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Abstract

In this paper, a modular approach is presenied for
construcing Petri-net models for a class of flexible
manufacturing systems (FMS’s) composed of a trans-
portation vehicle and several functional groups of enti-
ties such as machines and buffers. The resulting model
preserves the geomeliric characteristics of the irans-
portation subsystem as well as the flexibility of alter-
native routes for material flow in an FMS. By sep-
arating machine-dependent part from the whole sys-
tem, the final model in modular structure is adatable
to various task flow requirements. In addition, the
methodology can deal conveniently with reconfiguration
of transportation layout.

1 Introduction

Petri net has been applied to various aspects of
factory automation and extended to flexible manufac-
turing systems (FMS’s), such as modeling, analysis,
evaluation, simulation, controller design, etc.[1,2,3,5,
6,11,12,14,15,16). Apparently, to run a general sys-
tem successfully the first thing to begin with is to
establish a suitable model which can reflect the be-
havior of the system as much as possible. An FMS
is a large complex system consisting of many shared
resources connected by the transportation subsystem
so that considerable flexibility arises from existence
of alternative routes for the material flow. Unfortu-
nately, this also causes great amount of complexity in
the work of modeling. ’

The work of this paper is to propose a buttom-u
modular approach, rather than a top-down one [16f,
and to introduce the concept of separation between
machine-dependent module and machine-independent
module.  Such modeling approach adopted here
presents a hierarchical model featured in its system-
atically defined modular structure in comparison with
the earlier works [6,12,14].

This paper addresses the modeling of a class of
FMS’s comprising one transportaion vehicle and sev-
eral functional groups of entities such as machines and
buffers. Here, we propose a systematic approach of
constructing Petri-net model for an FMS mentioned
above module by module so that the geometric charac-
teristics of the transportation subsystem and the flex-
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ibility of the material flow with alternative routes can
be truthfully reflected.

In such a modular approach, two major parts that
constitute the whole system are separated, one mod-
eled as a stationary module dependent on transporta-
tion layout whereas the other modeled as a variable
module dependent on task-flow requirements. Because
of the modular structure of the resulting model, the
adaptability of this approach to various task-flow re-
quirements is clear.

The organization of the paper is given as follows: In
section 2, we formulate the problem to be addressed.
In section 3, we present our modular approach by giv-
ing a series of module developments in terms of an
example. A relavant discussion and a conclusion are
provided in section 4.

2 Problem Formulation

In this paper, the target system under our model-
ing consideration can be described in three separate
parts, i.e. transportation layout, workstation group
definitions, and task-flow specification. Physically, a
transportation layout comprises a set of control points
and a set of paths, where each path connects a pair
of control points, and thereby the vehicle transports
materials from one control point to another. Here, for
simplicity we will consider a system which only has
one material handling vehicle that can move forward
and backward on each path. Thus, if control points
and paths are viewed as nodes and unidirected edges
(arcs) repectively, then the transportation layout can
be uniquely represented by a (node-arc) incidence ma-
trix A = [a;;] associated with the unidirected graph
G = (V,E), where V is the set of nodes to represent
control points, E is the set of arcs to represent paths,

and
aij = {

Each control points is attached to an entity in
the system, called workstation hereafter, which can
be a machine, a buffer, a loading/unloading entry,
etc. These workstations are then classified into sev-
eral groups according to what operations they per-

+1 ifarc e; leaves node v;
—1 ifarc e; enters node v;
0 otherwise



workstation of group A

O
tail node

(b) Task Flow Requirement

(a) Transportation Layout

Figurel An Example of Problem Formulation

form. The workstations in the same group can pro-
vide the same set of operations, but probably with
different parameters, e.g. processing time. To specify
such group relation, we use a relation matrix R = [r; 7]
defined as:

) 1
7‘,’j:{0

For simplifying the matters, throughout this paper we
will assume that all workstations in the same group
are equally preferable whenever they are available. In
other words, for any two free workstations in a group,
no priority will be set in drafting any of the two.

According to the definition of the group relation,
we can now give the formal description of any task-
flow requirement by an AND/OR, graph with only OR
nodes, as shown in Fig. 1(b), where the head node and
the tail node indicate start and end of the task flow
respectively. In fact, any general AND/OR graph can
be redraw into the type of graphs as just mentioned.
Each path in the task-flow graph connecting the head
node and the tail node represents an alternative route
through various workstation groups, rather than indi-
vidual workstations.

