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Abstract

This paper describes a practical path planner for
nonholonomic robots in environments with obstacles.
The planner is based on building a one-dimensional,
maximal clearance skeleton through the con�guration
space of the robot. However rather than using the Eu-
clidean metric to determine clearance, a special metric
which captures information about the nonholonomy of
the robot is used. The robot navigates from start to
goal states by loosely following the skeleton; the result-
ing paths taken by the robot are of low \complexity."
We describe how much of the computation can be done
o�-line once and for all for a given robot, making for
an e�cient planner. The focus is on path planning
for mobile robots, particularly the planar two-axle car,
but the underlying ideas are quite general and may be
applied to planners for other nonholonomic robots.

1 Introduction

With an abundance of theoretical results and al-
gorithms already existing for solving the classical pi-
ano mover's problem, research has recently focused on
solving more general versions of this problem. Promi-
nent among these generalizations is path planing for
nonholonomic robots. A useful technique in attack-
ing the piano mover's problem is to transform it from
physical space to con�guration space, replacing the
robot with a single point in con�guration space and
each obstacle with a corresponding con�guration ob-
stacle. Planning for the point robot in con�guration
space is equivalent to planning for the actual robot in
physical space [17]. An underlying assumption in the
classic version of this problem is that (ignoring ob-
stacles) the point can locally move in any direction of
con�guration space, that is it can move at any velocity
in the tangent space of the manifold of con�gurations.
When planning for nonholonomic robots, this assump-
tion must be relaxed, greatly increasing the di�culty
of the problem.
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1.1 Path complexity

Much recent research has focused on important the-
oretical considerations such as exactly when a system
is completely controllable [1, 3]. A completely con-
trollable robot can reach every point in free con�gu-
ration space within the same connected component of
its current con�guration. Assuming a completely con-
trollable robot, the object is to plan nice trajectories
between start and goal con�gurations which avoid ob-
stacles. \Nice" is of course a rather nebulous concept;
a somewhat better description would be trajectories
of low complexity. This begs the question of how to
measure path complexity. A complexity measure for
general systems is discussed later; for now consider a
speci�c example, the two-axle car in the plane.

It seems intuitive that the \simplest" path between
two con�gurations might be the shortest such path,
so one may look to the shortest paths for inspira-
tion in de�ning complexity. Reeds and Shepp have
proven that in the absence of obstacles the shortest
path for the car robot never contains more than two
reversals, which are places where the car changes di-
rection from forward to backward or vice-versa [20].
As any practiced parallel parker can attest, having
to change directions many times does not make for
a desirable path. Since it is also desirable to drive
as little as possible, path complexity for the car like
robot increases with path length and number of rever-
sals. Our planner tries to �nd paths which minimize
the path complexity, although no guarantees on opti-
mality are made since complexity remains a somewhat
qualitative concept.

To illustrate this interpretation of complexity, con-
sider the following method of planning feasible paths
for the car (a feasible path is one which obeys the
nonholonomic constraints of the system). First a non-
feasible path is planned using any algorithm for the
classic piano mover's problem. This nonfeasible path
may then be approximated to arbitrary closeness by a
feasible path. The standard planner has no knowledge
of the nonholonomic constraints of the robot, and the
path it generates may not be a good one to approx-
imate with a feasible path. The left of �gure 1 illus-
trates this; the resulting feasible path is quite complex
involvingmany reversals. On the other hand, the right
of �gure 1 shows a less complex path. Qualitatively
this appears to be a much better path.
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Figure 1: Left: Path of high complexity involving many
reversals. Right: Simpler (and shorter) path.

1.2 Overview of the algorithm

The basic idea of the algorithm is as follows. For
a given environment of the robot, a one dimensional
subset (called a skeleton or roadmap) of con�guration
space is constructed. This subset is path-connected
within connected components of con�guration space,
and the same skeleton may be used repeatedly for solv-
ing path planing problems in the given environment.
To �nd a path between start and goal con�gurations s
and g, paths are found which link s and g to the skele-
ton. Then a path is found which connects the two link
points of the skeleton. This latter path is computed by
moving roughly \along" the skeleton. Once the skele-
ton has been constructed, path planing is much sim-
pler since only a one dimensional set of con�gurations
is involved. Furthermore, the method of constructing
the skeleton insures that the paths which follow it will
be of low complexity if at all possible. For a given
robot, a large part of the work can be done o�-line
so that skeletons for new environments can be com-
puted more rapidly. The algorithm is currently being
implemented for the planar two-axle car.

