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Abstract

An object representation scheme which allow_ fast
Eucltdea,7 distance cal,:vlatu_rz is prese_ted. The object
model eztends the polytope model by representLny ob-
jects as the convez hull of a finite set of spheres. An
algorithm for calculating distances between objects is
developed which is linear in the total number of spheres
specifying the two objects.

1 Introduction
The efficient calculation of distances between ob-

jects is an important problem in the field of robotics.
Many task planning and control algorithms require a
knowledge of distances between objects. Collision de-
tection and avoidance depends upon distance calcula-
tion between a robot and other obstacles in the en-
vironment. .Mauy path planning algorithms use the
shortest distauce between objects, particularly those
involving potential fields or iterative methods which
test a path and then adjust it if t,here is a collision.
All of these applications require an efficient distance
computation metho,l if they are to be used in a real
time environment.

In addition to applications in robotics, there are
many computer graphics techniques which can benefit
from distance or cotlisiou detection calculations. For
example, collision de_ectioa can be used in ray-tracing
to reduce the number of calculations required to ren-
der a scene by' only considering those object.s which lie
in the path of the rays. In a virtual reality simulatiou,
where a person interacts with ob.lects in the envirou-
ment, collision detectiou can be used to tell when the
person is touching something.

A distance calculation method that is often used

revolves checking for intersections between all of the
faces, edges, and vertices of polygonal objects. This
brute force method, although straightforward, is ex-
tremely slow. Many different techniques have been
proposed to speed up distance computation. Quad-
tree representations can be used to quickly detect colli-
sions between objects and a stationary set of obstacles.
but become awkward amt slow when the obstacles are

moving. Some methods use extremely simple approxi-
mations to all the objects such as calculating distat_ces
between bounding spheres. This is very f;_tSt, toUt quite
inaccurate in most cases. Still others use norm one
or norm infinky for the d[stance calculation, to avoid
the computationally expensive square root operat[on.
However, this approximation can give inaccurate or
misleading results.

A common method used to represent convex objects
is the polytope model. In the polytope model, objects
are represented as the convex hull of a set of points•
Gilbert, Johnson, and Keerthi [1] present a powerful it-
erative technique for calculating the distance between
polytopes. The execution time of their algorithm is
approximately linear with respect to the total num-
ber of vertices in the two objects. The algorithm is
roughly O(n) where n is _t_e total number of _ertices
in the two objects. Later. Gilbert and Foo [2] general-
izetheir result to include any convex obJect. However.
in doing so, the advantages of having a single model
for all objects is lost.

This paper presents the concept of a spherically ex-
tended polytope, or s-tope. Instead of representing
objects as the convex hull of a set of points, an s-tope
is the convex hull of a set of spheres. This allows a
much wider range of objects to be easily described. Ob-
jects with rounded surfaces can be represented with far
fewer vertices than would be required with the pd':-
tope model. Additionally. an efficieut distan,ee: com-
putation method based on that of Gilbert et. al.. is
developed aud experimental results prese,uted. The al-
gorithm still exhitoits the O(n) execution time as d>÷s
the polytope method, but the spherical extensiou pro-
rides a more general object model. The s-tope concept
is a generalization of a spherical object geometry pre-
sented by Tornero, Hamlm, and Kelley [:3], {4]

2 Notational Conventions

The notation used in this paper is similar to dtat
used in [2], especially when dealing with concepts orig-
Inating in that or previous -"r '• ' works.

Vectors and points are repres_nte, t by [ow,u'case
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boldfaced letters (x,y), and scalars by lowercase ital-
ics, (a,b). Lengths of vectors and distances are defined
as the Euclidean norm

length of v = I1',!1= _gvW._, (1)

where the (.) is the inner, or dot, product. Unit vectors
are written with a hat (_?).

Sets are denoted by' uppercase boldfaced letters
(P,S), and Co P is the convex huh of the set P. Other
notation is introduced later in the presentation.

