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Abstract 

In rugged terrain, walking robots that select footholds can be more mobile and more 
energy efficient than machines that roll on wheels or crawl on tracks. To achieve these 
footholds requires calibration of the terrain sensors with respect to the walking mechanism. 

We present an implemented technique to calibrate scanning laser rangefinders to legged 
robots. The procedure accommodates two scanners, one manufactured by Erim and the 
other by Perceptron, and two walkers, a one-legged robot and a six-legged robot. The 
technique acquires two sets of corresponding three-dimensional points and identifies the 
rigid transformation that maps one onto the other with least squared error, Le., it solves the 
absolute orientation problem. 

We report experimental results with the two different scanners and vehicles. For the Erim 
and the onelegged robot, the technique achieves an accuracy of 612 c m  with a precision 
no lower than 2-5 cm. For the Perceptron and the Ambler, the accuracy is 2-7 cm with 
a precision no lower than 2-5 cm. These results have proven to be satisfactory for con- 
structing terrain maps and using them t o  select footholds during our rough terrain walking 
experiments. 
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1 Introduction 
In order to act autonomously and intelligently, mobile robots must be able to sense their 
environment, and to relate the sensor readings to their actions. For example, threading a 
needle requires Coordination of the eye, or whatever senses the relative positions of needle and 
thread, and the hand, or whatever acts on them. Similarly, walking requires coordination 
of the eye, which senses where on the terrain to place the foot, and the leg, or whatever 
supports and propels the robot. This paper presents a technique to establish such “leg-eye” 
coordination for a one-legged robot (Figure 1) and for a six-legged robot (Figure 2), the 
Ambler prototype planetary rover [ Z ] .  

Recently, researchers have questioned the need for calibration, and techniques to avoid it 
have gained favor. In the case of the Ambler, it is likely that we too could survive without 
calibration; because the machine is big, rugged, and heavy, many objects that are obstacles 
befom the Ambler steps on them are planar afterwards. But for missions to distant, rugged 
regions like planetary surfaces, Antarctica, and the ocean floor, survival is not enough. 
Energy-efficient locomotion is essential. With a calibrated sensor, the Ambler can select 
where to step, and thus can prevent spending significant fractions of the total power budget 
on stumbling rather than productive advance. This ability to select footholds is central to 
the fundamental advantages of high mobility and energy efficiency that walkers enjoy over 
rolling and crawling machines. Achieving those footholds requires calibration. 

Other walking robots face the same requirements. However, walkers that rely on a human 
operator to designate footholds, such as the Adaptive Suspension Vehicle 1121, do not require 
an automated solution. Other researchers [3, 6, 141 have concentrated on range imaging for 
autonomous outdoor navigation. Although this work has advanced the state of the art in 
range image understanding, it does not directly address the calibration issues raised here. 
The photogrammetry literature does address those issues, and we will make use of it in 
Section 5. 

In this paper we present a single calibration procedure that works for multiple scenarios; 
the same code calibrates the Erim scanner with respect to a one-legged robot, and calibrates 
the Perceptron scanner with respect to the six-legged Ambler. 

The paper is organized as follows. In Section 2 we define the problem. Next, we describe 
in detail how to acquire two three-dimensional point sets, one in a vehicle-centered reference 
frame (Section 3), the other in a sensor-centered reference frame (Section 4). Then we show 
how to identify the rigid transformation that best relates the two point sets, i.e., we present a 
solution to the absolute orientation problem. In Section 6 we report experimental results on 
accuracy, precision, and execution time. We conclude by discussing possible improvements 
and extensions. 
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Figure 1: Experimental setup with one-legged robot 
The figure slio~vs the prototype leg, the calibration target on the upper leg, and the Erim laser 
scaiiiier mounted above the leg. 

2 



I'igiirv 2: Espcrilncntal setup with six-legged robot 
'I 'h figiirc? sliow I lie Aiiiblcr. arid tlic I'crccptron laser scanner mounted on the bridge I > ~ ~ I W C I I  1 1 1 r -  

1101 
visil)li>. 

le< h t a r k s .  'l'lic r a l i l ~ r ~ ~ t i o i i  t a r g ~ s .  riioiintcd on the top face of the vertical lcg l inks .  



2 Problem Definition 
The overall problem is to identify the rigid transformation relating a vehicle-centered ref- 
erence frame to a sensor-centered reference frame. The origin of the scanner jmme S is 
attached to the scanner and lies somewhere nearby it. The coordinates of a point referred 
to this frame will be written in lower-case, e.g., F.. = [z, y, % I T .  The origin of the body fmme 
B is attached to the walking robot. The coordinates of a point referred to this frame will 
be written in upper-case, e.g., .‘B = [X,Y,  .ZIT, to distinguish it from points in the scanner 
frame. 

