EFFICIENT DISTANCE CALCULATION
USING THE SPHERICALLY-EXTENDED
POLYTOPE (S-TOPE) MODEL

NAtw -/333

by

Gregory J. Hamlin, Robert B. Kelley, and Josep Tornero*

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering Department
Troy, New York 12180-3590

*Departamento de Ingenierias de Sistemas
Computadores y Automatica (DISCA)

Universidad Politecnica de Valencia
Valencia, SPAIN

September 1991

CIRSSE REPORT #104

Efficient Distance Calculation using the Spherically-Extended
Polytope (S-tope) Model

Gregory J. Hamliny

Robert B. Kelley

Josep Torneroi

iCenter for Intelligent Robotic Systems for Space Exploration
Rensselaer Polytechnic Institute
Troy, NY 121380-3590

tDepartamento de Ingenierias de Sistemas, Computadores y Automatica (DISCA)
Universidad Politecnica de Valencia
Valencia, SPAIN

Abstract

An object representation scheme which allows fust
Euclidean distance calculution is presented. The object
model ertends the polytope model by representing ob-
Jects as the conver hull of a finile set of spheres. An
algorithm for calculating distances between objects is
developed which is linear in the total number of spheres
specifying the two objects.

1 Introduction

The efficient calculation of distances between ob-
jects is an important problem in the field of robotics.
Many task planning and control algorithms require a
knowledge of distances between objects. Collision de-
tection and avoidance depends upon distance calcula-
tion between a robot and other obstacles in the en-
vironment. Many path planning algorithms use the
shortest distance between objects, particularly those
involving potential Relds or iterative methods which
test a path and then adjust it if there is a collision.
All of these applications require an efficient distance
computation method if they are to be used in a real
time environment,

In addition to applications in robotics, thers are
many computer graphics techniques which can benefit
from distance or collision detection calculations. For
example. collision detection can be used in ray-tracing
to reduce the number of calculations required to ren-
der a scene by only considering those objects which lie
in the path of the rays. [n a virtual reality simulation,
where a person interacts with objects in the environ-
nment, collision detection can be used to tell when the
person is touching something.

A distance calculation method that is often used
involves checking for intersections between all of the
faces, edges, and vertices of polygonal objects. This
brute force method, although straightforward, is ex-
tremely slow. Many different techniques have been
proposed to speed up distance computation. Quad-
tree representations can be used to quickly detect colli-
sions between objects and a stationary set of obstacles.
but become awkward and slow when the obstacles are

moving. Some methods use extremely simple approxi-
mations to all the objects such as caleulating distances
between bounding spheres. This is very fust, but quite
inaccurate in most cases. Stll others use norm one
ot norm infinity for the distance calculation, to avoid
the computationally expensive square root operation.
However, this approximation can give inaccurate or
misleading results.

A common method used to represent convex objects
is the polytope model. In the polytope model, objects
are represented as the convex hull of a set of points.
Gilbert, Johnson, and Keerthi [1] present a powerful it-
erative technique for calculating the distance between
polytopes. The execution time of their algorithm is
approximately linear with respect to the total num-
ber of vertices in the two objects. The algorithm is
roughly Ofn) where n is the total number of vertices
in the two objects. Later. Gilbert and Foo [2] general-
ize their result to include any convex object. However,
in doing so, the advantages of having a single model
for all objects is lost.

This paper presents the concept of a spherically »x-
tended polytope. or s-tope. Instead of representing
objects as the convex hull of a set of points. an s-tope
is the convex hull of a set of spheres. This allows a
much wider range of objects to be easily described. Ob-
jects with rounded surfaces can be represented with far
fewer vertices than would be required with the poiy-
tope model. Additionally, an efficient distance con-
putation method based on that of Gilbert et al. s
developed and axperimental results presented. The al-
gorithm still exhibits the O{n) execution time as does
the polytope method, but the spherical extension pro-
vides a more general object model. The s-tope concept
is a generalization of a spherical object geometry pre-
sented by Tornero, Hamlin, and Kelley (3], 4].

2 Notational Conventions

The notation used in this paper is similar to that
used in [2], especially when dealing with concepts orig-
inating in that or previous ([1].[31.[6]) works.