To define the spherically extended polytope model,
it is first necessary to discuss the notion and notation
of a polyope. A polytope is the convex hull of a finite
set of points. When dealing with polytopes, the ver-
tices which define the po[ytope are given the symbol
p. Therefore, if P is a set of points {P0,Pl, "',P,,},
then the convex hull of P is an infinite set of points X
expressed as

X

{x:x=fiAip,,p, EP,A0+...+Ar,=1}.i__0

(2)

3 S-topes
An s-tope is the convex hull of a finite set of

spheres. A sphere is denoted s = (c,r), where c
is the center and r is the radius. A set of spheres
S -= {so,sL,...,sn} consists of the set of centers C =
c0,ct, ..., cn and the set of radii R. = {to, rt,.., rn}.
The convex hull of S contains an infinite set ofspheres
called the set of swept spheres which is expressed as

where c_ E C, ri _ R. (4)

and ,\0 + " + ,7_,,= t. (5)

Note thai the set of swept spheres does not include
all possible spheres which can fit inside the s-tope, only
those which are generated by Equation 3. An s-tope
is represented in this paper by the symbol S where
an s-tope formed from a set of spheres {no, a_,..., s,,}
is denoted as ,50_,,. The spheres which define the s-
tope are called the spherical-vertices of the s-tope. For
simple s-topes (those made from four or fewer spheres)
the spheres are listed explicitly. For example: 5ilk iS
an s-tope with spherical-vertices s,. s, and s_.

An s-tope is said to be overspecified'ifone or more of
its spherical-vertices may be removed without chang-
ing the convex hull. An s-tope whicil is not overspeci-
fled is said to be a vahJ s-tope

4 The Simple S-topes
As preparation for the discussion on distance calcu-

lation, it is useful to have a detailed description of the
>topes formed from sets of one to four spheres.

4.1 Sphere
The simplest s-tope is a single sphere. An >tope

formed from a sphere, si, is denoted Si and is [dentica[
to that sphere.

% : s,

<::{{!

Figure 1 An example of a bi-sphere

4.2 Bi-Sphere

An s-tope formed from two spheres, s, and s,, is
denoted Sij. A set of expressions describing the set of
swept spheres which defines the bi-sphere is obtained
by" rewriting Equation 3 in the following manner,

c:;(,\i:) = c: + A,s(c; - c,),

rO (*\,a ) = ", + "\ij ( r: - "i),

(6)

(r)

where Aij E [0, 1]. (8)

An example of a bi-sphere is shown in Figure 1.
Hereafter, the conical surface generated between the
two spheres is referred to as the szde of _he bi-sphere.
There are several parameters which may be used to de-
scribe a bi-sphere. The axis, via , is the vector from c,
to cj. The length of the bi-sphere is the magnitude of
the axis vector. The convergence angle, _0 of the bi-
sphere is the angle between the axis and the side. The
sine of o, a appears frequently and is given the symbol
r/L,. Another useful parameter is the direction along
the axis. 9,_ These parameters have the following re-
lations.

vii = cj - ci, (9)

• vii
,% = _, I lo)

r': - r: (J.tl

o:: = sin-' r/,:. (i"-')

The vector fl, is norinaI to the side of a bi-sphere.
projecting aw,y from the surface, and satisfies the fol-
lowing constraint.

fl, ' ';',a = -r/ii. (13)

A bi-sphere is valid if and only' if neither of the
spheres si or sj is completely contained within the

other. Equivalently. a bi-sphere is not valid [flr/ijt >_ 1.
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Figure 2: An example of a tri-sphere

4.3 Tri-Sphere
A Tel-sphere is an s-tope formed from three spheres,

si, sj, and sl, and is denoted $i:_. Figure 2 shows an
example ofa tri-sphere. Tile set of equations describing
all the swept-spheres in a tel-sphere is

%_('_,i_) = c/+&2(%-c,)+&v(c_-c,)(I4)

rijk(Aijk) _-- r i + ,_ij(r] I ri) + ,\i._(rk -- ri),(l.3)

where e [0,11, [0,1] (iS)

A tel-sphere Sij k has three bi-sphere edges, and two
planar faces. The three edges are the bi-spheres 50,
$ik, and ,S'/k .

