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Abstract 
Methods for steering car-like robots with trailers are inves­
tigated. A connection is demonstrated between Murray and 
Sas try 's work of steering with integrally-related sinusoids 
and Bussmann and Liu's recent work on asymptotic behav­
ior of systems with high-frequency sinusoids as inputs. The 
merits of coordinate transformations, relative to the con­
vergence properties, are discussed. Simulation results for a 
car-like robot with two trailers are presented. 

1 Introduction 
Our interests in this paper are in steering a specific 
class of systems with so-called "nonholonomic" constraints, 
namely nonintegrable constraints on the velocities of the 
configuration variables. In particular, in this pa~er we are 
interested in car-like systems with n trailers. There is a 
great deal of current excitement in control theory, classical 
mechanics and robotics communities on the use of tech­
niques from the theory of Lie algebras and also so-called 
reduction techniques to obtain solutions to these problems. 
In the context of motion .Planning for mobile robots, these 
problems were first investigated for the Hilare family of mo­
bile robots by one of us with the research group of Giralt 
at LAAS, Toulouse (see, for example [9]). Taking up from 
this work and also drawing from nonholonomic problems 
arising from the manipulation of objects by fingers rolling 
on the surface of an object [11] we explored in [12] the use 
of sinusoidal inputs in steering certain classes of nonholo­
nomic systems. The key to the approach lay in a theorem 
of Brockett [2] in optimal steering of control systems whose 
control algebras are Heisenberg algebras. The steering by 
sinusoids works well for a class of systems which can be 
converted into a chained form. 

At the same time, Sussmann and coworkers (Lafferiere 
and Liu) have been developing a set of tools for steering 
general drift free control systems. The results of Sussmann 
and Lafferiere [8], in particular explained the use of piece­
wise constant inputs for steering control systems whose Lie 
Algebras are nilpotent. Also, they brought to the field the 
machinery of Pliillip Hall bases for freely generated Lie al­
gebras. On the other hand, the paper of Sussmann and 
Liu [16] brought in the use of sinusoids of asymptotically 
high frequency and amplitude for steering systems which 
are not necessarily nilpotent. The key to their results were 
some recent advances by Kurzweil and Jarnik. There have 
been also several other approaches to nonholonomic mo­
tion planning which are too numerous to exhaustively list 
here (for example, [1]). 

In this paper we make the connection between the 
sinusoidal steenng algorithms of Murray and Sastry and 
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the asymptotically high fr~uency and high am,Plitude si­
nusoids of Sussmann and Liu. The connection 18 made in 
the context of steering a car like system (mobile robot, 
Hilare) with 2 trailers. It has been shown in [10] that 
such systems with n trailers are completely controllable 
and bases spanning the control Lie algebra generated. It is 
not, howeverl poSS1ble to transform systems like this into 
the chained torm necessary for applymg the algorithm of 
Murray ~d Sl!Btry, though a weakening of theu theorem 
presented m this paper enables the system to be put into an 
order .P = 1 c;:hained form. Once this approximate chained 
form 18 obtamed, the theory of the use of asymptotically 
high frequency, h!gh amplitude sinusoids of Sussmann an<l 
Liu may be simplffied to this situation. Also, the rate of 
convergence of the transformed system is considerably en­
hanced. Thus the contrib'1tions of the paper are: 

1. To give a weakened form of the chained form trans­
formation theorem of Murray and Sa.stry which may 
be applied to the car like robot with 2 trailers. 

2. To show the enhanced convergence of the asymp­
totic sinusoidal input steering algorithm when applied 
to the system transformed into approximate cliained 
form. 

The outline of the fa.per is as follows: in Section 2 we 
give a. description o chained form systems and the t;ans­
formation tlieorems for transforming given systems into 
approximate chained form. We aJ>ply this theorem to the 
car ~e system with 2 trailers ~ s.ectio!1 3. Section 4 gives 
a. review of the use of asymptotic smus01ds for steering con­
trollable systems. Section 5 contains the application of the 
theory to the car like system with 2 trailers, explaining the 
details of the choice of the frequencies satisfying noninter­
ference conditions and the enhanced convergence on the 
transformed system. 