2 Related work
Latombe presents an excellent survey of the prob-

lems and algorithms of robot motion planning, includ-
ing nonholonomic motion planning [12].

Laumond performed some the earliest work in the
area of nonholonomic motion planning, planning for
mobile robots subject to one nonholonomic constraint
in the presence of obstacles [14]. Fortune and Wil-
fong developed a decision algorithm for determining
the existence of a feasible path under given condi-
tions, although the algorithm does not �nd the ac-
tual path [6]. Barraquand and Latombe have attacked
nonholonomic motion planing from a di�erent angle;
their planner �nds a path by performing a systematic
search through the the con�guration space, using po-
tential �eld methods to guide the search [1]. They �nd
paths for car and trailer-like robots (in the presence of
obstacles) which minimize the number of maneuvers
required, and their planner is able to generate paths

for robots with relatively many degrees of freedom.
Jacobs and Canny have given an algorithm for path
planning for a car-like robot amidst obstacles based
on reducing the set of a smooth trajectories to a su�-
cient set of canonical trajectories [7, 8]. The building
blocks for their trajectories are \Dubins paths" while
our trajectories for the car-like robot are constructed
from \Reeds-Shepp paths," the major di�erence be-
ing that the latter may contain reversals along the
path between two points. Murray and Sastry devel-
oped a method of steering systems with nonholonomic
constraints between arbitrary con�gurations using si-
nusoidal control inputs [19]. Although their method
assumes no obstacles, it provides a simple and e�-
cient means for generating paths and can certainly be
incorporated into a planner which take obstacles into
account.

Our work most closely parallels the recent work
of Jacobs, Laumond, and Taix. They have devel-
oped a two-stage planning strategy for the car-like
robot [9]. First a path is found for the associated
holonomic system (obtained by removing the nonholo-
nomic constraints), and then this initial path is ap-
proximated by feasible path segments. Our planner is
also based on following a nonfeasible path (a portion
of the skeleton). They also introduced the notion of
a metric based on shortest paths and the correspond-
ing \Reeds-Shepp ball," which served as inspiration
for our planner.

3 Shortest feasible path (SFP) metric

3.1 De�nition of the SFP metric

The idea of reducing con�guration space to a
smaller dimensional subset still complete for path
planning is not new. Roadmaps [4] and Voronoi di-
agrams have been used previously to simplify path
planning. What is novel about our approach is the
particular skeleton which is constructed and how it is
built. It is a maximal clearance skeleton based on a
special metric that makes it especially suited to non-
holonomic motion planning.

The skeleton is a set of points which are maximally
clear from two or more obstacles. Using the car as an
example, it is easy to see why the standard Euclidean
metric gives a somewhat distorted view of equidistance
for nonholonomic systems (see �gure 2). Under the
Euclidean metric, the car is the same distance from
each of the two con�guration obstacles. However, it is
actually harder for the car to move in the \sideways"
direction. When considering only feasible paths, the
car must drive a farther distance in order to reach
obstacle A than to reach obstacle B. So in some sense
obstacle A is further away than obstacle B. This is the
essential idea behind our metric, the shortest feasible
path (SFP) metric.

De�nition. Let C be the con�guration space for a
nonholonomic robotR. The SFPmetric is a function
�R : C � C ! R which assigns to each pair of points
p1; p2 2 C the (arc) length of the shortest feasible
path between the two con�gurations. The real number
�R(p1; p2) is called the SFP distance between points
p1 and p2.
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Figure 2: When considering only feasible paths obsta-
cle B is closer.