Vectors and points are represented by lowercase

ORIGINAL PAGE IS
OF POOR QUALITY

boldfaced letters (x,y), and scalars by lowercase ital-
ics, (a,b). Lengths of vectors and distances are defined
as the Euclidean norm

length of v = |[v]] = Vv v, (1

where the (-) is the inner, or dot, product. Unit vectors
are written with a hat (V).

Sets are denoted by uppercase boldfaced letters
(P,S), and Co P is the convex hull of the set P. Other
notation is introduced later in the presentation.

To define the spherically extended polytope model,
it is Arst necessary to discuss the notion and notation
of a polyope. A polytope is the convex hull of a finite
set of points. When dealing with polytopes, the ver-
tices which define the polytope are given the symbol
p. Therefore, if P is a set of points {pg, Py, Pn}.
then the convex hull of P is an infinite set of points X
expressed as

el

X:{x:x: ,\‘p‘.pLEP,AO+-r-+/\,,:1}.
i=0
(2)

3 S-topes

An s-tope is the convex hull of a finite set of
spheres. A sphere is denoted s = (c,r), where ¢
is the center and r is the radius. A set of spheres
S ={85,8,-", 8n} consists of the set of centers C =
Cg,C1, -, Cn and the set of radit R = {ro,r1,
The convex hull of S contains an infinite set of spheres
called the set of swept spheres which is expressed as

'vrn}'

n n

CoS = {s =(e,r)ie=) A= ZA”*‘(}”
1=0 =0

where ¢; £ C.r; € R, (4)

and Ay + -+ A, = L 6

Note that the set of swept spheres does not include
all possible spheres which can fit inside the s-tope, only
those which are generated by Equation 3. An s-tope
is represented in this paper by the symbol S, where
an s-tope formed from a set of spheres {3,,8,, -, 3, }
is denoted as S,_,. The spheres which define the s-
tope are called the spherical-vertices of the s-tope. For
simple s-topes (those made from four or fewer spheres)
the spheres are listed explicitly. For example. Sijk 1s
an s-tope with spherical-vertices s,. 8; and 3.

An s-tope is said to be overspecified if one or more of
its spherical-vertices may be removed without chang-
ing the convex hull. An s-tope which is not overspecl-
fied is said to be a valid s-tope.

4 The Simple S-topes

As preparation for the discussion on distance calcu-
lation, it is useful to have a detailed description of the
s-topes formed from sets of one to four spheres.
4.1 Sphere

The simplest s-tope is a single sphere. An s-tope
formed from a sphere. s;, is denoted S; and is identical
to that sphere.

Figure 1: An example of a bi-sphere

4.2 Bi-Sphere

An s-tope formed from two spheres, s, and s;, is
denoted S;;. A set of expressions describing the set of
swept spheres which defines the bi-sphere is obtained
by rewriting Equation 3 in the following manner,

cij(Aiy) = ¢+ A le, — ¢, (63
ri](’\Lj): I',+,\U‘(7‘j—l‘,), (T)
where A;; € [0, 1]. (3)

An example of a bi-sphere is shown in Figure 1.
Hereafter, the conical surface generated between the
two spheres is referred to as the side of the bi-sphere.
There are several parameters which may be used to de-
scribe a bi-sphere. The azis, vi; , is the vector from ¢,
to ¢;. The length of the bi-sphere is the magnitude of
the axis vector. The conrvergence angle, a;; of the bi-
sphere is the angle between the axis and the side. The
sine of o,; appears frequently and is given the symbol
ni;. Another useful parameter is the direction along
the axis. v,;. These parameters have the following re-
lations,

Vi =¢; — ¢, (9
. sz

- : 10

ST)
r, —r,

= , 1)

I)t, HV;;H t /

oy, = sin " N - (i)

The vector f, 15 normal to the side of a bi-sphere.
projecting away from the surface. and satisfies the fol-
lowing constraint,

ﬁs"}z] = —Thj- (13)

A bi-sphere is valid if and only if neither of the
spheres s; or 3; is completely contained within the
other. Equivalently. a bi-sphere is not valid if Ini;] > L.