2 Chained Form Systems 
~any of the results w_e _present require some background 
m control theory and differential g_eometry. For definitions 
of several terms such as vector fields, distributions, Lie 
brackets, and Lie derivatives, as well as more advanced 
topics in controllability, the reader unfamiliar with these 
concepts may wish to consult [6] or [15]. 

We first present some of the results that can be ob­
tained for nonholonomic systems in a. so-called "chained 
canonical form," i.e. systems with two inputs which are in 
the following form: 

:i:1 U1 

:i:2 u2 

:i:3 x2u1 

:i:n Xn-1Ui (1) 



These systems are completely controllable (see [6] or [15]), 
indeed, a method for steering them is shown here and in 
[13, 14]. 

Consider the system (1) with inputs of the form: u1 = 
a sin wt, u2 = (3 cos kwt By directly integrating the system 
over one period T = ~, it is seen that the first k + 1 states, 
x1,x2, ... ,xk+1, will return to their original values (after 
completing a closed loop in the state space). However, the 
state Xk+2 will change by exactly Xk+2(T) - x1c+2(0) = 
~T 2"1c! . 

The steering algorithm is step-by-step. First, choose 
u1 and u2 to be constant such that they steer x1 and x2 
to their desired values. The other states will drift in some 
fashion. Then, starting with X3, choose inl!uts of the form 
above to steer each x k to its desired value. In general, n -1 
steps will be needed to steer all n states of the chained 
form. For more details, see [14]. 

Many systems can be put into this canonical chained 
form by a coordinate change and state feedback. A set of 
sufficient conditions is presented here: 

Proposition 1 (Conversion to Chained Form [14]) 
Consider a system 

:i; = 91(x)u1+92(x)u2, (2) 

with input vector fields gi, g2 having the following special 
form: 

92(x) = 

Define the distributions 

Ao span{9i, 92, ad91 92,. .. , ad~;-2 92} 

A1 span{92, adg1 921 .. .,ad~;-3 92} 

(3) 

If for some open set U, too ( x) = Rn for all x E U and 
t.1 is involutive on U, then there exists a local feedback 
transformation on u: e = </>( x ), u = (3( x )v such that the 
transformed system is in chained form. 

The proof is by construction, and can be found in [14]. 
Many systems will satisfy the conditions of the propo­

sition, and others can assume this special form after a 
simple change of coordinates or input (such as dividing 
through by gf ). These systems can then be transformed 
into the chained canonical form and steered usin_g the Mur­
ray and Sastry algorithm presented above. However in 
some cases the distribution t.1 is not involutive and so 
Proposition 1 does not apply. We can still try a coordi­
nate transformation to put the system into an "approxi­
mate" chained form. Here we take some inspiration from 
the work of Krener [7] and Hauser, Sastry, and Kokotovic 
[5], and we will give sufficient conditions such that a sys­
tem of the form (2) can be transformed so that it agrees 
with the canonical chained form up to terms of some higher 
order p. 

Proposition 2 (Approximate Chained Form.) 
Consider a system x = gi(x )u1 + g2(X )u2 with gi, g2 having 
the following special form: 

91(x) = 8~1 + L:7=A 8~; 
92(x) = 

Consider some order-p approximation of the input vector 
fields, 91 and 92, where 1 

91(x) = 91(x) + O(x)P+1,92(x) = 92(x) +O(x)P+1 

1 Here and in what follows, O(x)P means terms that are of 
order p or higher in x; more precisely, f(x) is of order pin x, or 
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Figure 1: Hilare with 2 Trailers. 

Define the distributions 

Ao spa.n{§1, 92, ad91 92, ... , ad;;-2 92} 

.61 span{.92, ad91 .92, · · ·, ad;;-3 
92} 

If, for some open set U, ft.o ( x) = Rn for all x E U and 
ft.1 is involutive on U, then there exists a local feedback 
transformation on U: e = ef>(x),u = (3(x)v such that the 
transformed system is in order-p chained form, that is: 

i1 t11 (4) 

e~ v2 + omi>+1 

(3 6v1 + O(e)P+1 

e;.. en-1 t11 + O(e)P+1 

The proof is similar to that of Proposition 1 above, 
see [18]. 