To illustrate the target system under our problem
formulation, an example is shown in Fig. 1, where
the transportation layout incidence matrix A and the
group relation matrix R are given as follows:

if workstation at node v; belongs to group j
otherwise

ol
-1 1
-1 1 -1
A = -1
-1 1
i -1 1
r 1
1
B 1
R = 1
1
I 1

3 Modular Approach in Modeling
In constructing a complete model to reflect the
behavior of an FMS, hardware configurarion and
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various task-flow requirements are two essential
parts to form the machine-dependent and machine-
independent characteristics of the system repectively.
The key point of this paper is to model these two parts
in separate modules, i.e. a stationary module which
is only based on geometric features of the pertaining
transportaion layout and a variable module which is
based on various task-type specification. Due to this
separation, the resulting model is easily adaptable to
a change of any task-flow requirement because no ef-
forts need to be made to modify the part of machine-
dependent module. So far, these two modules, in fact,
play the roles of macro-modules since each of them
is further modeled in a structure with micro-modules
that is naturally formed through our problem descrip-
tion.

Note that capability of the transportation subsys-
tem is the primary function of the machine-dependent
module. Thus, to model this part the Transporta-
tion Module is carefully devised, i.e. its objective is
to model vehicle movement from the current control
point to the desired one according to some embedded
rules for receiving moving commands, executing the
moving activities, and sending outside acknowledge-
ment after each activity is complete. The machine-
independent module called Task Flow Module keeps
the capability of assigning alternative route of control-
ling the flow of a workpiece. Between the two modules
mentioned above, we need another module, namely,
Command Control Module, to execute the command
of moving from the current control point to the des-
tination control point. Hence, the main body of one
moving command comprises start of command, move-
ment to the current control point, release of worksta-
tion at the current control point, movement to the
destination control point, replacement of the current
control point with the destination control point, and
end of command. The details of these modules will be
discussed in the following.

3.1 Transportation Module

Given the directed graph G = (V, E) represent-
ing the transportation layout, we can define a move-
ment control matrix M = [my;;],1 < ¢,j < |V] and
|m;;| < |E| to indicate the first directed edge that will
be transversed by the movement from v; to vj, Le.

+k
my; =< —k
ij 0

Next, the Petri-net model of the Transportation Mod-
ule can be systematically established according to the
incidence matrix and the movement control matrix as
shown in Example 1. Likewise, with different configu-
ration of transportation layout the same approach as
adopted in this example can be applied to construct
the suitable Petri-net model in a similar form.

if on path segment ey in positive direction
if on path segment ex in negative direction
ifi=j

Example 1 In this example, we consider an FMS
comprising three different machines, one buffer pool
of three entities, and one loading/unloading entry, as
pictured in Fig. 2, where control points v, is located



E : loading/unloading entry

A B.C: differennt machines
v;, 1<i<7 : cantrol points
vj, 1«i<7 : directed path scgment

Figure 2 An Example of Transportation Layout

at the loading/unloading entry, va, vs, and v, are as-
soicated with three buffers of a group, and vs, vs, and
vy are attached to machine A, B, and C respectively
with different capability. The incidence matrix A as-
sociated with this transportation layout is

whereas the movement control matrix is defined in a
straightforward manner as:

0 1 1 1 1 1 1
-1 0 2 2 2 2 2
-2 -2 0 3 3 3 3
M=|-3 -3 -3 0 4 4 4
-4 -4 -4 -4 0 5 5
-5 -5 -5 -5 =5 0 6
-6 -6 -6 -6 -6 —6 0

Accordingly, the Petri-net model of this Trans-
portation Module is presented in Fig. 3, where part
(a) is related to the geometric layout of the transporta-
tion subsystem and part (b) relates what is shown
on the first column of the movement control matrix
M. An observation of Fig. 3 shows that, after the
place MOV E_TO(P1) receives a token from outside
Sspeciﬁcia.lly from Command Control Module to be

iscussed shortly), a movement to place Pl is en-
forced. Thus, the token representing the transporta-
tion vehicle, which initially appears in a place (here is
P3) associated with a physical starting control node
(here is v3), will begin to move until the destination
place P1 is reached, associated with another physical
terminating control node v;. Finally, the token which
appears in the place OK (P1), is used as the ackown-
ledgement of completion of movement.