We attach a number T of targets to the legs. Then, we move the legs to a number L 
of different stations. At ea& we identify the position r ‘ ~  of each target in the body frame 
(by reading joint positions and using known kinematics, see Section 3), and we identify 
the position r‘s of each target in the scanner frame (by image analysis, see Section 4). 
After acquiring a sufficient number of pairs of measurements, we seek the rotation R and 
translation t‘that refer a vector in S to B: 

. ‘ ~ i = R F s i + f ,  l < k < L x T  , (1) 

where - 
0 t = [t,, t,, t.IT is the translation vector relating the two origins, and 

R is a 3 x 3 rotation matrix (det R = +1, RTR = I). 

In practice, it is unlikely that R and <exist that satisfy Equation 1, because measurements 
are not exact and may be contaminated by noise. Instead, we seek R and t‘that best satisfy 
Equation 1 in the least-squares sense. 

Problem Statement  Find R and ?minimizing the sum of squares of errors 

i=l 

where 

~ ~ Z ~ ~ ’  = 5. Z is the square of the length of the vector Z, and 

the error of the itk pair of measurements is 

This problem is closely related to  a number of other problems that arise in photogran- 
metry and computer vision. Given the pairs of measurements, the problem is equivalent to 
the absolute orientation problem in photogrammetry, and to the ezterdor orientation part 
of the camem calibration problem in computer vision (see Chapter 13 of [7], and references 
therein). 

- 
= FB~ - RF.i - t. 
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Figure 3: Reference frames for onelegged robot 

3 Target Location in Body Coordinates 
This section describes the procedure for measuring the target locations FB assumed in the 
problem statement in Section 2. With the leg at one station, the procedure produces a set 
of measurements {FB}, where &; = [Xi, x, ZiIT, 1 5 i 5 T. Repeating the procedure for a 
number L of stations yields a set of measurements of cardinality L x 2'. 

3.1 Single-Leg Prototype 
For the one-legged prototype, the origin of 23 coincides with the shoulder joint, and lies at 
the center of the supporting shaft, on the plane of the upper arm (Figure 3). Calibration 
targets (pieces of reflective tape) are attached to the upper leg. 
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We now describe how the target coordinates are computed, beginning with the Z -  
component. Since the upper leg a not move relative to the hip (where the forearm meets 
the upper leg), the targets lie at fixed and measurable distances from the hip. We manually 
measure the constant vertical distance from each target to the hip; let us call it ZtoVget. We 
also manually measure the constant vertical distance from the hip to the origin of I?; let 
us call this Z+ Then the vertical distance from a target to the shoulder is a constant: 
Z = Zhjg + Zt,,,,,. Since all points on the upper leg are below the shoulder (the origin of 
I?), and the Z-axis points upward, it follows that 2 < 0 .  

It remains to determine the X and Y coordinates of a given target. This reduces to the 
identification of the planar position of the hip from two joint angles and two link lengths, 
which is an easy kinematics problem whose solution is not discussed here. 

3.2 Six-Legged Ambler 
For the six-legged Ambler, the origin of B lies at the center of the downward-facing surface 
of the structural bridge that connects the two leg s txks and supports the scanner (Figure 
2). Calibration targets (pieces of brown paper) are attached to the top of the vertical links. 

The joint angles and link lengths are known, so elementary kinematics suffice to determine 
the target coordinates with respect to 23. Unlike the previous section, the solution is not 
easy to derive immediately, because the geometry of the Ambler legs is more complex. 

4 Target Location in Sensor Coordinates 
This section describes the procedure for measuring the target locations Fs assumed in the 
problem statement in Section 2. It begins by describing the Erim and Perceptron sensors 
and their common reference frame. It then presents a procedure that starts with the sensor 
images, analyzes them to identify the target locations in image space, maps the image 
locations to a spherical-polar space, and finally converts these to a Cartesian space. Figure 
4 records the constants used for the image analysis. 

With the leg at one station, the procedure produces a set of measurements {&}, where 
T S ~  = (xi, vi, zjlT, 1 5 i 5 T. Repeating the procedure for a number L of stations yields a set 
of measurements of cardinality L x T. 

f 

4.1 Erim and Perceptron Sensors 
We consider two scanning laser rangefinders, one manufactured by Erim, and the other by 
Perceptron. They both are optical-wavelength radar systems that use a laser diode source 
operating in the near-infrared region (Erim 820 nm, Perceptron 810 nm) that is amplitude 
modulated and scanned across the field of view using a nodding mirror and a rotating polygon 
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Constant I Erim I Perceptron 
3.0 I 
4.2 
40 
55 
3 

250 
- 

4.0 

400 
3 

4081 
130 

. 