3 Systems with Trailers 
A car with trailers is a classic example of a system with 
nonholonomic (nonintegrable) velocity constraints. We 
will consider a similar system, the Hilare family of mobile 
robots which reside at LAAS [3]. 

These robots have two parallel wheels which can be 
controlled independently. By commanding the same veloc­
ity to both wheels, the robot moves in a straight line. By 
commanding velocities with the same magnitude but op­
posite direction, the robot pivots about its axis. Although 
the actual input is the acceleration, we are doing only a 
kinematic analysis and assume we can control the velocity. 
It will turn out that all of the velocity controls we generate 
are smooth functions and can be differentiated to find the 
acceleration. 

Given a system of a car (body 0) with n trailers 
(bodies 1, ... , n), we can represent its configuration by 
n +I triplets (xi,Yi,Bi) where (xi, Yi) is the position of 
the ith body in Cartesian space and Bi is its orientation 
with respect to some fixed frame. The configuration space 
Q = (R x R x 8 1 r+ 1 is then 3n + 3 dimensional. 

We show here only the equations for the three-body 
(two-trailer) system. The reader interested in the general 
form of these equations may consult [10] We assume that 
the trailers are attached behind the car, resulting in a sys­
tem of 3 connected bodies. These connections give us 4 
holonomic (integrable) constraints of the form: 

Xi -Xi-1 -cos9i 

Yi -Yi-1 -sin9i,i = 1,2 

(where we have taken the length of each link to be 1.) 

O(x)P, if: 



Our feasible configuration space is then reduced to a 
9 - 4 = 5 dimensional submanifola of Q. This submanifold 
can be parameterized by: (xo,yo,80,81,82) We will use an 
alternate parameterization, x = (xo, yo, 80, tp1, 'P2) where 
'Pi = 8i - 8i-1· 

Before we define the kinematic model, we first define 
a simple transformation of the inputs. If t11, t12 represent 
the velocity inputs of the two wheels, respectively, let u1 = 
t{t11 + t12) be the "driving" velocity and u2 = t{t11 - t12) 
be the "turning" velocity. The robot then satisfies the 
kinematic equations: 

xo u1 cos8o 
ilo u1 sin8o 

Oo u2 
The equations for the trailers are derived from the non­

slipping constraints: 

x; sin 9; - Yi cos9; = 0 

Combining these equations with the previous holonomic 
constraint equations, we find that the trailer angles satisfy: 

01 u1 sin(llo - 81) 

02 u1 cos(8o - lli)sin(81 - 82) 

or in our alternate coordinates, in which 'Pi= 8i - 81-1, 
.P1 u2 - u1 sin '1'1 
<P2 = u1 (sin '1'1 - cos '1'1 sin '1'2) 

We will write this system of equations more compactly as: 

x = 91(x)u1+92(z)u2 

where the input vector fields are 

( 

cos8 
sin8 

91 = 0 
-sincp1 

sin '1'1 - cos '1'1 sm '1'2 
It can be shown that this system is completely control­

lable; i.e. there exists a path between any two states x1 

and x2 (see [10] for details). 
For this system, a feedback transformation to exact 

chained form is easily found when there are no trailers or 
one trailer using the method described in Proposition 1. 
The calculations can be found in [14] or [18] and will be 
omitted here. 

With two or more trailers, the distribution ~I is no 
longer involutive and the exact transformation will not 
work. However, the 2-trailer ~ystem is reducible to a ap­
proximate chained form, as will be shown in Section 5. 

4 Asymptotic Sinusoids 
The steering-by-smusoids method presented in Section 2 is 
important, but as has been noted, it only works for systems 
in chained form. Also, it can be quite tedious in practice 
to use so many different steps. 

