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Abstract 
A new technique for stabilizing nonholonomic systems 
to trajectories is presented. It is well known (see [2]} 
that such systems cannot be stabilized to a point us­
ing smooth static-state feedback. In this paper we sug­
gest the use of control laws for stabilizing a system 
about a trajectory, instead of a point. Given a nonlin­
ear system and a desired (nominal) feasible trajectory, 
the paper gives an explicit control law which will lo­
cally exponentially stabilize the system to the desired 
trajectory. The theory is applied to several examples, 
including a car-like robot. 

1 Introduction 
There has been a great deal of recent research on the 
problem of stabilizing a system with nonholonomic 
(nonintegrable) constraints on its velocities [1, 5, 12]. 
Of course, by Brockett's necessary conditions for sta­
bility, one may demonstrate that systems with nonin­
tegrable velocity constraints cannot be stabilized to a 
point with smooth static-state feedback [3]. Given this 
result, researchers have offered both non-smooth feed­
back laws [6] and time-varying feedback laws [12] for 
stabilizing these systems to points. However, it is fair 
to say that these approaches are not yet fully general. 

Our approach is to stabilize about trajectories in­
stead of points. Given a feasible trajectory for the 
system generated by an open-loop path planner, we 
can compute the linearization of the system about this 
nominal trajectory. If the linear time-varying system 
thus obtained is uniformly completely controllable in 
a certain sense (to be made explicit in §2), we define 
a linear time-varying feedback law which will locally 
stabilize the system about this nominal trajectory. 
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Thus, the problem this paper solves is: given a 
nonholonomic system, a feasible desired trajectory to 
follow, a known clearance between obstacles, and a 
measure of accuracy of the sensors, find a control law 
which will stabilize the system to this path, avoiding 
the obstacles robustly in the face of disturbances. 

In §2 we present our control law and show it to 
be exponentially convergent. In the following sections, 
we apply this control law to various nonholonomic sys­
tems, including a wheeled mobile robot called Hilare 
and a front wheel drive car. 

In the examples, we focus on mobile robots with 
an objective of creating a composite controller that 
will: first, have off-line computation of a trajectory 
which avoids the obstacles [9]; second, apply the con­
trol law given here to stabilize the system to the open 
loop collision-free trajectory; third, while executing, 
use sensors to detect possible collisions due to poor a 
priori information. In this case, new information can 
be used to update the model of the environment and 
restart the process. Such a controller would be able 
to reject many types of disturbances including noise in 
the sensors, initial condition errors, and errors intro­
duced along the trajectory. 

2 An Exponentially Stabilizing 
Control Law 

We consider a system: 

x = f(x) + g(x)u (1) 
x E Rn states 

u E RP inputs 

x0(t) Desired trajectory 

u0(t) Nominal Inputs 

Remarks: We shall focus on systems where f(x) is 
identically zero. Systems like this are called "drift­
free" and encompass most of the models used in the 
literature. However, the method we present here is 



general enough to include systems like (1) which have 
non-zero drift terms. Thus the proofs will include the 
drift terms, although the worked examples are all drift­
free. 

Inspired by the result on linear systems found in 
[4], we have picked the following control law: 

Proposition 1 (A Stabilizing Control Law) 
Given a system of the form (1), a desired trajec­
tory x0 (·), and a nominal input u0 (-), define the fol­
lowing: 

A(t) .- [:~ (x 0 (t)) + o(g~:(t)) (x 0(t))] 

B(t) .- g(x0(t)) 

Suppose that llB(t)ll is bounded for all t. Define 
<J(t, to), belonging to Rnxn, to be the solution to 
the differential equation <i>(t, to) = A(t)cI>(t, to) with 
cI>(to, to)= I. Further, define for some o: > 0: 

Hc(to,t) = it e6"(to-T)<Ii(to,r)B(r)B(rf<Ii(to,r)Tdr 
to 

If there exists a 6 such that Hc(t, t + 6) is bounded 
away from singularity 1 for all t, then define Pc(t) as 
follows: 

Pc(t) := H; 1(t, t + 6) 

Now, if there exist two numbers P':, p~ such that: 

0 < p';' I < Pc(t) < p~ I Vt E R+ 

Then, for any function 1(t) : R+ -+ [t, oo ), continuous 
and bounded, the linear time varying feedback law: 

u = u0 
- 1(t)B(tf Pc(t) (x - x0

) 

locally, uniformly, exponentially stabilizes the system 
(1) to the desired trajectory x0 (t) at a rate greater than 
2o:p~(p~)- 1 > 0. 