Figure 

Remark 
Minimum target range, in meters. - - .  
Maximum target range, in meters. 
Range image intensity at ICmeav. 
Range image intensity at Kjal .  
Minimum target size, in pixels. 
Minimum target intensity, in reflectance image. 
Maximum number of rows top of leg may occupy. 

: Image analysis constants 

mirror. The nodding mirror changes (tilts) the elevation and the polygon mirror changes 
(pans) the azimuth of the emitted signal. The infrared light is reflected off the desired target, 
gathered by the receiver optics, and focused onto the detector. The envelope of the output 
of the detector is at the same frequency as that of the laser source, but is shifted in phase by 
an amount proportional to the distance traveled by the beam (range). Using a digital phase 
detector the range is assigned for each pixel along the scan line. The devices digitize two 
images: a range image, with pixel values proportional to phase difference; and a reflectance 
image, with pixel values proportional to reflected energy. 

The Erim acquires data in 64 x 256 pixel images at a rate of 2 Hz [15]. The scanner 
digitizes to 8 bits over approximately 20 meters, which provides a nominal range resolution 
of 7.62 cm. The measurements cover 80 degrees in the horizontal direction (azimuth) and 
30 degrees in the vertical direction (elevation). 

The Perceptron acquires data in 256 x 256 pixel images at a rate of 2 Hz. The scanner 
digitizes to 12 bits over approximately 40 meters, which provides a nominal range resolution 
of 0.98 cm. The measurements cover 60 degrees in azimuth and 60 degrees in elevation. 

Figure 5 illustrates the sensor reference frame S we use for both the Erim and the 
Perceptron measurements. As shown, the y-axis coincides with the direction of travel of 
the laser beam projected through the central point of the scanner. The angle 0 (azimuth) 
corresponds to a rotation about the z-axis. The angle 4 (elevation) corresponds to a rotation 
about the x-axis. 

This reference frame is not a standard spherical-polar system. In a standard spherical- 
polar reference frame, 0 is measured from the positive x-axis in the ry plane, and 0 > 0 
in the counter-clockwise direction. In the scanner frame, 0 is measured from the positive 
y-axis in the POQ plane, and 0 > 0 in the clockwise direction. In a standard spherical-polar 
reference frame, # is measured from the positive z-axis in the z R  plane. In the scanner 
frame, 4 is measured from the positive y-axis in the yz plane. In the figure, both 8 and 4 
are positive. 
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Figure 5:  Reference frame S 
Both Erim and Perceptron measurements use this coordinate system. 

Given the sensor measurement (P, e, d) (Le., row, column, range), the transformation to 
spherical-polar coordinates is 

4 = P ~ + + h  , e = c A s + - e o ,  p = k d ,  (3) 

where 

0 A, is the angular increment, in degrees/row, of the nodding mirror, 

0 A0 is the angular increment, in degrees/column, of the panning mirror, 

do is the initial orientation, in degrees, of the nodding mirror, 

e,, is the initial orientation, in degrees, of the panning mirror, and 

0 k is the scanner range resolution in meters/bit. 

Given the spherical polar coordinates 4,B, p, the transformation to Cartesian coordinates 
is given by 

x = p s i n e  , TJ = ~ C O S ~ C O S ~  , z=pcosBsinq$ . (4) 
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Figure 6: Erim images of prototype leg 
The leg appears in the left-hand side of the reflectance (top) and range images as a tapered cylinder. 
The bump on its lower left side is a cable reel; the cable appears faintly below the reel. In the 
reflectance image, the calibration target appears as a bright band below the reel. In the center of 
the images is sand. 

4.2 Target Location from Erim Imagery 
Given a pair of reflectance and range images a(u, u )  and p(u, w ) ,  as in Figure 6, the task is 
to compute the image coordinates of the target. The four following steps perform this task. 

1. Register the range and reflectance images. 

Although the image pair is nominally registered, we find that in practice they are not in 
perfect registration. In particular, we observe that the range image lags the reflectance 
image by two horizontal pixels. In this case, we trivially register the images by shifting 
one of them by two columns. 

2. Locate the leg in image space. 

Initially, we attempted to locate the upper leg by examining the difference of two 
images (either reflectance or range) taken with the leg in two different poses. If the 
only difference between the images is the pose of the leg, then subtracting one image 
from the other will yield only the pixels that changed from frame to frame, viz., leg 
pixels. This approach does not work, because pixel values change significantly from 
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Figure 7: Thresholded Erim range image of leg (&,re&,) 

frame to frame not only because of leg motion, but also because of random noise, and 
the mezed pkcel effect [6]. So instead we take the following approach. 

(a) Bound the range to the target. Because the calibration procedure commands 
the leg, the pose of the leg is known approximately. This establishes an interval 
[K,,,,, Kf,,,] that bounds the range to the target on the leg. This distance interval 
determines a range image intensity i n t e r d  [Iwav, {jar] that bounds the pixel 
values of the target on the leg. 