However, if one tried to steer in all directions at the 
same time, even when dealing with a simple chained form 
system, one would discover that it is not as easy as it 
seems. If there are any intej!;ral relations among the fre­
quencies that were chosen, mterference in the form of a 
zero-frequency component (DC offset) will occur. And it is 
also important to note that when z1c is steered using the al­
gorith~; z1, ... , X1c-1 remain unchanged but z1c+1, .. ~1 Xn 
Will dritt in some fashion. Trying to account for au of 
these extra terms is difficult. Although theoretically possi­
ble, such a method would still only work for systems m the 
exact chained form, or another form that is srmple enough 
to find a closed-form solution. 

Some recent work by Sussmann and Liu addresses 
these problems. They use a parameter j in their inputs, 
which are sums of sinusoids of frequency jw1ct, and in the 
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limit as j -+ oo, the unwanted interference terms all go to 
zero. 

We formulate the problem as follows. Consider a con­
trol system 

x = 91 (x)u1 + g2(x)u2 (5) 
on some manifold M, and form an extended system, 

x = E:'=1i1cCx)v1c (6) 

where the new input vector fields {91, ... , gm} are re­
lated to elements of a degree p P. Hall Basis (described 
below), and p is chosen to be large enough so that the 
span {91 , ... , gm} = M. It is possible to form such an ex­
tended system if (5) is completely controllable. The vector 
ti = ( t11, ... , tlm) is called the extended input. 

It is necessary to define a basis for the Lie algebra 
of vector fields J!;enerated by 91 , 92 that takes into account 
the fact that Lie brackets satisfy skew symmetry and the 
Jacobi identity. There are many ways to do this; for this 
problem we use a P. Hall Basis [4]. 

First, we need the definition of the degree of a Lie 
bracket B. The degree of B = [f,9], denoted as 6(B), 
is defined as 6(!) + 6(g). We define 6(91) = 6(92) = 1. 
(Therefore 6([g1, 92]) = 2 and 6([g1, [91, [g1, 92]]]) = 4.) We 
can also define the degree of Bin 91, 61(B), and likewise, 
62(B). Note that 61(B) + 62(B) = 6(B). 

Let 8 represent the (ordered) set of all P. Hall Basis 
elements. Then 8 satisfies the following properties: 

~
PHl~ 91,92 E 8 
PH2 If 6(B1) < 6(B2) then Bl< B2 
PH3 B = [B1,B2] E 8 if and only if 

(a) Bl, B2 E 8, Bl < B2 and 
(b) B2 = 91 or g2 or [Ba, B4] where 

Ba,B4 E 8, Bl~ Ba 

For the system of Hilare with 2 trailer~ a de­
gree 4 basis will suffice. The degree 4 P. nall Ba­
sis generated by the two vector fields 91 and 92 
is {91' 92' [91' 92], [g1' [91' 92]], [91' [91' [g1' 92]]], [g2, [91' 92]], 
[92 ' [g1 ' [91 ' 92 ]]] ' [g2 ' [g2' [91 ' 92 ]]]} • 

The vector fields g used in the extended system are 
defined as follows: g1 = 91, g2 = 92, ga = [92,91], g4 = 
[[g2,91],92], gs = [[[92,9i],91],91], gs = [[92,91],92], gr= 
[[[92, 91], 91], 92], gs = [[[g2, 91], 92], 92] We see that the five 
vector fields: 

( 

cos8 ) ( sin8 
0 ' - sincp1 

sin '1'1 - cos '1'1 sin '1'2 

-cos8 

CO~'l'l 

D· 
0 
0 
0 
1 ( 

sin8 

- cos '1'1 - sin 'l'l sin '1'2 -1- coscp2 

( -•=)~ .. ~~ ) 
)· 

span the entire state space except where rp1 = ~. We will 
~se trajectories that are bounded away from this singular-
ity surface. · 

We now investigate the convergence properties of the 
algorithm. For any desired path 1(t) on M, an extended 
input ti can be found that steers the system along 'Y· In­
deed, since 'Y is known, 

..Y(t) = E;;'=1i1chCt))v1cCt> c1> 



can be solved for v1c using an inverse or pseudo-inverse 
method. Since we need only {91, ... , 95}, we can choose 
V6 = V7 = Vs = 0. 