The two planar faces are tangent to all three spheres
si, sj, and s_, as well as to all three edges 5ij, Sik.,

and Sj_. Therefore, the normals of the two faces must
satisfy Equation 13 for each of the edges. That is.

fl s . Vt2 _ --r]i j,

nj • v_k = -rli.,_ ,

17)

18)

19)

These equations imply an angle of 90 - _._ between
fi, and vo, and an angle of 90 - ai_ between fi, and
<q_. Since the three equations are not independent, it
is necessary to add the following constraint on fl, in
order to calculate the two normals fl, and fi,',

llfl,II= (2o)

Figure :3 shows the relationships expressed in the
preceeding equations.

A tri-sphere is not valid if one of the spheres is com-
pletely contained within _he hi-sphere formed by the
other two spheres.

4.4 Quad-Sphere
A quad-sphere is an s-tope formed from four

spheres. The notation for a quad-sphere is _he same
as for the other objects. Namely, for a quad-sphere
with spherical-vertices s,, s_, s_. and sl. the symbol
iS Sij_l. The equations for tf_e quad-sphere are similar
to those for the tel-sphere,

% %

-qk .-

 :ii...............i-so--
.... uik

\
-- tl i

Figure :3: Normals to the faces of a tel-sphere

+_i_(c_ - ci),

rijk(/_ijk) ---_ r i + )_ij(rj -- ri) + )_ik(rk -- ri)

+a,(r_ - ri),

where A,_ _ [0, 1],Ai_ _ [0, 1],A,, _ [0, i]. (21)

Just as a polytope with four or more points is gener-
ally' a polyhedral object with triangular facets, a quad-
sphere (or an s-tope with more than four spherical-
vertices) is an object with tel-sphere facets. Therefore,
the normal to the surface of any of the facets may be
calculated in the same manner as for a tel-sphere.

A quad-sphere is not valid if any of its spherical-
vertices are completely contained within the tri-sphere
formed from the other three spheres.

5 Polytope Distance Calculation
The basic algorithm for calculating the distance be-

tween s-topes is similar to an algorithm for _olvtopes
developed by Gilbert, Johnson. and Keerthi il]}'which
in turn is b_ed on work by Bare and Gilbert _5], [6J.
Since the s-tope distance algorithm is an extension of
the polytope distance algorithm, an overview of the
polytope distance algorithm is presented here. For
more details, refer to the works cited above.

5.1 Polytope algorithm
The polytope distance algorid_m takes advantage of

the fact. that the shortest distance between two objects
is the same as the shortest distance from the origin to
the object formed by" taking the Minkowski difference
of the two objects. Therefore, given two sets of points
PI and P2 which define polytopes 7_ and _, a new
polytope "P_, can be formed from the set P2t as

P:_ =P2-Pt = {P:-P" :P,. _P'..P_. _ Pc} (22)



The algorithm requires the ability to determine the
point in a set which is farthest in a particular direction.

The support function, hp, for a set of points P, is

defined in [1] as

hp(v)= max{p.v:p_ e}. (9-3)

The point p which satisfies this equation is furthest in
the direction v

The basic algorithm used is as follows. Given two

polytopes defined by their sets of vertices PL and P2,

create a new set of points Pta using Equation 22.

1. Start with an empty work, n_t set, P

2. Guess at the direction of shortest distance, v. Use

the direction between the centroids if you don't

have any better information.

