Laboratory 
( O W )  to pursue research leading to the development 
and deployment of advanced robotic systems. The long- 
term goal is to develop systems that can perform 
surveillance, maintenance, and repair tasks in nuclear 
energy facilities or in other hazardous environments [l]. 

The program team has divided the research effort among 
the four universities and ORNL. In addition to its 
research effort, ORNL has the responsibility of systems 
integration; to integrate the robotic modules developed by 
the research teams into operational prototypes. The third 
generation Hostile Environment Robotic Machine 
Intelligence Experiment Series (HERMIES -111) robot is 
the primary testbed for systems integration. 

In 1989, the objective of the systems integration 
experiment was to autonomously clean up a simulated 
chemical spill (see Fig. 1). Initially, the approximate 
location of the spill is known. The robot uses its 
knowledge of the environment to plan a path from its 
current location to a location close to the spill. The robot 
then follows the path to the spill, automatically sensing 
and avoiding unexpected obstacles while on route. Once 

it has arrived at the goal, the robot senses the debris and 
uses a vacuum cleaner mounted on a manipulator to 
remove it. 

The next section describes the hardware used in the 
experiment. The third section discusses the shared 
memory communications system. The fourth section 
outlines the software that was used in the experiment. 
The fifth section details the lessons that were learned 
during the successful performance of the experiment. 

2. Hardware 

A robotic system consists of effectors, sensors, and 
computers. For our robotic system, we can subdivide the 
hardware into two categories: onboard and offboard. 
HERMIES-111 is a large mobile robot designed for human 
scale experiments[2]. The chassis (1.6m X 1.3m X 
1.9m) has two drive wheels and four comer caster wheels. 
Currently, the robot is tethered and weighs 820 kg (when 
battery powered, the weight will be 1230 kg). The 
manipulation system consists of the CESAR 
manipulator (CESARm) a 7-DOF compliant arm with 
all revolute joints, a spherical wrist, and a low friction 
back driveable drive train[31. The CESARm can reach 
1.4m, has a load capacity of approximately 14 kg, and 
has an unloaded tip speed of 3.0 m/s. 

The sensor suite for HERMIES-111 includes: two CCD 
cameras on padtilt platforms, a third CCD camera 
mounted on the CESARm, a ring of 32 sonar 
transceivers around the chassis, an Odetics laser range 
camera on a pan platform, and encoders on all motor 
driven shafts. 

HEiRMIES-I11 has a dual computer system with both an 
NCUBE hypercube computer and a VME bus based 
system. The NCUBE system can have 16 nodes on an 
IBM 7532 host. The host has 1.5 MB of RAM and each 
node has 0.5 MB of RAM. Mass storage for the 
NCUBE system is provided by a 40 MB hard disk, a 1.2 
MB floppy disk, and a 0.4 MB floppy disk. The VME 
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Fig. 1. Floor plan for DEMO 89, a robot experiment to 
autonomously clean up a simulated chemical spill. 

system has 5 Motorola 68020 processors and 11 MB of 
RAM. Storage is provided by a 40 MB hard disk and by 
a 0.8 MB floppy disk. 

Our robotic system has two offboard computers: Silicon 
Graphics IRIS-4D work station and Micro-Vax-I1 
computer. The onboard computers and the offboard 
computers are linked by an Ethernet. Another offboard 
hardware component of the system is a three degree of 
freedom force reflecting manual controller (joystick). 
The joystick can be used to control both HERMIES-I11 
and CESARm. 

3. Communications 

All robotic systems consist of a collection of effectors 
and sensors, together with a number of processes that 
control them, and that control each other. These 
processes communicate with one another by sharing data. 
To transfer data between processes and between the three 
computcrs (HERMIES-111, Silicon Graphics, and Vax), 
we have developed a shared memory communications 
system that will be outlined in this section. 

Each of the three computers has a copy of the shared 
memory. The shared memory was divided into a number 
of blocks. Using a concept from the C programming 
language, each block of shared memory is a structure. 
We adopted the policy that only one process is allowed to 
write data into each of the structures that comprise shared 
memory. All processes may read any block of shared 
memory. 

Shared memory is communicated between machines on a 
structure-by-structure basis. The five routines that 
provide the complete interface to the communications 
system are: mem-attach, get-read-ok, read-done, 
get-write-ok, and write-done. The function mem-attach 

returns a pointer to a structure that contains pointers to 
all of the structures in shared memory. The functions 
get-read-ok and read-done are used for reading the 
contents of shared memory while get-write-ok and 
write-done are used for writing. The get-read-ok 
function waits until all writing has been completed while 
the get-write-ok function waits until all reading has been 
completed. After new information has been placed in a 
structure, the write-done function broadcasts the 
information to the other computers. 

The entire system is controlled by a single variable 
(mode), and there is only one process in the system that 
determines the value of this variable (Process Monitor). 
Decisions on the change from one mode to the next are 
made by this process based on the current value of the 
mode variable, and a state-dependent inspection of the 
contents of shared memory. Individual processes inspect 
the value of the mode variable and respond in an 
appropriate manner. The modes and processes for DEMO 
89 are discussed in the next section. 