(b) Threshold the range image, removing pixels with ranges that are either too close 
or too far to lie on the upper leg in the vicinity of the target(s): 

where 

B(u, w) is the input range image value at pixel (u,  w), 
and Ifav are derived from the constants KWm7 and Kj.,. 

Figure 7 illustrates the results of the thresholding operation. It shows that the 
output binary image contains regions that do not belong to the leg, and is noisy. 

(c) Filter the thresholded range image by first shrinking and then growing, inorder to 
eliminate regions that are too small to be the target. To eliminate small regions, 
threshold (shinli) the output of the Grassfire transform as follows: 

where 

G is the forward Grassfie transform (defined in Appendix A), 

10 



Figure 8: Grassfire transforms of thresholded Erim range image 
The results of the forward transform appear in the top panel, and the results of the reverse transform 
appear in the bottom. 

0 PthVesh(u, w) is given by Equation 5, 
Kgraas is the minimum size of the target, in pixels. 

To restore (grow) the target region to its original size, apply the reverse Grassfire 
transform as follows: 

Bieg(u,v) = G - ' ( h r i n k ( u , v ) )  , (7) 

where 

0 G-' is the reverse Grassfire transform (defined in Appendix A), and 
Pshrmk(u, w) is given by Equation 6. 

Figure 8 illustrates the results of applying the forward and reverse Grassfire trans- 
forms to the thresholded image shown in Figure 7. 

3. Identify target pixels on the leg. 

The target is distinguishable from the leg only in the reflectanm image. The range 
image is of no utility in identifying those leg pixels that belong to the target. The 
procedure to identify the image coordinates of the target is as follows. 
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Since the target is chosen to be made of a material that provides sharp contrast to the 
leg, it is possible to identify target pixels by thresholding on reflectance intensity. We 
take the target pixels to be those pixels that both belong to the leg, and exceed an 
intensity threshold, as follows: 

where 

a(., w) is the input reflectance image value at pixel (u,  w), 
@~.~(u,  w) is given by Equation 7, and 
K r e j  is a constant intensity threshold. 

4. Compute the centroid (a, 6 )  of the target pixels in atorget. 

The completed image analysis computes the following parameters of the target: row ii; 
column and sensed range @(E, G ) .  

4.3 Target Location from Perceptron Imagery 
The method described in this section is similar to the procedure detailed in the previous 
section. However, the order and type of operations differ enough to warrant a complete 
description, at the expense of some redundancy. 

The six following steps compute the image coordinates of the target. 

1. Acquire a temporal sequence of pairs of reflectance. and range images a,(u,  w) and 
@,(u,w), as in Figure 9. Apply a median Nter to the range images, computing p(u ,  w). 
Arbitrarily select one of the ai(u, w )  to be ~ ( u ,  w). 

We apply the median filter because of its robustness in the presence of outliers. 
No filtering is necessary for the procedure described in the previous section. How- 
ever, we find it to be required here. This might be due to the finer resolution of the 
Perceptron, the larger distances involved with the Ambler testbed, or other factors. 

2. Locate the leg in image space. 

(a) Threshold the range image, using Equation 5 to compute &reah(u, VI). 

(b) Find the largest connected component C in Pthresh(u, w), and create a binary image 
of it as follows (Figure 10): 

1 if (u,w) E C, 
0 otherwise. (9) 
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Figure 9: Perceptron images of Ambler leg 
The contrast of the reflectance (left) and range images has been enhanced. The extensional link of 
the leg appears in the bottom left, and the vertical link appears in the center. In the center of the 
reflectance image, the calibration target is visible as a white patch at the top of the vertical link. 

3. Find the top of the leg, as follows (Figure 11): 

where 

,&,(u,u) is given by Equation 9, 
uo is the smallest ti for which Bteg(u,v) # 0 (i.e., the highest point on the leg),and 

Ktop is the maximum number of rows the leg top may extend in the image. 

4. Identify target pixels at the top of the leg. 

13 
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Figure 10: Thresholded Perceptron range image of leg (&) 
typical result indudes pixels that do not belong to the leg, and does not indude some pixels 
do belong to the leg. 

(a) Identify potentid target pixels a l h r e r h ( U , u )  as follows (Figure 12): 

where 
a(u ,u )  is the input reflectance image value at  pixel ( u , ~ ) ,  

0 ,&,(u,u) is given by Equation 10, and 
K,,, is a constant intensity threshold. 