ORIGINAL PAGE !5
OF POOR QUALITY

Figure 2: An example of a tri-sphere

4.3 Tri-Sphere

A Tri-sphere is an s-tope formed from three spheres,
3;, 8;, and 3, and is denoted 8. Figure 2 shows an
example of a tri-sphere. The set of equations describing
all the swept-spheres in a tri-sphere is

Cx}k()\xjk) = Cz+’\zj(cj_Cx)+’\zk(ck_cx)(14)
re(Mige) = mo+ Ay =) 4 Awelre = i) (13)

where Aj; € {0,1], Aix € (0,1]. (16)

A tri-sphere S;j; has three bi-sphere edges, and two
planar faces. The three edges are the bi-spheres Sy,
Sik; and Sjk-

The two planar faces are tangent to all three spheres
si, 8j, and s;, as well as to all three edges Si;, Six,
and 5;i. Therefore, the normals of the two faces must
satisfy Equation 13 for each of the edges. That is.

ﬁs 'vz] — i (]-T)
n, Vi = —ik, (13)
1:13‘\\/]',1- = —TNjk- (19)

These equations imply an angle of 90 — nr,; between
n, and v,;, and an angle of 90 — oy between n, and
vie. Since the three equations are not independent, it
is necessary to add the following constraint on f, in

- -~ f
order to calculate the two normals n, and n, ,

ln,fj =1 (20)

Figure 3 shows the relationships expressed in the
preceeding equations.

A tri-sphere is not valid if one of the splheres is com-
pletely contained within the bi-sphere formed by the
other two spheres.

4.4 Quad-Sphere

A quad-sphere is an s-tope formed f{rom four
spheres. The notation for a quad-sphere is the same
as for the other objects. Namely. for a quad-sphere
with spherical-vertices s,, 3;, 3¢. and 3. the symbol
is Sijer. The equations for the quad-sphere are similar
to those for the tri-sphere.

Figure 3: Normals to the faces of a tri-sphere

ci + A;(e; —ei) + Ak —cy)

+Ait(er — i),

rie(Nije) = i A =)+ Aulre =)
+Ai(rr —1i),

where A;; € 0,1], Aix € (0, 1], 2 € 0,1]. (21)

Just as a polytope with four or more points is gener-
ally a polyhedral object with triangular facets, a quad-
sphere (or an s-tope with more than four spherical-
vertices) is an object with tri-sphere facets. Therefore,
the normal to the surface of any of the facets may be
calculated in the same manner as for a tri-sphere.

A quad-sphere is not valid if any of its spherical-
vertices are completely contained within the tri-sphere
formed from the other three spheres.

Cijer{Aijer)

5 Polytope Distance Calculation

The basic algorithm for calculating the distance be-
tween s-topes is similar to an algorithm for Polytopes
developed by Gilbert, Johnson. and Keerthi (1], which
in turn is based on work by Barr and Gilbert [3], [6].
Since the s-tope distance algorithm is an extension of
the polytope distance algarithm, an overview of the
polytope distance algorithm is presented here. For
more details. refer to the works cited above.

5.1 Polytope algorithm

The polvtope distance algorithm takes advantage of
the fact that the shortest distance between two objects
is the same as the shortest distance from the origin to
the object formed by taking the Minkowski difference
of the two objects. Therefore, given two sets of points
P, and P which define polytopes P, and P,, a new
polytope P,, can be formed from the set P2, as

M

P,y =P,-P, ={p,-p, :p, £P1.p, € P2} (22)

The algorithm requires the ability to determine the
point in a set which is farthest in a particular direction.
The support function, Ap. for a set of points P, 1s

defined in [1] as
hP(v):max{p-v:pEP}. (23)

The point p which satisfies this equation is furthest in
the direction v.

The basic algorithm used is as follows. Given two
polytopes defined by their sets of vertices P, and P,,
create a new set of points P> using Equation 22.

1. Start with an empty working set, P

9. Guess at the direction of shortest distance, v. Use
the direction between the centroids if you don't
have any better information.

3. Find the point p(v) in P, furthest in the direc-
tion v, and add it to the set P.

4. Find the closest point to the origin, d, on the poly-
tope formed from the set P using the polytope
distance sub-algorithm.