Using ordinary (non-extended) inputs of the form: 

u{ '11,0 + j112111,1 sin(jw1t) 

+j213T11,2 sin(jw2t) + ;314111,3 sin(jw3t) (8) 

u~ 112,0 + j 112112,1 cos(jw1 t) 

+;213112,2 cos(j2w2t) + j3/4T12,3 cos(j3w3t) 

the trajectories xi of the system 

xi = 91 (zi)u1 + 92(zi)u2 
converge to x 00 satisfying 

x00 (t) = L:;;'=191c(x00 (t))v1c(t) 

where the extended input is given by: 

( 
-111,1 fl2,1 11?,2112,2 -Tjt3Tl2,3) 

Tll,0,112,0, 2 '_8_2_' 48 3 
Wl W2 W3 

v 

(vi ' v2' V3' V4' V5) 

(9) 

We then say that the inputs u1 converge to the ex­
tended input v. In order for this to happen certain non­
interference conditions must be satisfied 6y the frequencies 
w; (see below). The sense of the convergence is that in the 
limit as j -+ oo, the actual trajectory will come arbitrarily 
close (in the Loo norm sense) to the trajectory x 00

• The 
algorithm for steering is therefore to first choose a trajec­
tory i·, then find an extended input vo using Equation 7, 
and choose appropriate functions 1/i,k so that the ordinary 
inputs ui will converge to this extended input vo. In gen­
eral, the Vo will not be unique and even for a chosen vo, 
many different combinations of the 1/i,k functions will give 
the desired result. 

It is interesting to note the similarities between the 
extended input above and the corresponding functions in 
the Murray and Sastry algorithm presented in Section 2. 
If we formulate the 5-dimensional chained system as: 

91 = (l,O,x1,x2,x3)T 
92= (0,1,0,0,0)T 

93 = (0,0,1,0,0)T 

94 = (0,0,0, 1,0)T = ad~1 92 
95 = (O,O,O,O,l)T = ad~1 92 

then we would use the following inputs to get motion in 
each direction: 

u1 = °' Ax1 = aT 
u2 = f3 Ax2 = {3T 

{ u1 = asinwt Axa = ~T u2 = /3coswt 

{ u1 = asinwt Ax4 = ~T u2 = /3 cos 2wt 

{ u1 =a sin wt il 
u2 = /3 cos 3wt Ax5 = 48w3T 

Compare these with the extended inputs in (9). The dif­
ferences in the minus signs result from the definitions of 
the vector fields g;, and the factor of T is subsumed in 
the extended input v. What is especially striking is that 
although Murray and Sastry's result was only shown to 
work for systems in chained form, the result we have stated 
is for any system in the form (5) such that the brackets 
{91, 92, 93, 94, 95} as defined above are a basis. 

Here we should note that we have not exactly followed 
Sussmann and Liu's algorithm, but rather used their idea 
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of high frequency, high amplitude inputs and letting the 
parameter 1 -+ oo to eliminate the interference caused by 
trying to steer using sinusoids all at once. We have used 
orily 2 frequencies for each direction in the extended input; 
theu algorithm uses n frequencies to generate motion in 
the direction of a d~g_ree n Lie bracket. Although it is 
not clear that a simplification such as ours would work for 
every case, it does work for the systems discussed here. 
Theu complete theory is quite f!ieneral and complex and 
cannot be completely examined m this paper. For a much 
more exhaustive treatment, see [17). 

The frequencies w that are used must satisfy certain 
non-interference conditions. In Sussmann and Liu's paper, 
these are formulated as independence relations among var­
ious sets. The conditions stated here come from the coeffi­
cients of the Chen-Fliess expansion of the inputs. This is a 
somewhat simplistic, but hopefully insightful description. 