3. Find the point p(v) in Pt2, furthest in the direc-
tion v, and add it to the set P.

4. Find the closest point to the origin, d, on the poly-

tope formed from the set P using the polytope
distance sub-algorithm

•5. Discard any points in P which are not necessary

to define the point d

6. Repeat steps 2-4 until [(hpw(v))e - (ildll)-_t <

Tolerance

Figure 4 show four iterations of the algorithm on a

planar polytope, "P_-s.

For two polytopes "P_ and "P=, which have n and

m vertices respectively, the polytope "P_a formed from

the Minkowski difference of the two polytopes has n x
ra vertices. This means that for each iteration of the

algorithm, n x m inner products must be evaluated

to cMculate _he support function h-pt: However, the

support function may also be calculated as

h,p_.. (v) =/_,p_ (,.) - h.& (v). {24)

This formulation only requires a + m evMuatioas of the

inner product.

Amazing/y. the polytope distance algorithm Mmost

always converges within four or five iterations, even
when there are hundreds of vertices. This makes the

polytope algorithm approximately O(n + m) in com-

putational complexity [1].

5.2 Polytope distance sub-algorithm

The disgarLce .sub-algorithn_ [_] catculates the closest

point to the origin on a po[ytope with one, two, three.

or four vertices. Additionally, it returns the minimal

number of vertic_.s necessary to defiue this point. For
example, if the closest poin_ is one or'the vertices, then

that vertex is su_-ticienr to ,tefiue the closest poiut. [f

the closest point is on an edge. then two vertices (die

end points of the edge) are necessary :o define the clos-

est point. Similarly. if :he closest point is on a face of

the polytope, three vertices are necessary to define the

closest point. Note that the only time four vertices are
required to define the closest point is when the point

is actually iJ_s*de the object. Therefore, after each it-

eration of: the distance algorithm, there are never more

than three points in the working set.

1) _ 2)

O O "

• P3

t t'
o o

1 calculate shortest distance to initial working set

(PI)

2. add P4 to working set and calculate shortest dis-

tance to working set (Pt,P_)

3. discard P1 and add Ps and calculate shortest dis-

tance to working set (P4,Ps)

4. add Ps and calculate shortest distance to working

set (P4,Ps,Ps)

Figure 4: Example of the polytope distance algorithm

6 S-tope Distance Calculation
Many of the advantages of the polytope represen-

tation are also present with the s-tope representation.

For exampie, _he Minkowski difference and the suppor_
function are both simply calculated. The Minkowski

difference of the s-topes, S_ and _¢_ defined by two sets

of spheres S_ and S:_ is the s-tope S_ defined by the

set of spheres S:2, where

S__ = {._:: = (c_._,,,'L__): et_ = co- eL (25)

"_2 = r, + r._,. (27)

"t _ R1, r_ _ R_}, (:28)

The support function for an s-tope is also very sim-

ilar to that ofapotytope. For an s-tope 5 defined by

spherical vertices in the set S. the support function is

computed as

hS(v ) : max{(e, .v)+,'i:(c,,ri) : ai,a, E S}. (29)



6.1 S-tope algorithm

The distance calculation algorithm is very similar to
the one presented above for polytopes. Given two s-
topes defined by their sets of spherical-vertices St and
82, create a new set of points Ste using Equation 26.

1. Start with an empty work,rig set, S

. Guess at the direction of shortest distance, v. Use
the direction between the centroids if you don't
have any' better information.

3. Find the sphere s(v) in S12, furthest in the direc-
tion v, and add it to the set $.

4. Find the closest point to the origin, d, on the s-
tope formed from the set S using the s-tope dis-
tance sub-algorithm.

5. Discard any spherical-vertices in S which are not
necessary to define the point d.

6. Repeat steps %4 until I((hst_(v)) e -(]ld][)'-'] _<
Tolera_ce

6.2 S-tope distance sub-algorithm

The s-tope distance sub-algorithm is actually a col-
lection of four separate but interdependent algorithms.
There are algorithms for finding the shortest distance
from the origin to a sphere, from the origin to a bi-
sphere, from the origin to a tri-sphere, and from the
origin to a quad-sphere. The algorithms for calculating
the distance to a sphere, bi-sphere, and tri-sphere, are
based on work by Tornero, Hamlin, and Kelley [.3], [4].