(b) Filter this processed reflectance image by first shrinking and then growing, in order 
to eliminate pixels that belong to  regions that are too small or too elongated to 
belong to the target. To eliminate small regions, threshold the output of the 
Grassfire transform as follows: 

14 
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Figure 11: Perceptron range image of top of leg (&,) 
The contrast of this image has been enhanced and inverted. Note the vertical bands on the left and 
right sides of the leg. The left bands are due to variations in material where the rack (Le., part of 
the rack-and-pinion drive) meets the aluminum leg structure. The right bands are "ghosts" that 
occur immediately to the right of the image of a depth discontinuity. 

where 

0 G is the forward Grassfire transform (defined in Appendix A), 
0 athrcah(u, w) is given by Equation 11, 
0 K,,,,, is the minimum size of the target, in pixels. 

To restore the target region to its original size, apply the reverse Grassfie trans- 
form as follows: 

~ t o r g e t ( ~ 9  w) = G'- ' (ast,vi&(u, VI) , (13) 
where 

0 G-I is the reverse Grassfire transform (defined in Appendix A), and 
0 ashvink(u,  w) is given by Equation 12. 

The results of applying these transforms are represented well by Figure 8, and so 
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Figure 12: Processed Perceptron reflectance image of top of leg (athreaj,) 

This figure illustrates the results of applying Equation 11 to the image shown in Figure 11. The 
bands that appear on the right side of the leg in Figure 11 have been removed, but the bands on 
the left remain. 

are not shown. It suffices to note that the transforms do remove the bands shown 
in Figure 12. 

5 .  Compute the centroid ( i i ,  6) of the target pixels in atarget. 

6. Compute the median range value 7 in a small, typically 3 x 3, spatial neighborhood 
around (i i , 6). This provides further protection against outliers. 

The completed image analysis computes almost the same parameters of the target as in 
the previous section: row ti; column 6; and median range 7. 

5 Identification of the Transformation 
This section presents our solution to the least-squares absolute orientation problem. As 
discussed in Section 2, the problem is to identify the rigid transformation minimizing the 
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squared error in mapping the point set {F.} into {FB}. 
The problem is non-trivial because there are more unknowns than equations. There are 

3LT scalar equations (Equation 1). The number of unknowns is at least six (three translation 
vector coefficients plus at least three independent variables to parameterize the rotation) and 
at most twelve (three translation coefficients plus nine - not independent -rotation matrix 
coefficients). 

There are a number of approaches to solving this under-determined system. We will 
briefly review them before presenting our solution method. 

First, the problem can be solved using Equation 1 and at least four corresponding points. 
With four points there are twelve equations, enough to solve for the maximum number of 
twelve unknowns. The equations are linear, so unless the points are coplanar, the existence 
and uniqueness of a solution are guaranteed. The disadvantage of this approach is that it 
does not guarantee that R is orthonormal. 

Second, the above difficulty can be circumvented by using Equation 1, and in addition 
enforcing the orthonormality constraints on the rotation matrix. Only three points are 
necessary (in fact, more than sufficient), but the equations are non-linear, leading to a con- 
strained minimization problem that must be solved iteratively, for instance, using Lagrange 
mu1 t ipliers . 

Third, the problem can be solved when three points are measured by selectively neglecting 
the additional constraints available from the three measurements [ll, 131. This approach 
applies only to  the case of three points, no more and no less, and thus lacks generality and 
robustness. 

Fourth, exact closed-form (non-iterative) solutions are possible using an orthonormal 
matrix to represent the rotation. One solution uses the singular-value decomposition of 
an arbitrary matrix [I], while another uses the eigenvalueeigenvector decomposition of a 
symmetric matrix [9]. The disadvantage of these approaches is the complexity involved with 
the six nonlinear constraints that ensure that the matrix is orthonormal. 

Fifth, exact closed-form solutions are possible using unit quaternions to  represent the 
rotation. The solution for the desired quaternion is the eigenvector associated with an 
eigenvalue (either the smallest [5] or largest IS]) of a symmetric matrix, whose elements are 
combinations of sums of products of corresponding coordinates. The quaternion representa- 
tion affords two advantages: simplicity - it is simpler to enforce a unit norm for a quaternion 
than it is to ensure that a matrix is orthonormal; and closed-form solution - no iteration 
is required. 

We prefer the latter approach because of its elegance and effectiveness, and implement the 
technique in [SI. For convenience in the physical interpretation of the solution rotation, we 
do not use the solution quaternion 4 itself. Instead, we first express &in as an orthonormal 
matrix R using the equations in [SI, p. 641, and then parameterize R under the roll-pitch- 
yaw convention. Let q5 correspond to roll, 13 correspond to pitch, and + correspond to  yaw. 
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We specify the order of rotation as 

R W d ,  8, $1 = W Z ,  4 0) R o W , ~ )  , 
that is, a rotation of $ about X ,  followed by a rotation 6' about Y ,  and finally, a rotation $ 
about 2. The orthonormal matrix corresponding to RPY(#,8, 4)  is given in [lo], p. 47. 