Proof: First, define the error signal e and error input 
v as: 

e = x - x 0 E Rn 

v = u - u0 ERP 

We solve for the dynamics of these error signals 
using the Taylor Series expansions: 

e f(x 0 + e) + g(x0 + e)(u0 + v) - f(x 0
) - g(x0 )u0 

( :~ (xo) + 8(::0) (xo)) e + g(xo)v 

8(gv) o +a;-(x )e + h.o.t. 

All terms with dependencies on x0 , u0 will be rewrit­
ten as functions of time. In addition to A(t), B(t), 

1 H the linear time-varying system is uniformly completely 
controllable over intervals of length S > 0 then Hc(t, t + S) is 
uniformly invertible. 
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define o(e, v, t) to be the higher order terms plus the 
term involving 1\9;>: 

o(e, v, t) 

with: 
g(x0 + e)(u0 + v) - g(x0 )(u0 + v) 

8(gu0 + gv) 

g1 ( e, v, t) 

ax e 

fi(e,t) = f(x 0 + e)- :~ (x0 )e - f(x 0
) 

Note that since v = -1(t)BT (t)Pc(t)e, we may 
rewrite o(e, v, t) so it depends only on e, t; call this 
o(e, t). We wish to show: 

lim sup lio(e, t)ll = 0 (2) 
llell-+O t~O llell 

We know that: 

lim 
llo(e, t)ll 

0 :5 sup---
llell-o t~o llell 

Jim 
llY1 (e, -r(t)BT(t)Pc(t)e, t)ll :5 sup + 

llell-O t~O lleli 

lim llfi(e,t)ll + sup 
llell-o t~O llell 

lim 
II (~(x0 ))v=--y(t)BT(t)Pc(t)e ell 

sup 
llell-O t~O liell 

The second term is zero. Note 
that llr(t)BT(t)Pc(t)ell :5 K!lell for some K < oo as 
r(t), B(t), Pc(t) are bounded for all t. This implies that 
the first and third terms are zero as well. 
Thus: 

e = A(t)e + B(t)v + o(e, v, t) 

e = A(t)e + o(e, t) (3) 

with: 

A(t) = A(t) - 1(t)B(t)B(tf Pc(t) 

Inspired by [4], we pick a Lyapunov function: 

V( e, t) = eT Pc(t)e ( 4) 

and calculate its time derivative along trajectories of 
the system (3). One may verify that: 

with: 

Fc(t) = -6aPc(t) - Pc(t)A(t)- AT(t)Pc(t) 

+Pc(t)B(t)BT (t)Pc(t) 

-e-4a6 Pc(t)Q(t)Pc(t) 

Q(t) = <Ii(t,t+c5)B(t+c5)BT(t+c5)<IiT(t,t+c5) 

Thus the time derivative of the Lyapunov function is: 

V(e, t) = -eT[6aPc(t)]e + 2eT Pc(t)o(e, t) 

-eT e-4ao Pc(t)Q(t)Pc(t)e 

+eT[(2r(t) - l)Pc(t)B(t)BT(t)Pc(t)]e (5) 



Note that if -y(t) ~ l, 'v't, then the first two terms in 
(5) are less than or equal to -6ap~ llell2 • Secondly, 
because of (2), there exists a number f > 0 such that: 

llo(e,t)ll ::; ap~(P:')- 1 llell, 'v'e such that llell :$ f 

This implies that: 

l2eT Pc(t)o( e, t)I ::; 2ap~llell 2 , 'v'llell ::; f 

Thus, now similar to [4], we may say that: 

V(e, t) ::; -4ap~llell2 (6) 

Further we may state that: 

V(e, t) ::; -4ap~(P:'r 1 v(e, t) (7) 

Finally we may conclude: 

V(e, t) 

lle(t)ll 

which gives us the specified convergence rate for the 
error signals D. 

Remark 1: This convergence rate may be shown to 
be independent of p~ and p~. To demonstrate this, 
define z, y: 

z = ey 
y E R with 

ii = ay 

Now we wish to solve for the dynamics of z. 

z = (A(t)+al)z+o(e,t)y 

We will pick the same Lyapunov equation and calcu­
late its derivative, using the same arguments as before: 

V(z, t) = zT Pc(t)z 

V(z, t) ::; -4ap~llzll2 + 2zt Pc(t)o(e, t)y 

Given the exponential convergence of e when it starts 
sufficiently close to the origin, we may say that after 
some time T the last factor may be bounded as follows: 

l2zPc(t)o(e, t)yl ::; 2ap~llzll 2 

Thus we may write, as before, that: 