The sub-algorithm takes advantage of the fact that
each of the collection is called under specific circum-
stances by the s-tope distance algorithm. For exam-
ple, the tri-sphere sub-algorithm will only" be called
after the bi-sphere sub-algorithm has been called. In
general, if the distance is to be calculated from the
origin to an s-tope. S,_. with spherical-vertices s.-s,
it can be assumed that the distance has already been
calculated from the origin to the s-tope Sl,___ 1 formed

by the spherical-vertices s_-s,,,__ I, and that all the

spheres s_-.si_,_t 1 were necessary to define the closest
sphere. Thus, it is useful to think of the sphere s,,
as being added to the s-tope SI_,__. and the distance
computed to the resulting object.

6.2.1 Distance to a Sphere

In this paper, r.he shortest distance between the ori-
gin and an objecL is written as

_ZST(object).

The distance between the origm and a sphere is cal-
culated by the following formula,

_is'r(a) = tlc[{- ," (30)

Figure 5: Distance from the origin to a bi-sphere

6.2.2 Distance to a Bi-Sphere
Calculation of the shortest distance between the ori-

gin and a bi-sphere ,Sij is performed in several steps.
First, the point on the axis of the bi-sphere closest to
the origin is found by calculating ._ij',

ci. v,, (al)
A,a" - - iiv,a IF

Second, to satisfy the angular constraint, the value

Of )_ij is updated,

iiv,:l I ta_ _;. (32)

Figure 5 illustrates these ideas.

Simple case (10 _ [0, I]). For the simple case of

A,; E [0. i] the distance is calcu[ate.d b__t_een the origin
and sij(,\_j) using Equation 30. That is,

_:_$'T(Su) = _/ST(su(.\:;)) = [Ic,v(,\,j)l[- '%('\,a).
(3s)

Handling ,\ out of range [0,1]. \Vhen the A:_ is not
in the range [0,1 i, the shortest distance is calculated
from the origin to one of the ends of Ni,. In particular.

,\ii >= t => "DIS'T(Si;) = 7)IST(s:) (34)
,\i_ <= 0 _ DIS'T(S,:) = DIST(s,)

However, since sj is chosen by the distance algo-
rithm and is closer (along the vector ci) to the origin,
Aq will never be less than zero, and that case does not
need to be tested.
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Figure 6: Pseudo-Polar Coordinate System

6.2.3 Distance to a Tri-Sphere
The process of calculating the shortest distance from

the origin to a tri-sphere 5ijk has three steps. First,
the direction of shortest distance to the origin is calcu-
lated. Then, the A's (see Equation 14) are calculated
which correspond to the closest sphere on the tri-sphere
,Sijk to the sphere ai. The distance is then calculated
from this sphere to the origin, unless the A's are out
of range (see Equat/on [6), in which c,_se further cal-
culation is necessary.

Calculation of surface normals. The direction of
shortest distance, fl,, when the ,\'s are in range. [s sim-
ply the normal to one of tile planar surfaces bounding
the tri-sphere. These normals must satisfy" Equations
1T to 20. Two of the three independent constraint
equations are repeated here.

fl, ' +a_ = -zb_, (35)

n, . +a_ = -q:; (36)

A pseudo-polar ,.'ooF_linate system is %rmed using
v U ,va,. and fl.:=v U x v_... The vector n, is located
in this system using two variables. _ and ca. 0 is the
angle between fi, and the plane formed by vii and
v_l. 0 is the angle from vq to the projection of fi,
in this plane, a represents the angle between vu and
vk_. This coordinate system is shown in Figure 6.