4. Software Design 

The details of the modes and processes depend on the 
tasks that are to be performed. For DEMO 89, there 
were 53 modes and 19 processes. This section describes 
the modes and processes. 

The tasks to be performed in the experiment are 
illustrated in Fig. 2. The six tasks are: 

1. Database Query 
2. Path Planning 
3. Path Execution 
4. Debris Removal 
5. 
6 .  

Manual Control of the CESARm 
Manual Control of the Platform. 

Performance of the tasks required the 19 processes listed 
in Table 1. For each of the processes, Table 1 specifies 
the number of states (control modes) for which the 
process is active and the members of the project team 
that developed the process. The following paragraphs 
describe the purpose of each process. 

The arm controller moves the arm during the three arm 
motions required for the experiment: to home position, 
to snap position, and spill sweep. In addition, the arm 
controller reads the encoders and calculates the current 
position of the arm. 

Carrot monitors the position of the platform. The path 
produced by the off line planner consists of setpoints and 
via points. The platform moves through setpoints and 
stops at via points. As the platform approaches a 
setpoint, carrot provides the next point on the plan to the 
local planner. As the platform approaches a via point, 
carrot does not provide the next point on the plan until 
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the platform has attained the position and orientation 
specified by the via point. 

The communications system replicates and distributes the 
contents of shared memory whenever one of the processes 
changes the values in a region of shared memory. The 
database provides information on the a priori knowlcdge 
available to HERMIES-I11[4]. Displayer updates images 
from the CCD camera, the range camera, the sonars, and 
the floor map on a TV screen while the platform is 
moving. 

World model 
in i t ia l izat ion 

INT-MEMORY 
distributed 

database 
in i t ia l izat ion 4 

MAIN-MENU 
Main Option 
Selection 

Debris Removal 

Manual Control 
Platform 

Manual Control 

Fig. 2. Control modes for the main menu. 

Filter determines the setpoints for the arm controller and 
the wheel controller. The setpoint depends on the control 
mode; for example, during the mode PLAT-MAN-LIVE, 
the setpoint comes from the Joystick Reader; during the 
mode EXE-LIVE, the setpoint comes from the local 
planner; and during the mode SPILL-PLAT-LIVE, the 
setpoint comes from the sweep planner. In addition, 
filter insures that the setpoints are within the legal 
limits. 

The joystick can be used to control either the CESARm 
or the platform[5]. The joystick reader reads analog 
values from the joystick and produces setpoints (in 
Cartesian coordinates) for the arm or the platform. In 
addition, the joystick reader provides force feedback 
commands for the joystick. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Process 
Arm Controller 
carrot 
Communications 
Database 
Displayer 
Filter 
Image Snapper 
Joystick Reader 
Local Planner 
Off Line Planner 
Process Monitor 
Range Analyzer 
Range Snapper 
Sonar Analyzer 
Sonar Scanner 
Spill Finder 
Sweep Planner 
User Interface 
Wheel Controller 

States 
7 
1 

53 
2 
7 

10 
2 
6 
1 
1 

53 
2 
2 
1 
1 
2 
1 

22 
3 

Source 
Texas/ORNL 
ORNL 
ORNL 
Florida 
ORNL 
ORNL 
ORNL 
Texas 
Michigan 
Michigan 
ORNL 
ORNL 
ORNL 
ORNL 
ORNL 
Tennessee 
ORNL 
Florida 
ORNL 

Table 1. Processes required by the experiment. 

The local planner moves the platform, while avoiding 
obstacles detected by the sensors[6,7]. The inputs to the 
local planner are the next setpoint from the a priori path 
and a sensor based map of the environment of the 
platform. 

The off line planner creates a detailed path through a set 
of via points (determined through the user interface). The 
off line planner uses an a priori world model that includes 
obstacles and "redzones", areas that are potentially 
dangerous and to be avoided. 

The process monitor determines the mode of the system 
(the system has 53 modes). During each mode several 
processes are active. When all of the processes have been 
completed, the process monitor changes the mode to the 
next value in the state transition diagram. 

Three sets of sensors can be used during the experiment: 
the laser range camera, sonar, and video. Each sensor had 
a process to acquire an image and a second process to 
analyze the image. Using the image acquired by the 
range snapper, the range analyzer updates the floor map. 
The sonar scanner acquires data from the sonar belt that 
are used by the sonar analyzer to update the floor map. 
The image snapper acquires an image from the arm 
mounted CCD camera that is used by the spill finder to 
map the location of the spi11[8,9]. 

The sweep planner coordinates the spill cleanup. At the 
start of the cleanup the robot is near the spill. The first 
step is to move the arm, snap an image, and locate the 
spill. If the spill finder does not find a spill, the cleanup 
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Fig. 3. Control modes for the manual control of the 
arm. 

is completed. If there is a spill, the robot is moved to a 
comer of the spill and the arm sweeps up the spill. If the 
spill is large, the platform may be moved several times 
to clean up the spill. When the sweeping is completed, 
another image is acquired and analyzed. If any remaining 
debris is detected, the cleanup continues. 