5. Discard any points in P which are not necessary
to define the point d.

6. Repeat steps 2-4 until [(hpl,,(v))'3 - (a? <
Tolerance)

Figure 4 show four iterations of the algorithm on a
planar polytope, P, _s.

For two polytopes P, and P,, which have n and
m vertices respectively, the polytope P,, formed from
the Minkowski difference of the two polytopes has n x
m vertices. This means that for each iteration of the
algorithm, n x m inner products must be evaluated
to calculate the support function hfpu. However, the

support function may also be calculated as
hfp“(v} :hrp](\'\)—hrpl(v). (24)

This formulation only requires n+m evaluations of the
inner product.

Amazingly. the polytope distance algorithm almost
alwavs converges within four or five iterations. even
when there are hundreds of vertices. This makes the
polytope algorithm approximately O(n + m) in com-
putational complexity [1].

5.2 Polytope distance sub-algorithm

The distance sub-algorithm [1] calculates the closest
point to the origin on a polytope with one. two, three,
or four vertices. Addirtonally, it returns the minimal
number of vertices necessary to define this peint. For
example. if the closest point is one of the vertices, then
that vertex is suffici=nt to define the closest point. [f
the closest point is on an =lgs. then two vertices (the
end points of the edge) are necessary to define the clos-
est point. Similarly, if the closest point is on a face of
the polytope, three vertices are necessary to define the
closest point. Note that the only time four vertices are
required to define the closest point is when the point
is actually inside the object. Therefore, after each it-
eration of the distance algorithm, there are never more
than three points in the working set.

1. calculate shortest distance to initial working set
(p1)

2. add p, to working set and calculate shortest dis-
tance to working set (p;.,py)

3. discard p,; and add ps and calculate shortest dis-
tance to working set (py,Ps)

4. add p;s and calculate shortest distance to working
set (p4!p51p5)

Figure 4: Example of the polytope disrance algorithm

6 S-tope Distance Calculation

Many of the advantages of the polytope represen-
tation are also present with the s-tope representation.
For example, the Minkowski difference and the support
function are both simply calculated. The Minkowski
difference of the s-topes, S, and S, defined by two sets
of spheres Sy and S» is the s-tope S, defined by the
set of spheres Sy, where

Sin» = {s=(cirri)icip=ci—cp (2H)
CIECL-C"JECQ, (2‘))
Fla =y T (273
"leRl-rEERg}, (..’b)

The support function for an s-tope is also very sim-
ilar to that of a polytope. For an s-tope S defined by
spherical vertices in the set S. the support function is
computed as

hg(v) = max{{c, v)+r (e,) =388 €S} (29)

6.1 S-tope algorithm

The distance calculation algorithm is very similar to
the one presented above for polytopes. Given two s-
topes defined by their sets of spherical-vertices S; and
S, create a new set of points Sy» using Equation 26.

1. Start with an empty working set, S

2. Guess at the direction of shortest distance, v. Use
the direction between the centroids if you don’t
have any better information.

3. Find the sphere s(v) in Sy, furthest in the direc-
tion v, and add it to the set S.

4. Find the closest point to the origin, d. on the s-
tope formed from the set S using the s-tope dis-
tance sub-algorithm.

5. Discard any spherical-vertices in S which are not
necessary to define the point d.

6. Repeat steps 2-4 until]((hSp("))? —(|d])? <
Tolerance i

6.2 S-tope distance sub-algorithm

The s-tope distance sub-algorithm is actually a col-
lection of four separate but interdependent algorithms.
There are algorithms for finding the shortest distance
from the origin to a sphere, from the origin to a bi-
sphere, from the origin to a tri-sphere, and from the
origin to a quad-sphere. The algorithms for calculating
the distance to a sphere, bi-sphere, and tri-sphere, are
based on work by Tornero, Hamlin, and Kelley (3], {4].

The sub-algorithm takes advantage of the fact that
each of the collection is called under specific circum-
stances by the s-tope distance algorithm. For exam-
ple, the tri-sphere sub-algorithm will only be called
after the bi-sphere sub-algorithm has been called. In
general. if the distance is to be calculated from the
origin to an s-tope. S,. with spherical-vertices 3,-3,.
it can be assumed that the distance has already been
calculated from the origin to the s-tope S, _,, formed
by the spherical-vertices 8,-3(,-,). and that all the
spheres 8,-3(,_,, were nscessary to define the closest
sphere. Thus, it is useful to think of the sphere s,
as being added to the s-tope Si,_,,. and the distance
computed to the resulting object.