Consider the inputs described by equation 8. Let 

01 {±w1'±W2,±w3,±w4} 
02 {±w1,±2w2,±3w3,±4w4} 

Then 011: is the set of all frequencies contained in ui.. 
In order to generate motion in a bracket direction B, 
where 61(B) = k1 and 62(B) = k2, the sum of k1 of the 
frequencies in 01 and k2 of the frequencies in 02 must 
equal 0. For example, we want motion in [g1 [91, 92)], so 
w2 + w2 - 2w2 = 0. However, we must check that there is 
no other combination of frequencies 111, 112 E 01, 113 E '12 
such that 111 +112+113 = 0. Likewise, a combination {2w,w} 
would give motion in [92, [92, 9i)). Since we do not want to 
move in this direction, we must check that there are no 
frequencies 111 E '11, 112, 113 E '12 such that 111 + 112 + 113 = 0. 
A similar check is made for all the bracket directions up to 
order p. 

It should be noted that, by following this method, 
one might think that a frequency combination of {2w, 2w} 
would give motion in the direction of the bracket 
[92,[91,[91,92)]]. This is not true, however, as this com­
bination is really the same as { w, w} and will give mo­
tion in the direction [91, g2]. If motion in the direction 
[92, [91, [91, 92))] is desired, our simplification will not suf­
fice and the more complex theory must be used. 

5 Applications 
We have chosen to try this algorithm on the problem of 
parallel-parking a mobile robot with two trailers attached. 
Anyone who has ever watched luggag_e carts unloading bag­
f!iage from airplanes can appreciate the significance of find­
mg a path-planning scheme for such a system. Parallel­
parking, or moving perpendicular to the orientation of the 
wheels, is a difficult enough trajectory on which to test the 
theory. The convergence results of Sussmann and Liu were 
proven for arbitrary systems, but our simulations show 
that in practice, the convergence can be unacceptably slow. 
On the other handl if the system is first transformed into 
the approximate chained form, the convergence is much 
faster. 

We start with the equations above for Hilare with 2 
trailers, 

x = 91(x)u1+92(x)u2 
where the input vector fields are: 

91 = ( £ ) 92 = ( f ) 
sin <e1 -~g: :, sin ce2 0 

cos 6 

Note that we have divided 91 by (cos 8) to get the vector 
fields in the form required by Proposition 2 , and that this 
transformation is valid whenever 8 #- ~· An approximation 
of this system can be found by Taylor-expanding the sine 



and cosine functions about 0 and truncating the higher-
order terms. The order-I approximation of g1 and 92 are: 

( 1 ) (D 6 . 
91 = 0 92 = 

-r.p1 
<Pl - <P2 

where we have eliminated terms in the Taylor series that 
are of order 2 and higher. We then find the distributions: 

span{91,92,g3,g4,gs} 

span{92, 9a, Y•} 

where g3 , g4 , is are as defined in the P. Hall Basis. We note 
that ~o = ns for u = {(x, y, 8, <p1, <p2): 'Pl -::/;: fl and that 
~1 involutive. Now it can be seen that the function h = 
y - 28 + 2cp1 + cp2 satisfies the conditions in Proposition 2, 
a.nd so a. change of coordinates defined as: 

e1 = x 

6 = Li
1 

h = <P1 - '1'2 

ea= L~1 h = r.p2 

e. = L91 h = 6 - '1'1 - '1'2 
es = h = y - 26 + 2r.p1 + '1'2 

a.nd a. state feedback of the form: 
v1 u.1 
v2 (Li

1 
h)u.1 + (L9~L~1 h)u.2 

(-2'1'1 + '1'2)-u.1 + u.2 
will put the system into order-p chained form, p = 1. 

In these coordinates, the differential equations look 
like: 
e1 v1 

v2 + v1(26 +ea+ 
cos(6 + 6) sin6 - 2sin(6 +ea» 

cos(6 + 2ea + e.) 
sin(6 +ea) - cos(6 +ea) sin ea 

Vl cos(6 + 2ea + e.) 
cos(e2 + 6) sin ea 

Vl cos(6 + 26 + e.) 
sin(6 + 26 + e.) - sin(6 + 6) - cos(6 +ea) sin6 

Vl cos(6 + 2ea + e.) 

which look quite complicated, but agree with the chained 
form to first order. 