3.2 Justi�cation for using SFP metric

Given start and goal con�gurations represented by
points s0 and g0 in con�guration space, a path between
s0 and g0 is found by concatenating three subpaths,
all of which must of course avoid obstacles. First sub-
paths are found from s0 to s and g0 to g, where s and
g are points on the skeleton. Then a subpath must
be found which moves \along" the skeleton, linking s
and g. In general, this last portion of the path forms
the bulk of the complete path.

In general it is impossible to move between points s
and g without leaving the skeleton because the skele-
ton may sometimes lead in infeasible directions. Al-
though the skeleton lies completely in free space, when
the robot steps o� the skeleton obstacle avoidance be-
comes an issue.

De�nition. Let C be the con�guration space for
a nonholonomic robot R, c 2 C, and r 2 R. The
shortest feasible path ball of radius r centered
at c is de�ned as BSFP (c; r) = fq 2 C : �R(c; q) < rg.

If BEuc(c; r) is the standard Euclidean ball of radius
r about c, then BSFP (c; r) � BEuc(c; r) since the SFP
distance between two points is at least as large as the
Euclidean distance.

The basic idea is to cover the section of the skeleton
from s to g with SFP balls which lie completely in free
space in order to make a series of \jumps" between the
points s = p0; p1; : : : ; pn�1; pn = g on the skeleton. If
the robot is currently at con�guration pi then the next
jump point pi+1 is determined by �nding an SFP ball
BSFP (pi; ri) lying completely in free space, and then
choosing the point in the ball furthest along the skele-
ton path as pi+1. The shortest path from pi to pi+1 has
a length less than ri since pi+1 2 BSFP (pi; ri). Any
path with length smaller than ri avoids all con�gu-
ration obstacles because the set of all reachable con-
�gurations BSFP (pi; ri) lies completely in free space.
Furthermore, the path from pi to pi+1 is a shortest
path and therefore of low complexity. For example
the shortest paths of the planar two-axle car involve
no more than �ve straight line or curved segments,
and no more than two cusps (changes of directions).

Since the complexity of the path is �xed for the
path between successive jump points, the complexity
of the �nal path from s to g is proportional to the
number of jump required. The number of jumps can

be minimized by making the SFP balls BSFP (pi; ri) as
large as possible. As an example, consider the planar
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Figure 3: Left: Portion of a skeleton through con�g-
uration space with start and goal points. Right: Re-
sulting path through physical space when the skeleton
is covered with small SFP balls.

two-axle car with a portion of a skeleton shown in
the left of �gure 3, and suppose the skeleton segment
from s to g is covered with small SFP balls. Then
the jump points are closely spaced, and the resulting
path in physical space would look like the one in the
right of the �gure. Note that the paths between the
successive jump points are simple, but it is necessary
to concatenate so many such paths together that the
�nal total path is quite complex. In contrast if the
skeleton path from s to g is covered with larger balls
less jumps are required resulting in nicer path such as
those shown in �gure 4. The path on the left of �gure
4 involves two jumps to bring the robot from s to g,
while the one on the right brings the robot from s to
g in a single jump. This latter case would occur if
the SFP ball at s was large enough to contain g. For
the physical paths in �gure 4 the robot's con�guration
deviates farther from the skeleton, but this is of no
consequence since the actual path is still guaranteed
to avoid obstacles.
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Figure 4: Resulting paths when the skeleton is covered
with larger SFP balls allowing for fewer jumps instead
of many smaller ones.

It should now be clear why the skeleton built as a
set of maximal clearance points under the SFP met-
ric is useful in planning paths. The SFP balls about
points on the skeleton are as large as possible, and
fewer jumps are required to move along the skeleton
resulting in less complex �nal paths. Bellaiche has
used SFP balls to determine lower bounds on path
complexities in the presence of obstacles [2]. Essen-
tially, the skeleton is designed so that the complexities
of the resulting paths are as close as possible to the
lower bounds.