Note that the identified transformation maps a vector referred to frame S into a vector 
referred to frame 8. This is the covariant transformation. The contmwuriant transformation 
maps frame S into frame B;  it is the inverse of the covariant transformation, and transforms 
frames, not vectors. Because the contravariant corresponds more closely to our physical 
interpretation of the rotation, our discussion of the rotation parameters in the sequel will 
always be in terms of the contravariant transformation. Specifically, we give the roll, pitch, 
and yaw parameters of the contravariant rotation and the negative translation parameters 
of the covariant. This corresponds to rotating frame S about the axes of the initial S, and 
translating the rotated frame along the axes of 8. 

We have implemented an optional, second stage to cope with unexpected behavior by 
the sensor. Typically, we observe such behavior when operating the sensor under conditions 
that exceed its operating range, e.g., high temperature. This second stage searches for 
two parameters, gain k,  and offset kz, that minimize the squared error E.  We replace the 
expression p = kd in Equation 3 by 

p = k i d + k z .  (14) 

At each iteration, the second stage invokes the exact solution procedure described above, 
using the revised sensor model given by Equation 14. 

6 Results 
In this section we present experimental results from the calibration procedure. First, we 
describe the experimental setup and state the experimental procedure. Next, we quantify 
the accuracy of the procedure, and discuss its utility for building terrain maps and choosing 
footholds. Then, we analyze the precision of the procedure for various trials. 

6.1 Experimental Setup and Procedure 
Figures 1 and 2 illustrate the experimental setup. Observing the physical pose of the scanner 
in the two figures, we see that it sits above and in front of the supporting structures, and 
that it looks down toward the ground. Thus, to map the scanner frame into the body frame, 
we would first rotate it a substantial amount about the scanner z-axis (tilt it up from looking 
at the ground to look at the horizon), and then translate it along the negative body Y-axis 
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(back) and along the negative body Z-axis (down). According to the convention established 
in the previous section, this mapping is equivalent to the following rigid motion parameter 
values: 

t , x O , t , < O ,  t , < o ,  #s30,0=0, $ B O .  
To formally state the experimental procedure, let i and j be counters, B and S be sets 

of target position vectors, L be the number of leg poses, and T be the number of targets on 
each leg. 

1. i + - l , B t O , S t @  

2 .  while i 5 L do 

(a) Move leg to pose i 
(b) Compute F ~ j j  , 1 5 j 5 T ,  as in Section 3 
(c) B t B U { F ~ j j }  , 1 5 j 5 2' 
(d) Acquire reflectance and range images 

(e)  Compute F~i j  , 1 5 j 5 T, as in Section 4 

(f) S + S U {Gj} 1 5 j 5 T 
(9) i + i + l  

3. Compute R and ;from B and S, as in Section 5 

We have automated this procedure entirely, and have executed it hundreds of times, 
perhaps a thousand times. Over the courseof these trials, we have tested the procedure under 
a wide variety of conditions, including 50°F differences in temperature, ambient illuminations 
ranging from bright sunlight to night-time fluorescent lighting, and background materials 
ranging from sand to people to heavy machinery. 

Typical values from one Erim and one Perceptron data set, respectively, are the following, 
in units of meters and degrees: 

t, = 0 .2 ,  t, = - 0 . 6 ,  t ,  = -0 .8 ,  4 = -0.5 e = 1.8 , $ = 75.1 , 
t, = 0.0 , t ,  = -0.1 t, = -1.0 , 4 = 0.4 , 0 = -0.3 , I I ,  = 41.7 . 

These rigid motion parameters agree with our expectations, without exception, and with 
each other, except for the rotation about the z-axis. 
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6.2 Accuracy 
Accuracy of Rigid Motion Parameters 

It would be revealing to compare the computed rigid motion parameters obtained by our 
calibration procedure with those measured by direct techniques. However, the origin of S 
does not physically lie at a distinguished position that  we can measure directly, Le., with 
devices such as calipers or rulers. Thus, such a comparison is not possible. 

Accuracy of Points Transformed into B 

An alternative basis for evaluating the accuracy of the computed parameter values is the 
distance between corresponding points after applying the transformation. We consider two 
distances. 

The first distance we consider is related to what we earlier called “error.” Recall from 
Section 2 that the error of the i*h pair of measurements is 

+ z. - - , - ~ g i  - Rr‘si - t . 
To illustrate the distribution of errors, Figure 13 plots three projections of the .?; for a 
typical Erim data set. The errors for a typical Perceptron data set are similar, and so are 
not shown. The figure suggests that the errors tend to cancel. For example, in the front view, 
the magnitude of the errors in the positive 2 direction approximately equals the magnitude 
of the errors in the negative 2 direction. The figure also indicates the absence of outliers. 

The second distance we consider is the square root of the sum of component-wise differ- 
ences. Here, the distance di between the i‘h pair of measurements is given by 

(15) 2 - -  - di = e;. e; , 

and 2 denotes the mean of the distribution of the d;. Graphically, d is the average length of 
the line segments in Figure 13. 