6.2.1 Distance to a Sphere
In this paper, the shortest distance between the ori-

gin and an object is written as

DIST(object).

The distance between the origin and a sphere is cal-
culated by the following formula,

DIST(s)=|lcli—r (30)

°0

Figure 5 Distance from the origin to a bi-sphere

6.2.2 Distance to a Bi-Sphere

Calculation of the shortest distance between the ori-
gin and a bi-sphere S;; is performed in several steps.
First, the point on the axis of the bi-sphere closest to
the origin is found by calculating AijT,

C; - V,j
[Ivi; iI?

Second, to satisfy the angular constraint, the value
of Ai; is updated,

(31)

AT =—

o e Gl
Ay = Ay oty A
’ ’ HVUH

Figure 3 illustrates these ideas.

tan ay;. (32)

Simple case (A; € [0.1]). For the simple case of
Ay € [0.1] the distance is calculated between the origin
and s;;(A;;) using Equation 30. That is,

DIST(Sz}) = DIST(S,](/\))) = E!C!j(’\!j)H - "xj(’\lj)'
3

Handling \ out of range {0.1]. When the A;; is not
in the range [0.1], the shortest distance is calculated
from the origin to one of the ends of S;;. In particular.

X

= DIST(S;)=DIST(s;) 3,
A = DI)

>=1
<=0 ST(S,;) =DIST(s:)

However, since s, is chosen by the distance algo-
rithm and is closer (along the vector c¢;) to the origin,
A;j will never be less than zero, and that case does not
need to be tested.

n
[&
A N
s
C) .
! g Yij
o S N

A

v,
ik
Figure 6: Pseudo-Polar Coordinate System

6.2.3 Distance to a Tri-Sphere

The process of calculating the shortest distance from
the origin to a tri-sphere S;ji has three steps. First,
the direction of shortest distance to the origin is calcu-
lated. Then, the A's (see Equation 14) are calculated
which correspond to the closest sphere on the tri-sphere
Sijk to the sphere s;. The distance is then calculated
from this sphere to the origin, unless the A’s are out
of range (see Equation 16}, in which case further cal-
culation 1s necessary.

Calculation of surface normals. The direction of
shortest distance, n,, when the A's are in range. Is sim-
ply the normal to one of the planar surfaces bounding
the tri-sphere. These normals must satisfy Equations
17 to 20. Two of the three independent constraint
equations are repeated here.

(33)
(36)

n, Vi — ik

fl, >\-fﬂ = -—)’]](,

A pseudo-polar coordinate system is formed using
v, Vi and no=v, < v The vector 1y 1s located
in this svstem using two variables. 8 and 0. 4 is the
angle between i, and the plane formed by v,; and
vir. o is the angle from v,; to the projection of n,
in this plane. a represents the angle between v,; and
vii. This coordinate system is shown in Figure 6.

Using these three angles, the constraint equations
may be rewritten as

(37)

a = arccos(vj - Vi),

6

cosfcos & = nj. {33)
cosfcos(a + @) = 1. {39)
Selving for ¢ and g gives
é = arctan (——-—-——mk — cosa> . (40)
T],‘J' sina
8 = arccos (i) . (41
cos &

The two values of 8 specify the two faces of the tri-
sphere. The vectors nn, are then constructed using the
equations

cosdsin(a — o)

o= - . 42
9is sina (42)
cosfsino N
Jix = ———m———r {43)
sina
g. =sinf, (44)
Ny = gijVij + gixVik + ge0e. (45)

Calculation of A’s. Let d be the length of the line
segment joining the origin with the closest sphere in
the tri-sphere S;jx. The following equation may be
obtained from Equation 14,

dn, = —C; = ’\ij(cj T)‘:fc(ck —). (46)
\ ;\[L{ltipl__'ing Equation 716 byn;; = x'13_ xvi;and i =
n, x Vi gives the following two equations for A;; and
Aik.