4 Computation of the SFP distance

Computing the SFP distance between the robot's
current con�guration and a con�guration obstacle is
an important operation used often in constructing the
skeleton. The prospect of implementing this opera-
tion e�ciently initially appears dubious, since �nding
shortest feasible paths for even a simple nonholonomic
robot like the two-axle car in the plane is non-trivial.
Worse yet the shortest paths for some robots are un-
known, and some approximation or search by brute
force enumeration of paths is required. These facts
suggest computing a lookup table o�-line for deter-
mining the SFP distance between two points in con-
�guration space. Several properties of such a scheme
are desirable:

1. For e�ciency, computing the actual con�guration
obstacles should be avoided. The calculation of
the SFP distance between the robot's con�gura-
tion and a con�guration obstacle must only in-
volve the physical obstacle in physical space.

2. The table should be computed only once for a
particular robot. Placing the robot in a new en-
vironment should not require a new table.

3. The dimension of the table should be as small
as possible. Since �R is a map from C � C, a
naive approach would involve a 2n-dimensional
table where n is the dimension of the con�gura-
tion space. This is too large for any practical
robot.

4. There should be a method of planning paths in
environments larger than the size of the table.
Generally it is not practical to build a table large
enough to cover the largest expected environment
or to impose size constraints on the environment.

Our method satis�es all of these desired properties. In
the following discussion P and C represent the physi-
cal and con�guration space of the robot.

4.1 Table reduction via rigid body motions

Suppose the SFP distance between a start con�gu-
ration s and a goal con�guration g is to be found. If a
rigid body motion is applied to the two robot con�g-
urations s and g to obtain new con�gurations s0 and
g0, then �R(s; g) = �R(s0; g0) (see �gure 5) In fact ap-
plying the rigid body motion to the the trace in P
of the shortest feasible path between con�gurations s
and g yields the trace in P of the shortest feasible path
between s0 and g0.

The rigid body motions for R2 and R3 are given by
SE(2) ' R

2 � S1 and SE(3) ' R
3 � SO(3) respec-

tively. The lookup table is simpli�ed if a rigid body
motion that brings the start con�guration s to some
home position is always applied prior to lookup. Then
the domain of the table need not be C � C but only
(C=SE(i)) � C where i is the dimension of physical
space. (Technically, the domain is ~C � C, where ~C is
the natural embedding of C=SE(i) in C.)

For example, with the two-axle car in the plane
both C and SE(2) are R2 � S1 and so C=SE(2) is a
single point. Hence every initial start con�guration s
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Figure 5: Applying a rigid body motion to the start and
goal con�gurations does not change the SFP distance
between the con�gurations.

can be transformed via rigid body motion to the same
(arbitrary) home con�guration, such as the car posi-
tioned at the origin and pointing along the positive
x-axis. The domain of the lookup table is isomorphic
to C, since we only need to compute the SFP distance
between this home con�guration and any other con-
�guration. An analogous situation arises if the robot
is an aircraft with P = R

3 since the space of rigid
body motions SE(3) is again equal to the con�gura-
tion space C. If the robot is the planar car with k
trailers, a slightly di�erent situation arises. The con-
�guration of the robot may be speci�ed by the position
and orientation of the lead car plus the orientation of
each trailer, so C = R

2 � S1 � S1 � : : : � S1 (k + 1
S1 factors). Thus C=SE(2) = S1 � S1 � : : :� S1 (k
S1 factors), which is no longer a single point. It is not
possible to bring all starting con�gurations to a single
home con�guration using rigid body motions. Instead
the home position is actually a non-trivial subspace
of con�guration space. The car can not always be
brought to the origin with the trailers lined up along
the negative x-axis, however it is always possible to
bring the lead car to the origin pointing along the
positive x-axis, while leaving the relative orientations
of the trailers unchanged. The point is that while
applying a rigid body motion to the start and goal
con�gurations does not a�ect the SFP distance, other
motions such as straightening out the trailers do.