Figure 14 shows dfor ten Erim trials. We observe that the mean varies from 5.5 to 11.2 
cm, and that it varies significantly between data sets of different sizes, and between data sets 
of the same size. This range of values and variations is typical of other trials. We conclude 
that the accuracy of the calibration procedure for the Erim is 6-12 cm. 

Figure 14 also shows d for ten Perceptron trials. The results show that the mean values 
range from 1.8 to 6.7 crn, and vary significantly between data sets. This range of values 
and variations is typical of other trials. We conclude that the accuracy of the calibration 
procedure for the Perceptron is 2-7 cm, or two times greater than for the Erim. This 
difference in accuracy may be due to better leg position sensing with the Ambler, or superior 
accuracy on the part of the Perceptron scanner, or both. 
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Figure 13: Typical errors, for Erim 
The three two-dimensional plots are top, front, and side views. The cross symbol represents the 
position measured in 8; the bullet symbol represents the position measured in S and then referred 
to 8; the lines connect corresponding measurements. 
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Figure 14: Statistics of error distributions 
Trials 1-10 use the Erim, and trials 11-20 use the Perceptron. 

Accuracy of Maps 

Another measure of the computed rigid motion parameters is their utility for building terrain 
maps from which footholds can be selected. 

To achieve high map accuracy we have added a third stage to the calibration procedure 
described in Section 5. This stage searches for the vertical translation t ,  that produces maps 
with elevations closest to a given elevation (often, it is convenient to use the elevation of the 
ground). This compensates for changes in the scanner performance caused by factors such 
as range drift and temperature variation, without requiring acquisition of new data. 

We have not yet determined the accuracy of the maps to  our complete satisfaction (that 
will be the subject of a future report). Rather than reserve comment, in the following 
we report results that are approximate and representative, but not definitive. By relative 
accuracy we mean accuracy in determining relative positions, for instance, to compute the 
dimensions of an object. By absolute accuracy we mean accuracy in determining absolute 
positions, for instance, to compute the position of an object in some external reference frame. 

For both the Erim and Perceptron, using the third stage, we reliably achieve a relative 
accuracy of 5-10 cm, and an absolute accuracy of 10-20 cm. We believe that some improve- 
ment is still possible. Nevertheless, this degree of fidelity has proved to be adequate for all 
of the rugged terrain walking experiments conducted to date. 
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Figure 15: Variation of the con uted parameters between data sets 
Trials A-C use the Erim, and Trials D-F use the Perceptron. 

6.3 Precision 
Precision of Rigid Motion Parameters 

To evaluate the precision of the computed rigid motion parameters, we execute the calibration 
procedure several consecutive times, and observe the difference in the computed parameters. 
Between data sets, we do not move the scanner or alter any settings. Thus, in the ideal c a e  
we expect the procedure to compute the same rigid motion parameters for each trial. 

Figure 15 shows by how much the estimated parameters change between three data 
sets for each sensor. Some parameters change by significant amounts; the largest observed 
differences are 16.1 cm and 2.0' for the Erim and 7.4 cm and 1.6" for the Perceptron. 

The variations in the rigid motion parameters may be due to numerical instability of 
our computations. To investigate this, we compute the condition number-the ratio of the 
largest eigenvalue to the smallest-of the symmetric matrix described in Section 5. In the 
experiments, we observe condition numbers between 1 and 120. These values do not approach 
the reciprocal of the computing machine's floating point double precision. This demonstrates 
that the matrix is not ill-conditioned. Further, this suggests that the commanded target 
positions do not lie in a configuration that could cause the solution to degenerate. 

The variations in the rigid motion parameters may be due to poor leg position sens- 
ing, or poor image analysis, or both. If poor leg position sensing reported target locations 
imprecisely, then the rigid motion parameters would vary, even with perfect image analy- 
sis. Similarly, the parameters would vary if poor image analysis reported target locations 
imprecisely, even with infinitely repeatable leg position sensing. 

For the Erim trials, both factors are mnflated, making it difficult to identify their relative 
magnitudes. We suspect that the dominant cause of poor calibration repeatability is leg 
position sensing that does not xcount adequately for the significant structural compliance 
of the leg members and rails. However, we do not suggest that image analysis errors are 
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negligible. 
For the Perceptron trials, sensing the position of the stiff Ambler legs is highly repeat- 

able, so the dominant cause of poor calibration precision is image acquisition and analysis. 
Examining the target positions measured in the range images, we find that the position of 
the target changes less than one pixel between trials (low geometric variation), but that the 
sensed ranges in the range image can vary significantly (high radiometric variation), even 
after applying temporal median and spatial averaging filters. 