We should note that part(b) itself is a submodule
(or micro-module) which handles the movement con-
trol from any initial control node to the control node
vy. Actually, there are six other similar submodules
that take care of various movements to other termi-
nating control nodes, namely v2 to v7.
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STEP_OK

¢ : atoken stands for a transportation vehicle

(a) Petri-nct Mode! Dependent on Transportation Layout

MOVE_TO(P1)

OK(P1)

WAIT_FOR_STEP_OK

MOVE_TO(P1)

(b) Petri-nct Model Dependent on Transportation Control

Figure 3 Petri-net Model of the Transportation Module

3.2 Task Flow Module

To begin with, we assign each node in a task-flow
graph an identity number j. Additionally, each work-
piece is given an associated Task Flow Module with
an index i, where each module is again composed
of a number of submodules, each called Task Unit
Module as shown in Fig. 4, in the same structure
as that of the corresponding task-flow graph. Each
submodule just mentioned is given a module name
TASK_UNIT(i,j, T, P1,P2,...,PN), where i is the
indexing number of workpiece, j is the identity num-
ber indexing the node in the task-flow graph, and T is
the type name of the corresponding workstation group
which has N workstations denoted as P1, P2,...PN,
respectively. )

The notations in Fig. 4 are explained as follows.
The place GROU P_AV L(T) is initialized with N to-
kens to indicate the number of the available worksta-



Module Name : TASK_UNIT(},},T,P1,P2,...,Pn)
i: index of workpiece
J : identity number of a node in task -flow graph
T : name of workstation group
P1,P2,...Pn : the names for controt points of group T

output place PGi) GROUP_AVL(T)

RPN
V_AVL ST,:;((:O'_'_;QVL

SELECT(T,i)

input place

AVL(Pn)

DES(P1,i) O

DES(P2,i) DES(Pn,i)

Figure 4 The Task Unit Module

tions in group 7. The place V_AVL has a token to
indicate that the transportation vehicle is currently
available. The places AV L() are used to hold the
availability status of workstations in the group T'. The
token in place SELECT(T, 1) will choose an available
workstation of the group 7" to be a new destination, i.e.
a token will appear in one of the places DES(, 7). The
token in place START(3) then activates the movement
command in Command Control Module with the des-
tination information being started in places DES(,7).
After the completion of the movement command, a to-
ken takes place in EN D(3) to send out ackownledge-
ment of this completion message. Note that the place
P(i,7) in the submodule demonstrates in Fig. 4 has
the function of identifying which Task Unit Module is
currently activated.

The functional description of the Task Unit Module
Is stated as follows. Once a permissible workstation
group and the transportation vehicle are both avail-
able, the token in the input place enters the module
right away to select an entity of the group as the new
destination and to start the activity in the Command
Control Module. It will be clear later that at the end
of such activity, the transportation vehicle finishs the
movement from the current place to the destination
place and then make replacement of the current place
with the destination place. After that, a token re-
turns to the place V_AVL to indicate the release of
the transportation vehicle and incidentally the output
place obtains a token to inform the outside that the
subtask handled by this submodule is completed. As
to release of the workstation, it is inctuded in the Com-
mand Control Module as will be shown subsequently.

It is noteworthy that the structure of the Task Flow

1046

Figure 5 The Task-flow Graph of Example 2

Module is the same as that of the task-flow graph,
which allows the flexibility of alternative routes and
the control of the task flow both to be established
through this modular approach. We illustrate this fea-
ture through the modular combination in Example 2.

Example 2 With the same hardware configuration
in Example 1, we define the desired task type in the
task-flow graph as shown in Fig. 5, where each node is
assigned an identity number. Thus, the final form of
the Task Flow Module is constructed through modular
combination as shown in Fig. 6.

3.3 Command Control Module

Between the Transportation Module and the Task
Flow Module, we need another module called Com-
mand Control Module whose functions consist of the
following:

1) toregister the current control point at which the
transportation vehicle rests,

ii) to start the activity of movement from the cur-

rent contro] point to the destination control

point according to the task flow in the Task Flow

Module,

iii) to cause the vehicle to move to the current con-
trol point in Transportation Module,

to release the workstation associated with the
current control point,

iv)

to initiate another movement of the vehicle to
the destination control point following the Task
Flow Module,

v)



Module Name : TASK_FLOW(Ii)

i : index for workpicoe
O TAsk_UNTG
o i1 EPL
E
TASK_UNIT(,2,A.PS) TASK_UNIT(i,3,B,P6)
A B
TASK_UNIT(4 bP2P3, _p4)’+ J:’\msx_ur{rr(i.7.b.|’2,|>3.l>ot)
b B A b
TASK_UNTT(,6,A,P5)
TASK_UNIT(.5,B.P6)/
B A

TASK_UNTT(i8,B,P6) TASK_UNIT(i,9,A,PS)

b c

TASK_UNIT(i,10,b,P2,P3,P4) TASK_UNIT(,11,C,P7)

C

TASK_UNIT(i,12,C,P7)

—O.