C, 'fl:’x -
Ay = ——— (47)

Vi oDk

C,’-flu .
Ap = - (48)

Vik ’nz_;

Shortest distance (simple case). Assuming both
A’s are in the ranges specified by equation 16 these
X's may be used in Equations 14 and 15 to calculate
the closest sphere s;;¢(A\ij,Aic) in the tri-sphere. The
shortest distance between the origin and the tri-sphere
S,k is then calculated as,

DIST(Siji) = DIST (s, 6(Aij Aie).) (H9)

Table 1: Handling A’s out of range

Aj An‘c Axl - Atk DZST(Sl]k) =
>=0] >=0 <=1 Simple case
<0 >=0 <=1 DIST(Sik)
>=0 <0 <=1 DIST(S:;)
>=0 | >=0 > 1 DIST(S;k)
<0 <0 <=1 MIN(DIST(S;)), PIST(S
<0 >=0 > 1 MIN(DIST(S:) DIST(S
>=0 <0 > 1 MIN(DZIST(S;;), DIST(S

Handling A\’s out of range. If the A's obtained
above fail to satisfy one or more of the inequality con-
straints, then the shortest distance is between the ori-
gin and one of the three edges of the tri-sphere S,j«.
Table 1 shows all the possible situations. In the taéle
DIST(S;;) refers to the calculation of the distance be-
tween the origin and S;; using the method of Section
6.2.2.

As was the case when calculating the distance to a
bi-sphere, it is possible to eliminate some of the cases in
Table 1. Sphere s; was added to S;; to form S, ¢, and
that sphere is closer to the origin along the direction
of shortest distance calculated for S;j. Therefore, the
closest sphere in S;;¢ will never be in' S;;, and Ay, will
never be less than zero.

6.2.4 Distance to a Quad-Sphere

The method for calculating the distance from the
origin to a quad-sphere S;ji; relies heavily on the fact
that the distance has already been calculated to S;ji.
This insures that when the origin is projected along
n,, the direction of shortest distance from the origin to
Sijk, it will lie within the triangle formed by ¢,, ¢j, and
ci. Adding the fourth spherical-vertex to the s-tope
Sijr creates three tri-sphere faces S, Siw. and S;iy
The shortest distance to the s-tope S,;4; 13 identicaf to
the shortest distance to one of these three tri-spheres.

To determine which tri-sphere face of the quad-
sphere contains the closest sphere to the origin, the
centers of all the spherical vertices of S:J,;.;, and the
origin, are projected into a plane perpendicular to n,
the result will appear something like Figure 7. The
triangle in which the projected origin lies determines
which tri-sphere face contains the closest sphere to the
origin.

A simple procedure to determine which of the pro-
jected triangles c,cjc. ¢ieicy. of ¢;cpc. contains the
origin has been developed which avoids actually having
to project the vertices nto a plane.

First. three vectors are calculated as follows:

if n. ¢, >0 then

n,; = N, x vy {30)

n,; = n;xvy, {31)

Ny = Ny X Vi, (52)
otherwise.

n,; = vy Xng (33)

Figure 7: Projection of the centers of a Quad-Sphere
into a plane

Table 2: Determining the face which contains the clos-
est sphere

z;i | 2,1 | & | Candidate tri-sphere

>0 <U 7 S,']l

<0 7 | >0 St

? >0 <0 S;j,
no= Vo< (54)
N = Vi X D (33)

These vectors. define three planes which contain the
point ¢; and are parallel to n, and to v, . v, and
v respectively. The dot product of the vector ¢; with
each of these vectors is taken, to give,

Ly = Mo, (58)
Ly = fy-c (57)
Iy = N -cp (38)

The tri-sphere containing the closest sphere is then
determined f{rom Table 2.