4.2 Computing SFP distances in physical space

Attacking the problem of computing SFP distances
in physical space leads to a further reduction in the
size of the lookup table. Let O be an obstacle in
physical space and CO the corresponding con�gura-
tion obstacle. The SFP distance between the robot at
con�guration p and the con�guration obstacle CO is
de�ned as

dSFP (p; CO) = min
q2CO

�R(p; q)

Consider a single point w 2 P on the physical obstacle
O, and let C(w) � C be the con�guration obstacle of
this single point. Clearly

CO =
[

w2O

C(w):



Now de�ne a map �0R : C � P ! R by

�0R(p; w) = min
q2C(w)

�R(p; q):

The SFP distance between the robot's con�guration
p and the con�guration obstacle CO may then be de-
�ned as

dSFP (p; CO) = min
w2O

�0R(p; w):

This is equivalent to the previous formulation, how-
ever in the second formulation the minimization is over
the points in the physical obstacle O, not the con�gu-
ration obstacle CO. The lookup table need not store
the value of �R over points in (C=SE(i))�C, but only
the value of �0R over points in (C=SE(i))�P . The size
of the lookup table is reduced and the SFP distance
computations are performed using physical obstacles
rather than con�guration obstacles.

4.3 Building the table o�-line

Each table entry corresponds to a particular home
con�guration s and a particular point w in physical
space, and contains the length of the shortest feasible
path which moves the robot from con�guration s to a
con�guration intersecting w. Hence it is necessary to
minimize over all goal con�gurations g for which the
robot intersects the point w in physical space.

As an example, consider computing �0R(p; w) for the
two-axle car robot. For this robot C=SE(2) is a single
point, so s is the same for all table entries (suppose
for example that s is the con�guration with the car
at the origin pointing along the positive x-axis). For
a �xed �nal orientation �, the shortest path must be
found from s to a con�guration at which the robot
intersects the point w. This problem can be trans-
formed by growing the obstacle w and shrinking the
robot to a point. However since the obstacle itself is
simply a point, the grown obstacle is just the \nega-
tive" of the shape of the robot (�gure 6). The problem
becomes one of �nding the shortest feasible path that
brings the point robot to some point on the edge of the
grown obstacle. This procedure is performed for each
�nal orientation �. Minimizing over all �nal orienta-
tions yields the value to be stored in the table, that is
�0R(s; w). Clearly the calculations do not involve the
obstacles in the robot's environment, and thus may be
performed completely o�-line.

For more complex robots the minimization problem
becomes higher dimensional, but the basic approach is
the same. For a car with one trailer the minimization
would be performed over all pairs (�1; �2) describing
the �nal orientations of the car and trailer, rather than
just over a single orientation parameter in the previ-
ous example. Nonetheless these are still \one time"
calculations for a given robot.

4.4 Approximating SFP distances outside table

The requirement that the table be of �nite size re-
mains. By bringing the robot to the origin of physical
space (but not con�guration space) via rigid body mo-

tions, the table can be constructed over (C=SE(i))� ~P

where ~P � P is some compact region containing the
origin. The �nite table is then used for computing
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Figure 6: The shaded regions are the result of growing
the point obstacle w and shrinking the robot to a point.
Left: � = 0. Right: � = �=4.

SFP distances between the robot and nearby obstacles.
Distant obstacles fall outside the range of the table,
however the SFP distances to these may be approxi-
mated by a simpler metric. For example the standard
Euclidean metric is a very good estimate of the ac-
tual SFP metric for the planar two-axle car at large
distances.

5 Computing dSFP derivatives

The skeleton is built by incrementally extending a
path through con�guration space. During this process
it is often necessary to move directly away from an ob-
stacle or to move such that the distances to the two
or more closest obstacles change by the same amount.
For such operations it is useful to know how the dis-
tance between a given con�guration s and a con�gu-
ration obstacle CO changes with respect to the coor-
dinates parameterizing s. Recall the distance function
dSFP : C � CO ! R where CO is the set of con�gu-
ration obstacles. For a given con�guration s 2 C and
con�guration obstacle CO 2 CO, dSFP (s; CO) is the
length of the shortest feasible path from s to a con-
�guration g 2 CO. If s is speci�ed by the coordinate
variables x1; x2; : : : ; xn, what is desired are the values
@
@xi

dSFP (s; CO); i = 1 : : :n. As with the distance cal-
culations it is desirable to compute these derivatives
using only the physical obstacles rather than com-
puting the con�guration obstacles. For e�ciency the
derivatives should also be computed from a lookup ta-
ble computed o�-line once for a given robot. We now
analyze how this may be done.