(|) TASK_UNIT(i,13,E,P1)

Figure 6 The Task Flow Module of Example 2

vi) to replace the current control point with the des-
tination control point,

vii) to end the activity mentioned above.

As for the Task Flow Module discussed in the previ-
ous subsection, each module here is assigned a number
i to indicate which workpiece is in process. To illus-
trate the details of this module, an example is given
as follows.

Example 3 Considering the same system configura-
tion as in Example 1, then the outline of the associated
Command Control Module is pictured in Fig. 7. A
brief description of Fig. 7 is given below. The places
START(:) and END(i) indicate the status related
to start and end of the movement command respec-
tively according to where the token appears. There
is always a token in one of the places CU R(,?) to in-
dicate the current control point of the ith workpiece.
After the movement to the current place, the place
NEXT_MOV E(i) will enable the next movement to
the destination place. At the same time, a token is
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Module Name : CMD_CNTL(l)
i :.index for workpiece

START(G)

GROUP_AVL(E)

NEXT_MOVE(i)) GROUP_AVL(C)

DES(PL,i)

MOVE_TO(P1)

Figure 7 The Command Control Module of Example 3

added to the place GROU P_AV L() place and the cur-
rent workstation is released for availability by return-
ing a token to the corresponding place AV L(). After
the movement to the destination place, the toke in
the destination place will move to the corresponding
CURY(,i) place to update the location of the current
control point.

3.4 A Complete Model

In addition to the characteristics discussed above,
in fact, other considerations are needed to describe the
complete the behavior of an FMS, such as the free-
dom from deadlock, efficiency of dispatching rule, etc.
But in this work, for the time being details as how to
make a successful system model are omitted and only
the concept of a modular approach is emphasized and
presented. An example of a complete system model is
provided in Example 4.

Example 4 Considering the configuration in Exam-
ple 1, we can set the limit on the maximum work-in-
process to be three to guarantee that the system will
never run into a deadlock. The final completed model
is in Fig. 8, where the tokens in WORK() places are
used to separate the flow of each workpiece and three



:
:

Eam—— TAH.(ID

TAIL(2)

i

TAIL(3)
\

The Transportation Module

HEAD( ) : input place associated with the head node of task-flow graph
TAIL( ) : output place associated with the tail node of task-flow graph

Figure 8 The Outline of the system Model in Example 4

tokens in place WIP_AV L set the maximum work-in-
process.

4 Discussions and Conclusions

Following the concept of the approach presented in
this paper, we can convenientely extend the model-
ing methodology to the case of multiple task -types
in process. Although no direct formation related to
performance evaluation is presented in this work, the
time factors can be easily added to the Petri-net model
of each module. After that, we can develop futher
work about performance evaluation by using simu-
lation techniques or other tools based on Petri-net
models.[1,3,4,6,7,8,9,10,13]

While considering a more complicated FMS than
a simple one, such as with multiple material hadling
vehicles, complex layout of the transportation system,
etc., the problem of deadlock becomes more difficult
to deal with. At the same time, how to build efficient
rules of dispatching among alternatives also needs to
be solved. To achieve a complete model of a general
FMS, more efforts are needed to contribute to reso-
lution of these open problems, e.g. a general for rule
solving deadlock problem for certain kind of FMS, a
methodology for combination of modules and rules to
construct a complete system model, an efficient dis-
patching rule for some system configuration, etc.

This paper proposed a new concept using Petri nets
to model flexible manufacturing system in modular
approach. Its main features are to separate the task-
dependent part from the complete model of the sys-
tem, to build the system model in modular structure,
and to consider geometric characteristics of trans-
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portation system as one essential element of the whole
system.

Such an approach is easily adaptable to a change of
any of the task-flow requirements and different layout
of the same kind of the transportation system. From
this viewpoint, it provides a systematic methodology
to generate a prototype system model according to a
formal specification of an FMS. Ongoing research will
be to integrate the prototype model with any suit-
able control modules containing more physical rules
to run the whole system, or to tie it with some Petri-
net-based techniques to perform analysis, evaluation,
simulation, etc.
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