The question marks in the table indicate that any
value is allowed. The tri-sphere face chosen by this
method contains the closest point to the origin unless
the origin lies within the interior of the quad-sphere
(or morte specifically, within the interior of the tetra-
hedron formed by the centers of the spherical-vertices
of the quad-sphere). The origin is tested to determine
whether it lies within the quad-sphere by calculating
the normal to the plane of the centers of the cand:-
date tri-sphere. and then taking the dot product of ¢

12 T T
.t
« o«
W0F ;. dimost touctung . 1
+ - | clameter separation Yo s
* . 3 diameters separation . et
o : : N
- 8-
)
3
3
= 6
2
H
=
B sk
al Ca . e
e L e gag™ 550 o

S e
P ind X

Q 0 40 60 30

4 —t

120

100 140

Totwal aumber of vertices

Figure 8: Calculation times for Polytopes on a Sparc [

with this normal. If the origin lies within the quad-
sphere, the distance algorithm halts and a collision is
reported. Otherwise, the distance to the quad-sphere
is found by calculating the distance to the candidate
tri-sphere using the method of Section 6.2.3.

7 Experimental Results

To determine the efficiency of the distance compu-
tation algorithms, a program was written and tested
using randomly generated objects with varying num-
bers of vertices.

Many of the equations used for calculating distances
can be greatly simplified if all the radii of the spheres
in a given object are assumed to be constant. In this
case. the problem is reduced to calculating the distance
between polytopes and then subtracting the sum of
the radii of the two objects. The program was written
to take advantage of this degenerate case. and runs
faster when given sets of polytopes instead of s-topes.
Cousequently, two sets of experiments were performed.
The first using all polytopes, and the second using all
s-topes.

In both cases, objects with from one to one hundred
vertices were generated by randomly placing the ver-
tices on the surface of a sphere. To generate polytopes,
the vertices were all spheres of zero radius. To gener-
ate s-topes, the vertices were spheres of random radit.
The times for calculating distances between pairs ol
these objects at varving separations was measured on
a Sun Sparcstation [. The results of these measure-
meents are presented in Figures S and 9. In each figure
calculation times are presented for the following cases:
just touching, separated by a distance equal to the ap-
proximate diameter of the objects, separated by three
diameters, and separated by seven diameters. The two
figures show the linear relationship between the total
number of vertices and the calculation time. Addition-
ally, it can be seen that the calculation time is greatly

reduced when the objects are not in close proximity.

(o

18+ x - atmost touc g i v) “
+ - | dameter separation) -‘

16~ -} dmmeters separanon . o h
o - 7 diameters separaton 2 *

Tisne (milliseconds)

0 0 0 60 80

100 120

Total number of vertices

Figure 9: Calculation times for Sperically Extended
Polytopes on a Sparc |

8 Conclusions

The s-tope model is a simple extension to the poly-
tope model which allows many types of objects to be
represented by fewer vertices. An efficient distance cal-
culation method has been presented which has an ex-
ecution time linearly related to the number of vertices
in the two objects. The distance calculation time for
s-topes is slightly greater than for polytopes with an
equal number of vertices. However, since many ob-
jects may be represented with far fewer vertices using
the s-tope model, there may be a net reduction in com-
putation time.

References

(1] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi,
“\ fast procedure for computing the distance be-
tween complex objects in three-dimensional space,”
[EEE Journal of Robotics and Automation. vol. 4,
pp. 193-203. Apnl 1938

E. G. Gilbert and C. P. Foo. “Computing
the distance between general convex objects in
three-dimensional space,” [EEE Transactions on
Robotics and Automation, vol. 6, pp. 33-61. Febru-
ary 1990.

(3] J. Tornero. G. J. Hamlin. and R. B. Kelley
“Spherical-object representation and fast distance
computation for robotic applications.” in JEEE [n-
ternationa! Conference on Robotics and Automa-
tron. (Sacramento. CA), pp. 1602-1608, May 1991

[4] J. Tornero. G. J. Hamlin, and R. B. Kelley,
“Collision-detection based on a fast distance com-
putation technique.” in Proceedings of the Euro-
pean Robofics and [ntelligent Systems Conference,
(Corfu, Greece), June 1991, (in press).

R. O. Barr, “An efficient computational procedure
for a generalized quadratic programming problem.”

SIAM J. Contr.. vol. 7, pp. 415419, 1969.

ORIGINAL PACE 15
OF POSR QUALITY

(6] R. O. Barr and E. G. Gilbert, “Some efficient algo-
rithms for a class of abstract optimization problems
arising in optimal control,” IEEE Transactions on
Automatic Conirol, vol. AC-14, pp. 640-652, 1969.