Let s be the robot con�guration, CO a con�gura-
tion obstacle, and g 2 CO the closest point on the
con�guration obstacle to s under the SFP metric. If s
is displaced a distance � the closest point g may move
along the surface of CO. However since g is the clos-
est point on CO to s, the �rst order derivatives of
�R as g moves along any curve on the surface of CO
are nondecreasing (the derivatives are zero along any
curve on the stratum containing g). Thus the �rst or-
der derivatives of dSFP may be computed assuming g
is �xed on CO, that is

@

@xi
dSFP (s; CO) =

@

@xi
�R(s; g):

The right hand side of the above equation is easy



to compute o�-line when the distance table is gener-
ated. Let O be the physical obstacle corresponding
to CO and w the physical point on O corresponding
to g (g 2 C(w) for some w 2 O). Clearly g is the
closest point on C(w) to s since C(w) � CO. The clos-
est point to s on C(w) is known at the time �0R(s; w)
is computed, so the derivatives may be evaluated at
this time. In most cases closed form derivatives are
not available and the derivatives must be evaluated
numerically. The derivatives are stored in the same
table as the �0R distances, so each table entry actually
consists of a distance and n derivatives where n is the
dimension of con�guration space.

Note that this scheme allows computing the deriva-
tives of the SFP distance to a con�guration obstacle
in physical space; the con�guration obstacle is never
actually computed.

The derivatives taken from the table are derivatives
with respect to the con�guration coordinates when the
robot is at some home con�guration. When a rigid
body motion is applied to the actual con�guration s
bring it to a home con�guration s0, the derivatives
computed at s0 must be mapped back to the corre-
sponding derivatives at s. This is not a problem since
the rigid body transformation bringing s to s0 estab-
lishes an isomorphism between their tangent spaces.

Outside of the range of the table the Euclidean met-
ric is a good approximation of the SFP metric. There-
fore outside of the range of the lookup table the deriva-
tives of dSFP (s; CO) are estimated by their Euclidean
analogues.

6 The Planning Algorithm

Once the metric to be used for building the maxi-
mum clearance skeleton and its implementation have
been de�ned, the planning algorithm becomes an ap-
plication of Canny's general roadmap algorithm [4].
We now give a brief description of the algorithm.

The roadmap algorithm is similar to a plane sweep
algorithm. One of the coordinates of con�guration
space is chosen as a sweeping direction, and successive
slices of con�guration space are taken, each slice be-
ing a (hyper) plane through con�guration space with
the sweeping coordinate held �xed. For example, the
car is described by three parameters, a position (x; y)
in the plane and an orientation �. Physical space is
2-dimensional. If x is chosen as the sweeping direc-
tion, slices taken through con�guration space would
be planes of constant x value. Another key concept of
the roadmap algorithm is that of a silhouette curve.

De�nition. Within a given slice of con�guration
space, let p be a point of maximal clearance from
the obstacles, i.e. moving away from p in any direc-
tion within the slice decreases the SFP distance to the
nearest obstacle. Points corresponding to p may be
located in successive slices as the sweeping coordinate
is varied; this locus of points is the silhouette curve
passing through p.

Intuitively, a silhouette curve is generated by �rst
�nding a local maxima of the distance to nearest ob-
stacle function within a slice, and then tracing this
maxima through the slices as the sweeping coordinate

is varied. There is also the notion of a critical slice
where two or more previously disconnected regions of
free space are joined, or a single region splits into dis-
connected regions. Such slices intersect more than one
silhouette curve. The overall planning algorithm is
now described.

1. Compute the values of �R and the partial deriva-
tives of dSFP over a compact region about the
origin of physical space; store these values in a
lookup table.

2. Given a start con�guration s0 and a goal con-
�guration g0 �nd curves to points s and g on a
skeleton silhouette curve.

3. Trace the unexplored silhouette curves in both
directions. If a complete path along silhouette
and linking curves is found from s to g, go to
step 5.

4. In a critical slice locate points on unexplored sil-
houette curves and go to step 3.

5. Plan a path from s0 to g0 by jumping along the
curve linking s0 to s, jumping along the con-
structed skeleton from s to g, and �nally jumping
along the curve linking g to g0.