V(z, t) ::; -2ap~llzll 2 

And following equations (8) and (9) we will obtain the 
same convergence rate, ap~(p~)- 1 • However, we may 
note that: 

Thus, if z is exponentially convergent at a rate 
ap~(P:'t 1 after some time T, then e is exponentially 
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convergent at a rate ap~(p~)- 1 +a > a after some 
time T, thus for a sufficiently large k we may state 
that: 

Remark 2: For some regulator applications, it is de­
sirable not to need information on the future trajec­
tory of the system. To deal with this concern, define 
Pr(t), similar to Pc(t), again assuming the inverse in 
the formula exists: 

Pr(t) = (Hc(t, t - 6))-l 

Notice that this matrix is dependent on past values of 
the trajectory and not on future values. As before, if 
there exists two numbers p~ and P:' such that : 

0 < pr;' I < Pr(t) < p~ I 'v't E R+ 

then for any -y(t) : R+ ~ [i, oo), continuous and 
bounded, the linear time varying feedback law: 

u = u0 
- -y(t)B(tf Pr(t)(x - x0

) 

locally uniformly exponentially stabilizes the system 
(1) at a rate greater then a. 

The proof is similar to the last control law and so 
will be left to the interested reader. It is useful to note 
that: 

Fr(t) = -6o:Pr(t) - Pr(t)A(t)-AT(t)Pr(t) 

+Pr(t)B(t)BT (t)Pr(t) 

-e4a6 Pr(t)Q(t)Pr(t) 

where Q(t) is the same as Q(t) except the t + c5 is 
replaced by t - c5. 

We have applied this control law to three example 
systems. The first is chosen because its simple struc­
ture allows for the explicit computation of the control 
laws. The second is the Hilare-like mobile robot, with­
out drift, and the third example is a front wheel drive 
car. 

3 Example: The Mobile Robot 
Hilare 

Hilare is a wheeled mobile robot created at 
LAAS, Laboratoire d'Automatique et d'Analyse des 
Systemes, located in Toulouse, France [8]. This robot 
has two parallel wheels which can be controlled in­
dependently. By commanding the same velocity to 
both wheels, the robot moves in a straight line. By 
commanding velocities with the same magnitude but 
opposite directions, the robot pivots about its axis. 
Although the actual input is the acceleration, we are 
doing only a kinematic analysis and assuming we can 
control the velocity. See Figure (1) for a diagram of 
Hilare. 



Figure 1: Model of the mobile robot Hilare. 

Assuming that wheel velocities are the inputs, one 
may model Hilare as follows: 

xi = cos(x3)u1 

x2 = sin(x3)u1 

X3 = U2 (9) 

Note from Figure (1) that the coordinates (xi, x2) rep­
resent the position of the robot in the plane, and x3 is 
its orientation. 

Again, one would hope the system's straightfor­
ward structure allows the control laws to be computed 
in closed form. The first step is to find the matrices 
A(t) which is contained in R3

X
3 and B(t), contained 

in ff3X2: 

A(t) = ox 

= [ ~ ~ 
0 0 

B(t) = g(xo) 

Now the state transition matrix associated with 
this particular A(t) may be found. Using the fact that 
cp(to, to) = I and that cp(t, t 0 ) satisfies the differential 
equation <i>(t, to) = A(t)cp(t, t0 ), it may be shown that: 

where: 

[ 

1 0 f,(t, to) l 
cp(t, to)= 0 1 !c(t, to) 

0 0 1 

f,(t,to) = it -sin(xg(r))u~(r)dr 
to 

!c(t, to) = it cos (xg( r)) u~( r)dr 
to 

Now that we have the state transition matrix, we 
can solve for the derivative of Hc(to, t) as follows, using 
Ci = cos(x?) and Si = sin(x?). 

Hc(t, to) e4a(to-t)<P(to, t)B(t)B(t)T <P(to, t) 

[ 

c~+f~ 
= e4a(to-t) C3S3 + fsfc 

f. 

C3S3 + f .fc f • ] 
s~ + J; fc 

f. 1 
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Figure 2: The errors e versus time. 

Figure 3: This phase plot shows the nominal and ac­
tual trajectories, projected onto the (x1, x2) plane (the 
orientation of the robot is not shown). The desired 
trajectory is the perfect circle. Note how quickly and 
smoothly the system converges to the desired trajec­
tory. 

The nominal trajectory to which we have ap­
plied our stabilization procedure is a circular path. 
This choice was inspired by the work of Reeds and 
Shepp [11], who showed that time-optimal paths for 
Hilare-like robots with actuator limits consisted of 
straight-line segments and arcs of circles. 