It is unlikely that these range variations are due to mixed pixels, because we exclude all 
measurements near the edge of the target. It is also unlikely that they are due to changes 
in material across the target, because the target is homogeneous. 

We observe that the range variations correlate strongly with ambient temperature; the 
higher the temperature, the greater the variations. We have not been able to eliminate 
the variations, but can achieve acceptable precision by conducting calibration during cool 
conditions, where inferior to 75" is our heuristic measure of cool. 

Precision of Points Tkansformed into 0 

To assess the precision of the points transformed into B, we evaluate the standard deviation 
SD of the distribution of the di. This statistic quantifies the scatter of the points mapped 
into B, illustrated graphically for one particular data set as the variation of line segment 
lengths in Figure 13. 

Figure 14 shows sg for ten Erim trials. We observe that the values of SD range from 1.5 
to 4.3 cm, and that they vary significantly between data sets of different sizes, and between 
data sets of the same size. This range of values is somewhat better than for other trials, 
where it is not uncommon to observe standard deviations of 10 cm. We conclude that the 
precision of the calibration procedure for the Erim is no better than 2-5 cm. 

Figure 14 shows sg for ten Perceptron trials. The results show that the precision ranges 
from 1.0 to 4.3, which is commensurate to that of the Erim. This is several times worse than 
the resolution of the Perceptron. As in the caSe of the Erim, the reported range of values is 
somewhat better than for other trials. 

6.4 Execution Time 
The time required to execute the calibration procedure with 10-20 points totals approxi- 
mately 15 minutes for either scanner. The procedure spends roughly 70 percent of this time 
moving the legs, and roughly 20 percent acquiring and filtering images. Computing the rigid 
motion parameters and searching for the gain and offset account for most of the remaining 
10 percent. 
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7 Discussion 
In this report we have presented an implemented technique to calibrate scanning laser 
rangefinders to a vehicle-centered reference frame. We reported results for two different sen- 
sors and two different vehicles. For the Erim and the prototype leg, the procedure achieves 
an accuracy of 6-12 cm with a precision no lower than 2-5 cm. For the Perceptron and the 
Ambler, the accuracy is 2-7 cm with a precision no lower than 2-5 cm. These results have 
proven to be satisfactory for constructing terrain maps and using them to select footholds 
during our rough terrain walking experiments. 

We have also successfully calibrated the Perceptron scanner to a fixed reference frame. 
The techniques and results are very similar to those reported for the vehicle-centered ref- 
erence frames, so we have not treated them separately. We note that this success provides 
further evidence for the generality of the approach. 

The closed-form solution for the rigid motion parameters more than lived up to our 
expectations. It performed its function with high reliability in reasonable time. 

The image analysis has performed well under a wide variety of conditions. Reasons for 
this success include removing possibly mixed pixels from consideration, using region-based 
rather than point-based features and statistics, and applying temporal median filters. We 
found the Grassfire transform to be remarkably effective in removing non-target points and 
regions. 

Still, we can improve the image analysis in a number of ways. Perhaps the most significant 
would be to modify the sensor so that it is not so sensitive to temperature. It would also be 
valuable to develop more robust methods, perhaps involving sensor fusion, to identify and 
eliminate mixed pixels. 

One promising direction for future research is toward more comprehensive sensor calibra- 
tion. This would involve identification of intrinsic sensor parameters such as the relationship 
between range grey level and absolute distance, the mirror starting angles, and the angular 
increments, in addition to the six rigid motion parameters. 

A Grassfire Transform 
The Grassfire transform is a distance transformation related to the Medial Axis Transform 
[4]. It takes an input image (typically a binary image) and produces an output image whose 
pixel values indicate the distance to the perimeter of some target region in the input image. 
In this case, the target region is not literally the region of the image containing the projection 
of the calibration target, but any of the regions that satisfy Equation 5. 

The forward Grassfire transform, G, assigns to each pixel inside a region the distance 
to the region perimeter. More precisely, it fills the area inside the region with the distance 
to the nearest pixel outside the region, i.e., ‘1’s in the perimeter pixels, ‘2’s in the interior 
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pixels adjacent to the perimeter, ‘3’s in the interior pixels adjacent to these, and so forth. It 
fills the area outside the region with ‘0’s. 

It is this behavior that gives the transform its name. Imagine that the input image is a 
field, where the non-zero pixels correspond to dry, grassy patches, and where the null pixels 
correspond to barren patches. The Grassfire transform “lights” the perimeter of all grassy 
regions “on fire,” and it assigns the time required for the fire to reach a pixel as the pixel 
value. Thus, the value of each pixel in a region is its distance to the perimeter of the region. 

The reverse Grassfire transform, loosely denoted G-’, fills the area outside the region 
with the distance to the nearest pixel inside the region, and fills the area inside the target 
region with ‘0’s. 
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