For our simulations, we chose a. pa.rallel-pa.rking tra­
jectory, corresponding to moving sideways. We start a.t 
x0 = {O, I, O, 0, 0) a.nd try to go to x f = (0, 0, 0, O, 0). See 
Figure 2 f~r the ch<?sen tra.jector_y. We use Suss~a.nn a.}ld 
Liu's modified a.lgonthm as described a.hove for Hila.re wtth 
two trailers. The frequencies that we chose to satisfy the 
non-interference conditions were: w1 = ~, w2 = ~, wa = I. 
We chose these by checking all _possible combinations of 
the input frequencies, in the bracket directions up to order 
4, for no interference. When we were choosll:tg our desU:ed 
trajectory, we wanted to be sure that we a.voided the pomt 
of singularity, cp1 = f. Therefore, to keep our inputs small 
enough, we chose a. linear pa.ra.meteriza.tion of the straig_ht 
pa.th from x0 to x f a.long 100 seconds. We sea.led all the 
frequencies by ~ which resulted in wa going through an 
integral number of periods in 100 seconds. 

We simulated the system in both the original coordi­
nates and in the order-I chained form coordinates. We ex­
pected that the convergence properties would be improved 
by using the approximate chained form, since the bracket 
duections that we are not trying to move in consist of ~nly 
higher order terms. The results that we have obtamed 
confirm that hypothesis. See Figures 3 a.nd 4. 
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1= I 1= I 1= -I -
1---

1= I 1= I 1= -1-. 
Figure 2: The Desired Trajectory. 

6 Discussion 
In an exact chained form system, all the Lie brackets of 
the input vector fields are zero except those of the form: 
ad:1 92, k = I, ... , n - 2. In an approximate chained form 
system, all Lie brackets of the input vector fields except 
those in this special form will contain onl_y terms of order­
p and higher. Therefore, although the theory states that 
all the interference terms go to zero as j -+ oo, when the 
system is in the approximate chained form the interference 
terms are already small a.t the start. This is seen dramati­
cally when comparing the standard system and the system 
in transformed coordinates in Figures 5 a.nd 5. The stan­
dard system simulation does not even stay close to the de­
sired pa.th {the trailer angles are especially ba.d), whereas 
the system in transformed coordinates tracks it reasonably 
well. 

This result could be expected from looking a.t the di­
rections in the P. Hall basis in which we a.re not steering. 
Two of the three directions, 96 and 98 have terms of low 
order {I,8,<p1,<p2). {We do not have to worry a.bout 97 in 
this case since it is zero.) The interference terms associated 
with these two directions are going to zero slowly, as fr 
where lkl < 1. In the transformed system, the unwanted 
directions consist only of higher order terms. 

Arguably the pa.th we have chosen to approximate 
is poor. No seif-respecting luggage-ca.rt driver m his right 
mind would try to move sideways! However this issue 
should be addressed when choosing the desired trajectory 
'Y· The beauty of the theory is that it guarantees conver­
gence to an!l chosen trajectory. If the robot is moving in an 
obstacle-ridden environment, a. preliminary pa.th-planner 
can choose an obstacle-free pa.th without regard for the 
nonholonomic constraints of the system. The procedure 
presented here can then be used to track this pa.th closely 
enough so that obstacles are a.voided. 

Looking a.t the equations that specify the inputs {8), 
we see as j increases to give us closer tracking, that both 
the frequency a.nd the magnitude of the inputs also in­
crease. This is another reason to choose the approxi­
mately_ chained form system, since better convergence can 
be achieved with smaller inputs. Of course one way to 
sea.le down the frequencies needed is to sc'J.e time when 
choosing the desired trajectory. 

The authors are a.ware of no other methods which find 
a. closed-form pa.th from xo to Xf for a. car-like robot with 
two trailers. Barra.qua.nd and Latombe [I] discretize the 
state space and do a. search through feasible trajectories; 
this method grows in complexity as the number of trailers 
increases. La.fferiere and Sussmann [8] have a. method that 
is exact only for nilpotent systems {Hila.re with two trailers 
is not nilpotent). 
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1, 10 and in standard and transformed coordinates. The desired 
trajectory is a straight line from 1 to 0. The time scale is 100 
seconds. Note how much closer the transformed system plots 
are to the desired trajectory. 
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