The nominal input for this trajectory is u0 = 
(1, 1). We set a = 0.1, {j = 1.0. We choose an initial 
condition error of (-0.1, 0.2, 0.1), and run the simula­
tion for 211" seconds. See Figures (2) and (3) for the 
results. 

Although we have used the same values of a, {j 
and initial error as in the previous example, the con­
vergence seems less rapid, indicating that the conver­
gence rate depends on the chosen trajectory. However, 
the convergence rate is also a function of a, which we 
are free to choose. If we needed faster convergence, we 
could simply choose a larger a. 



Figure 4: The front wheel drive car. 

4 Example: The Front Wheel 
Drive Car 

We consider now a front-wheel drive car. This sys­
tem is also controllable [10], although two levels of Lie 
Brackets must be taken to show this. We quote here 
the kinematic equations, the reader interested in their 
derivation may consult [10]. A sketch of the car is 
found in Figure 4. 

The system equations for the front wheel drive car 
(assuming velocities as inputs) are: 

:&1 = cos(x3) cos(x4)u1 

:&2 = cos(x3) sin(x4)u1 

x3 = U2 

x4 = i sin(x3)u1 (10) 

where (xi, x2) is the position of the car in the plane, 
x3 is the angle of the front wheels with respect to the 
car (or the steering wheel angle), x4 is the orientation 
of the car with respect to some reference frame, and 
the constant L is the length of the wheel base. 

We will again employ the notation Ci = cos(x?) 
and Bi = sin(x?). The matrices A(t), B(t) then are: 

A(t) = 8(guo) 
ax 

-C483U~ 
-S384U~ 

0 0 0 [ ~ ~ 
Q 0 tc3U~ 

B(t) = g(x0
) 

Inspired by [10], we chose the nominal input u0 = 
(sin(t), cos(2t)), roughly corresponding to a parallel­
parking maneuver (see Figure 6). Again, we chose 
a= 0.1, 6 = 1.0. After one period (T = 27r), this input 
steers the system in the direction given by the second­
level nested Lie bracket of the two input vector fields 
(i.e. [g1, [g1, g2]]). The initial condition was chosen to 
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Figure 5: Plot of errors e versus time. 

1 ... 
Figure 6: This phase plot shows the desired and the 
actual trajectories projected onto the (x1, x2) plane 
(the orientation of the car and the steering wheel an­
gle are not shown). The desired trajectory is the one 
which starts at (0,0). Note how quickly and smoothly 
the control law stabilizes the system to this trajectory. 

be (0.1, -0.1, 0.05, 0.2), and the simulation was run 
for 27r seconds. Figures (5) and (6) show the results. 
Note the rapid convergence to zero in the error terms. 

5 Conclusions 

The control law and simulation results presented in 
this paper suggest that for nonholonomic systems, sta­
bilizing to a trajectory is a better problem to consider 
than stabilizing to a point. It should be noted that for 
drift-free systems, all points are equilibrium points (in 
the sense that with zero input, the system will remain 
at rest). 

However, if one adopts our point of view, one must 
also face the problem of finding feasible trajectories; a 
rich problem which has not been solved for all systems. 
Excellent work has been done [7, 9, 10, 11, 13] in this 
area, and methods for finding trajectories exist for a 
wide range of nonholonomic systems (including all of 
the examples found in this paper). 



In the context of non-kinematic models such as 
the real Hilare robot, the inputs are not the motor 
velocities but the torques, and thus the problems in­
volving drift should also be examined. The control 
law presented here can be applied to stabilize systems 
with drift; however it is not as clear how to go about 
choosing the nominal trajectory. Further work could 
include the exploration and testing of other control 
laws for stabilizing linear time-varying systems. 

The control law presented in this paper is robust 
to three types of error: initial condition errors, pertur­
bations introduced along the trajectory, and noise in 
the sensor data. We have only shown the convergence 
results when there is an error in the initial condition, 
but it can be seen that the effects of the other two 
types of errors also are reduced using this law. 

In summary, the path to a composite controller 
for mobile robots is: 1) Utilize the path planners to 
generate an open-loop nominal trajectory. 2) Apply 
the control law developed in this paper to stabilize the 
system to this nominal trajectory. 3) During operation 
of the robot, low-level sensor data can be used to avoid 
collisions caused by a priori errors in the knowledge of 
the environment. This new knowledge can be used 
to plan a new feasible nominal trajectory and find its 
associated stabilizing control law. 
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