The user interface both allows the user to control the 
actions of the robot and displays the movements of the 
robot[lO]. The user interface is the primary active 
process during the main menu (Fig. 2) and during 
planning. During all motions by the robot, the user 
interface displays the position of the platform and arm in 
the context of the current world model. 

The wheel controller moves the platform to track the 
setpoints received from filter. In addition, the wheel 
controller reads the encoders and calculates the current 
position and orientation of the platform. 

The main menu allows the user to choose one of the six 
tasks illustrated in Fig. 2. All of the tasks except 
database query require the sequential execution of several 
of the 53 control modes. The modes that are active for 
five of the six tasks are displayed in Figs. 3 to 7: manual 
control of the arm in Fig. 3; manual control of the 
platform in Fig. 4; path planning in Fig. 5; path 
execution in Fig. 6; and spill cleanup in Fig. 7. 

Four processes are active for all five of the tasks: 
communications, filter, process monitor, and user 
interface. The additional processes that are required for 
manual control of the arm are arm controller and joystick 
reader. For manual control of the platform, the additional 
processes are wheel controller and joystick reader. For 
path planning, the extra processes are off line planner and 
joystick reader. 

PLAT-MAN-LIV I Platform Live 

I 
.. . ~ 

P MT-M AN-EN D 
End Platform I Manual Control I 

Fig. 4. Control modes for the manual control of the 
platform. 

Path execution requires eight additional processes: carrot, 
displayer, local planner, range analyzer, range snapper, 
sonar analyzer, sonar scanner, and wheel controller. The 
spill cleanup requires six additional processes: arm 
controller, displayer, image snapper, spill finder, sweep 
planner, and wheel controller. 

6 

6 
Go To 

Main Planning Menu 
PLAN-W-MOUSE 
Affirm mouse plan 

Fig. 5. Control modes for path planning. 
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Fig. 6. Control modes for path execution. 
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Fig. 7. Control modes for the spill cleanup. 

5.  Conclusions 

The software system described in the previous section 
was constructed and successfully performed DEMO 89. 
This section discusses two lessons that we have learned 
and plan to apply to future experiments. The lessons are 
to avoid having a single mode variable and to minimize 
our use of heterogeneous computers. 

In the present system, the behavior of the system depends 
upon a single variable, the mode variable. Almost all 
processes read this variable to determine the appropriate 
behavior based on its value. This policy has some 
advantages and some drawbacks. The primary advantage 
is that it is extremely simple. A programmer can easily 

write a program which behaves in a certain way when the 
mode assumes a certain value. Furthermore, it is 
straightforward to write a process monitor that determines 
the next value of the mode variable in all possible 
circumstances. 

There are two disadvantages of relying upon a single 
mode variable. First, it compromises the reusability of 
the code for other purposes. In the event that the 
scenario changes, or that it grows more sophisticated in 
time, all appearances of the mode variable read in all 
processes must be guaranteed to be upwardly compatible. 
The impossibility of a omniscient migration path makes 
this element of the design ultimately unattractive, The 
second problem is that a single variable cannot assume 
more than one value at a time. Although this is exactly 
what is desired in the finished system, it creates an access 
conflict during the construction phase. That is, as the 
project nears completion, teams working on still separate 
branches require total control of the variable for extended 
periods of time. 

To eliminate these problems, we plan in the next design 
experiment to replace the mode variable with a state 
vector. A state vector is a more fine-grained description 
of the behavior of the system,. Each process will inspect 
a single variable which describes its desired mode. The 
primary negative tradeoff for this modification is 
envisioned to be an increase in the complexity of the 
process monitor, which will now have to determine a 
number of variables simultaneously. However, our 
judgement is that this increase in complexity will be 
justified, since it impacts only one process. 

Since the computers in this experiment involved 24 
CPUs in computers delivered by four different 
manufacturers with five different operating systems, three 
different architectural styles (serial, shared memory and 
distributed memory), three different internal 
representations of numbers, and three different 
communications technologies, we have accumulated 
considerable experience with heterogeneous distributed 
systems during the execution of this project. 

In general, our experience has been negative. Each 
component of the computer system that is different from 
the others introduces its own collection of idiosyncrasies 
and increases the time and effort required to build the 
system. For the solution to a particular problem to be 
generally available on all stations in a heterogeneous 
system, it must conform to the least common 
denominator over all systems. Thus, the use of 
heterogeneous systems reduces the sophistication of the 
solution. 

Nevertheless, certain principles for adapting to 
heterogeneous environments are useful. It is desirable to 
minimize reliance upon operating systems services and 
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other machine specific resources, such as compiler 
specialization. Any code which contains a call to an 
operating systems service is non-portable, and should be 
avoided, or, if it is necessary, isolated into a routine 
which bring the interface to the operating system out to a 
commonly available syntax. For example, the routine 
mem-attach in the present system makes use of 
operating systems services, but this usage is isolated 
from applications processes. 
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