Using these three angles, the constraint equations
may be rewritten as

a = arccos(/' ./ . 9i_). (37)

cos 0 cos o = r/ij. (38)

cos 0 cos(a + o) = rli,, (30)

Solving for O and 0 gives

¢=arctan(7?_-rhjc°sa) (40)rhj sin a

( _o ] (40
0=arccos \c°s¢)"

The two values of 8 specify the two faces of the tri-
sphere. The vectors fl, are then constructed using the
equations

cos 0 sin(a - o)
g0 = , (42)

sina

cos 0 sin ¢
(43)g_ - sin a

g_. = sin _, (44)

Calculation of A's. Let d be the length of the line
segment joining the origin with the closest sphere in
the tri-sphere 5ijk. The following equation may be
obtained from Equation i4,

dn, = -c: - ,\i)(cj - ci) - .)'.,k(Ck -- e_). (4t3)

Multiplying Equation 46 by n,; = fl,'<v 0 an,] fl,_ =
fl, x 9ik gives the following two equations for "\u and

ci • n_k
kij : . (4T)

v u • ni_

A,_ _ - ci . fli: (48)
v_ • flu

Shortest distance (simple case). Assuming both
A's are in the ranges specified by equation 16 these
,_'s may be used in Equations 14 and 15 to calculate
the closest sphere _ii_(,\ijv_ik) in the tri-sphere. The
shortest distance between the origin and the tri-sphere
,5ij_ is then calculated as,

Z_2rST(Sii_) = _2"8T(_u_.(A q , A_).) (49)



Table1: HaadiingA'soutofrange

Aij Ai,_ Aii + Ai_
>= 0 >= 0 <= [
<0 >=0 <= 1

>= 0 < 0 <= 1
>= 0 >= 0 > 1
<0 <0 <= i
<0 >=0 > l

>=0 <0 > !.

"DIST(SU_ )=
_lmple case
"/)IST'(5_k)
z)IJT(s,j )
z?IST(sj_)
.MIN(D!ST(S_ ), DIST(Sz_))
M D(_IS_r (S_), _)_ST(Sj, ))

MIY(DIST(Sq ), DIST(Sj_))

Handling A's out of range. If the A's obtained
above fail to satisfy one or more of the inequality con-
straints, then the shortest distance is between the ori-
gin and one of the three edges of the tri-sphere S,j_.
Table 1 shows all the possible situations. In the table
DI,ST(S 0 ) refers to the calculation of the distance be-
tween the origin and S 0 using the method of Section
6.2.2.

As was the case when calcula_iag the distance to a
bi-sphere, it is possible to eliminate some of the cases in
Table 1. Sphere s_ was added to Sij to tbrm Sitl: , and
that sphere is closer to the origin along the direction
of shortest distance calculated for Sij. Therefore, the
closest sphere in Sijt: will never be in Sij , and Air will
never be less than zero.

6.2.4 Distance to a Quad-Sphere
The method for calculating the distance from the

origin to a quad-sphere Si.lkl relies heavily on the fact
that the distance has already been calculated to Sijlc.
This insures that when the origin is projected along
fl_, the direction of shortest distance from the origin to
Sijk, it, will lie within the triangle formed by c,, cj, and
c_. Adding the fourth spherical-vertex to the s-tope
Sij;c creates three tri-sphere faces S,;t. Sial, and S_:.
The shortest listance :orJ_es-tope,_;_tis denticalto
the shortest distance to one of these three tri-spheres.

To determine which tri-sphere face of tile quad-
sphere contains the cl3sest sphere to the origin, the
centers of ali the spherical vertices of S_ S, and r.he
origin, are projected into a plane perpendicular to n,,
the result will appear something like Figure 7. The
triangle in which the projected origin lies determines
which tri-sphere face contains the closest sphere to the
origin.