The �rst step is performed only once (o�-line) for
a particular robot. The �nal step is performed after
the necessary portions of the skeleton have been com-
puted. Steps 2 through 4 are a version of the roadmap
algorithm; skeleton construction occurs during these
steps. These steps are now described using the planar
two-axle car as an example.

The car's con�guration is parameterized by a po-
sition (x; y) and an orientation �; assume that x is
chosen as the sweeping direction. Given an x-slice
through con�guration space it is simple to �nd a point
in the slice located on a silhouette curve. Beginning
at some initial point in the slice, we incrementally
move away from the nearest obstacle or obstacles while
remaining in the slice. Eventually a point will be
reached from which it is impossible to move without
moving closer to one of the nearest obstacles. Such
a point is maximally clear from the obstacles and is
thus by de�nition on a silhouette curve. This is the
procedure that occurs in step 2 above. Note that the
derivatives of the dSFP function are used in moving
away from the nearest obstacle(s).

In step 3 silhouette curves are \traced." Once a
point on a silhouette curve is located, the silhouette
curve can be traced by taking successive x-slices sep-
arated by some small �x. Suppose p = (x; y; �) is a
point on a silhouette curve in the current x-slice. To
�nd the point p0 = (x +�x; y +�y; � +��) on the
silhouette curve in the next slice, �y and �� must
be chosen so that the distances to all of the nearest
obstacles change by the same amount. An initial ap-
proximation to p0 can be obtained by choosing �y
and �� such that the inner products of the vector
(�x;�y;��) with the gradients of the distance func-
tions to the nearest obstacles are all equal. Again the
derivatives of the dSFP function are required. Silhou-
ette curves are traced in both directions by sweeping



in both directions from the current slice, i.e. taking
�x to be positive and negative.

If after tracing the silhouette curves from s and g
there is no path which links the two points, new sil-
houette curves must be found and traced. The search
for unexplored silhouette curves occurs in a critical
slice, and the procedure is similar to that of step 2; we
look for new local maxima of the distance to nearest
obstacle function within the critical slice. After points
on unexplored silhouette curves are found, the process
is repeated starting at step 3. Steps 3 and 4 are re-
peated as long as necessary, until a complete path is
found from s to g.

The above ideas are only an overview of the
roadmap algorithm. For a more complete description
of the algorithm and how it may be specialized for
computing a roadmap using only the physical space
obstacles we refer the reader to [5].

7 The 2-axle car & Reeds-Shepp paths

The techniques described in this paper are currently
being applied to the planar two-axle car. Planning for
this system exhibits the same basic di�culties inher-
ent in more complex nonholonomic systems, and the
shortest paths for the planar car have been studied
extensively. In fact Reeds and Shepp have completely
characterized the shortest paths between any two con-
�gurations of the planar car, and an algorithm exists
for computing these paths [20]. Brie
y, the shortest
paths consist of �ve or fewer path segments, each seg-
ment being a straight line or a turn with a radius of
curvature equal to the minimum turning radius of the
car. Enumerating over the various possibilities such as
turn direction and order of segments produces forty-
eight possible path types. Currently each of these path
types must be \tried" when searching for the shortest
paths between con�gurations s and g. Although not
all forty-eight types can move the car between a given
s and g, in general many of them can and the only
way to �nd the shortest is to try (compute) them all.
An interesting problem is to try to initially reduce the
set of forty-eight paths to a smaller set of candidates
to avoid computing so many paths, but this problem
is not the focus of this research.

For our planner the important consequence of
Reeds and Shepp's work is that the SFP metric is com-
putable for the planar car. We received a subroutine
for computing Reeds-Shepp paths from Michel Taix,
who wrote the C code as part of a complete plan-
ner for car-like robots [16]. Figure 7 shows the level
curves of the �0R lookup table for the car-like robot
(in generating this table the car was assumed to be a
point, although this assumption is not necessary). In-
tuitively it should be easier for the car to move forward
or backward (along the x-axis) than sideways (along
the y-axis), and this intuition is veri�ed by the level
curves. Note the level curves become more and more
circular as the distance increases, justifying the claim
that at large distances the Euclidean distance closely
approximates the SFP distance.
8 Generalizing to other systems