A simpte procedure to determine which of the pro-
jected triangles c_cjc,_, cicero, or c_ctcl, contains the
origin has been de_ eloped which avoids actually having
to project the vertices into a plane

First. thr_e vectors ar_' ,:alc,lat_d a.,, follow,,:

if n0r, > 0 ttwn

n_,, = ft., × v_. (.50)

lll_' ---- li s X V.//, (5].)

n_ = ri, x v_l; (52)

otherwise.

n_: = v_t ×n,. (53)

c/
===========================================i_] _ _ _-.-p =========================================================================

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
=============================================================

===============================================================
=====================================================

=====================================::::::::::::::::::::::::::::::::::::
=============================

•-::??_:i::_ _'

ck

q

Figure 7: Projection of the centers of a Qua&Sphere
into a plane

Table 2: Determining the face which contains the clos-
est sphere

zu :/:21 z_ Candidate tr,-sphere
> 0 < O ? SU_
< 0 '_ > 0 Si_

? > 0 < 0 Sql

n_ = vie x fi,. (54)

n_,. = v_; x n, (55)

These vectors, define three planes which contain the
poin_ c,' and are parallel to fi, and to v_¢ . v_t , and
v_ respectively. The ,:tot product, of the vector c_ with
each of these vectors is taken, to give,

•tie = g,,,-c_, (5,3)

.rj_ = g:l -ce, (57)

z_ = _ic_. (58)

The tri-sphere containing the closest sphere is then
determined from Table 2

The question marks in the table indicate that any
value is allowed. The tri-sphere face chosen by this
method contains the closest point to the origin unless
the origin lies within the interior of the quad-sphere
(or more specifically, within the interior of the tetra-
hedron formed by the centers of the spherical-vertices
of the quad-sphere). The origin is tested to determine
whether it lies within the quad-sphere by calculating
the normal to the plane of the centers of the candi-
date tri-sphere, and then taking the dot produc_ of ci
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Figure 8: Calculation times for Polytopes oil a Sparc I

with this normal. It" tile origin lies within the qua<t-
sphere, the distance algorithm halts and a collision is
reported. Otherwise, the distance to the quad-sphere
is found by calculating tile distance to the candidate
tri-sphere using the method of Section 6.'2.3.

T Experimental Results

To determine the efficiency of the distance compu-
tation algorithms, a program was written and tested
using randomly generated objects with varying num-
bers of vertices.

Many of the equations used for calculating distances
can be greatly simplified if all the radii of the spheres
in agiven object are assumed to be constant. In this
case. the problem is _educed to calculating the distance
between polytopes and tlle:] subtracting the sum of
the radii of the two objects. The program was written
to take advantage of this degenerate case. and runs
faster when given sets of polytopes instead of s-topes.
Consequend< two sets of experiments were performed.
The first using all polytopes, and tile second using all
s-topes.

In both cases, objects with from one to one hundred
vertices were generated by randomly placing the ver-
tices on the surface of a sphere. To generate poiytopes,
the vertices were all spheres of zero radius. To gener-
ate s-topes, tile vertices were spheres of random radii.
The times for calculating distances between pairs of
these objects a_ varying separations was measured on
a Sun Sparcstatiou I. The_ results of _hese measure-
ments are presented in Figures $ and 9. In each figure
calculation times are presented for the following cases:
just touching, separated by' a distance equal to the ap-
proximate diameter of the objects, separated by three
diameters, and separated by" seven diameters. Tile two
figures show the linear relationship between the total
number of vertices and the calculation time. Addition-

ally, it can be seen that the calculation time is greatly"
reduced when t,he objects are not in close proximity.

Figure 9: Calculation times for Sperically Extended
Potytopes on a Sparc I

8 Conclusions

The s-tope model {s a simpie extension to the poiy-
tope model which allows many types of objects to be
represented by' fewer vertices. An efficient distance cal-
culation method has been presented which has an ex-
ecution time lineariy related to the number of vertices
in the two objects. The distance calculation time for
s-topes is slighdy greater than for polytopes with an
equal number of vertices. However, since many ob-
jects may be represented with far fewer vertices using
the s-tope model, there may be a net, reduction in com-
putation time.
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