The planar two-axle car is a fairly well understood
nonholonomic system, at least as far as shortest paths

x

y

Figure 7: Level curves of �0R for the two-axle planar
car. The region shown is a 10 � 10 square centered at
the origin, with contours 0.5 units apart.

are concerned. Furthermore there is a clear idea of
what paths of low complexity should look like; they
should be short and also have as few reversals as
possible. For more complex nonholonomic systems
the shortest paths between con�gurations may not be
known, and the idea of what constitutes a simple path
may also be unclear. We now discuss generalizing our
algorithm to such systems.

8.1 Relaxing the SFP assumption

For an aircraft type robot �nding the shortest paths
between two con�gurations (positions and orientations
in R

3) is still an open problem. Planning for such
systems using the skeleton method is still possible with
a slight modi�cation. Even when the shortest paths
are not known, a \library" of paths can be found which
are able to steer the system (non-optimally) between
any two con�gurations. For example, the path library
for the aircraft would include various looping paths
for bringing the aircraft to the same point in space
but with a di�erent orientation.

Using this smaller set of library paths, an algorithm
can be constructed for �nding a path between any two
con�gurations. Using rigid body motions to bring the
robot to a home con�guration makes it necessary to
�nd paths only between the home con�guration(s) and
points in a compact set about the origin in physical
space. Let B be a ball about the origin. Moving the
robot from a home con�guration to a point in B may
involve a path which temporarily passes outside of B.
However, a larger ball B0 � B can be found such that
a path from a home con�guration to any point in B
never passes outside of B0. Note that the paths must
come from the pre-de�ned library of paths.

If the library of paths consists of shortest paths,
then the ball B0 coincides exactly with the ball B.
In the more general setting when the library paths are
not necessarily shortest paths B0 is strictly larger than
B. The metric for constructing the skeleton should be
based on the B0 balls, since obstacle avoidance can



only be guaranteed by insuring the B0 ball lies com-
pletely in free space. When moving along the skeleton,
the B balls are used. A path between skeleton jump
points pi and pi+1 will avoid obstacles if the point pi+1
lies within the B ball centered at point pi. All of this
rests on the fact that the paths between jump points
will come from the same library of paths used to con-
struct the distance table for the robot. Any choice
of library paths is valid, as long as the same ones are
used in the table building and planning stages. Of
course the planner will be too conservative if the B0

balls are much larger than the B balls, keeping the
robot farther than necessary from the obstacles. A
judicious choice of library paths will result in smaller
discrepancy between B0 and B balls, resulting in a
better planner. A library consisting of shortest paths
is optimal in this sense.

8.2 De�ning path complexity in general

De�ning path complexity for the planar car is fairly
straightforward. In this case path complexity is an in-
creasing function of the arc length of the path and the
number of reversals along the path. However this ex-
ample also shows that the concept of what makes a
desirable (simple) path is dependent on the particular
system. In the case of the car, there are two control
inputs: the forward velocity and the steering angle of
the front wheels. Changing the sign of the forward
velocity input results in a reversal for the car, which
is to be avoided. Yet changing the sign of the steer-
ing angle only causes the car to move from (say) a
left turn path segment to a right turn path segment.
Qualitatively, this latter occurrence is not as unde-
sirable as a change of direction. A path containing
several left-right switches seems better than a path
of the same length which contains several forward-
backward switches. Hence it seems that path com-
plexity is closely tied to the speci�c system at hand.

Nonetheless, it is still possible to de�ne some more
general measure of path complexity. La�erriere and
Sussman have shown that a nilpotentizable system can
be steered between two con�gurations by following a
�nite number of subpaths, where only one of the con-
trol inputs is non-zero over any one subpath [11]. The
number of subpaths is bounded by some constant M
for the particular system. For a nonholonomic robot
representable as a nilpotentizable system, one can thus
choose the path library to comprise all paths which
are composed of M or fewer such path segments. The
number of subpaths between successive jump points
on the skeleton will then be bounded, and the algo-
rithm will generate simple paths under this notion of
complexity.
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