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Abstract

A new approach to the numerical solution of the
vector field associated with constrained mechanical sys-
tems, called as the perturbation approach is introduced.
I is a specialization of a method of solving general
vector fields, due to Shampine. The perturbation ap-
proach has several advantages over the ezisting ap-
proaches. The performance of the approaches on a
constrained robot problem is used to show the efficacy
of the new approach.

1 Introduction

The dynamic simulation of constrained mechanical
systems formed by interconnected rigid bodies that
undergo large displacements is a research area with
applications in a broad range of engineering fields, e.g.,
robotics, automobile, aerospace and biomechanics.
Constrained robotic systems have been addressed in a
number of recent research papers [6, 7, 9, 10, 11, 12].
Constrained motion of a robotic manipulator leading
to holonomic constraints results when the end-effector
comes in contact with an environment that is com-
pletely rigid. The equations of motion of a constrained
robot can be written as [7]

M(q)i+ H(g,4) =u+ (D) (1.1)
¢(q) =0, (1.2)

where ¢ € RV denotes the vector of generalized dis-
placements, M(g) is the manipulator inertia matrix
which is symmetric and positive definite, H(g,¢) de-
notes the vector of coriolis, centripetal and gravity
forces, u represents the vector of generalized forces
applied at each joint, A € RL is a vector of multi-
pliers corresponding to the constraint vector function
¢ : RN — R, J(q) = #4(q) is the Jacobian matrix
of ¢(g) (which we will assume to have rank L always)
and prime denotes transpose.

The control problem, i.e., choosing u (say, as a func-
tion of ¢ and q'fso that (1.2) is satisfied and the solu-
tion of zl.l behaves in a desired way, is an important
problem which is addressed in [7, 10, 11, 125). The
choice for u is usually made by considering a linear
model of (1.1)-(1.2). A validation of this choice re-
quires the numerical solution of (1.1)-(1.2) for given
initial conditions, which is the problem addressed in
this paper.
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Two repeated differentiations of (1.2) yield

J(9)d =0,
J(9)§ + p(3,9) =0,

where p is appropriately defined. It is easy to verify
that (1.1) and (1.4), which form a square linear system
of equations in gij, A), can be solved to obtain § and
X as functions of ¢ and ¢. Using this fact and letting

(1.3)
(1.4)

n = 2N, z = (¢,§) € R* we obtain the ordinary
differential equation?ODE),

& = f(z). (1.5)
Also, combining (1.2) and (1.3) we get

9(z) =0, (L.6)

where g(z) = (¢(q), J(¢)d) € R™, m = 2L. The
system in (1.5)-(1.6) defines a vector field. In other

words, if
M= {z:4(z) =0}

(a manifold of dimension (n — m)) and T; M denotes
the tangent space of M at £ € M, then

f(z) eTM Ve e M.

A direct numerical solution of (1.5) (starting from
kinematically determined initial conditions) using
ODE techniques is unsuitable because such an ap-
proach ignores (1.6). When local error control is em-
ployed by the ODE solver errors can build up and lead
to a huge violation of (1.6). Such a violation is intoler-
able because (1.6) is an important physical constraint
associated with the mechanical system. Thus, inte-
gration of (1.5) is as important as the stabilization
of (1.6). Several approaches have been suggested in
the literature for doing this. The popular ones are:

arametrization[5, 8]; inexact constraint stabilization
1]; and exact constraint stabilization [2, 3}. In this
paper we introduce a new approach which is concep-
tually very different from previous ones and which has
good promise. We call this approach as the perturba-
tion approach. It is a specialization of a method of
solving a general vector field of the form (1.5)~(1.6),
due to Shampine [13], to the constrained mechanical
system equations defined by (1.1)-(1.4).



The distinct feature of the perturbation approach is
that, at each integration step it decouples the process
of integrating (1.5) from the process of stabilizing the
constraint in (1.6). It is this feature which helps the
approach to overcome the defects usually associated
with other approaches.

The paper is organized as follows. The perturba-
tion approach for solving (1.5)—(1.6) is introduced and
critically analyzed in section 2. Its specialization to
constrained mechanical systems is the topic of section
3. In section 4 we compare the perturbation approach
with other approaches and describe their performance
on a constrained robot simulation problem. Conclu-
sions are presented in section 5.

The following notations will be used in the paper.
For z € R", z' denotes the i-th component of z. z;
will denote the i-th element of {z;}, a sequence of
vectors in R™. Prime denotes transpose. For r € R",
||z}| =norm of . For 1 < p < oo, ||z||p = l,-norm of
z. If z € R* and y € R™, then (z,y) will denote the
joint vector, (z',y’)’. I, is the nx n identity matrix. If
g : R — R™ is differentiable then g,(z) is the m x n
Jacobian of g evaluated at z.

2 The Perturbation Approach
In this approach, due to Shampine ‘[13], a cor-

rection is applied to a numerical solution of §1.5) after
each integration step so as to satisfy (1.6). Its theory
is particularly strong when a single step integration
method, such as Runge-Kutta, is used to solve (1.5).

To describe the approach, it is sufficient to say what
is done in one integration step. Suppose k steps of the
numerical solution of (1.5)—(1.6) have been done using
the approach and t = t; has been reached. Let z; €
M Dbe the solution approximant at ¢ = ¢;. Denote
the local solution by x(%: i.e., () is the solution of
(1.5) with =(¢;) = = . Let 7 denote the integration
tolerance. In the §k+l)st step, the aim is to determine
a step size h; and an zp,; € M that satisfy

(2.1)

where tx41 = tx + hi. The determination of hy and
241 is described by the following procedure.

Procedure P; Determination of hy and zx4; by
the perturbation approach

flz(tk+1) = zeall < 7,

1. Numerically integrate (1.5) from z(tx) = zi us-
ing local error control (without concerning about
(1.6)) to obtain a step size h; and an approxi-
mant, Zx41 that satisfy

lz(te+1) — Zeqall < 7/2. (2.2)

2. Solve the problem
min ||z — Z4] st g(z)=0; (2.3)
and set zx4) = the minimizer of (2.3). =

The following theorem establishes the correctness
of the procedure.

Theorem 3.1 The z,, determined by Procedure
P, satisfies zx41 € M anJ (2.1).
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Proof Since z4, is feasible for (2.3), it satisfies
zi41 € M. Consider z(t;41), the true local solution
of(l.S} at tx41. Since z tf € M Wi, z(tp41) is feasible
for (2.3). By optimality, [|ze41 — Ziq1|| < [|2(tes1) -
Zi41||. Using this together with (2.2) and the triangle
inequaiity we get

lze+r = 2(tes)ll S kg1 = Zegr |l + 12 (tesr)
S 2T|z(tk+5 = Zepl[ < T

Step 1 of Procedure P, can be carried out using any
well-known numerical method for solving ODEs. Step
2 requires a subprocedure that solves (2.3). Before
going in to the details of this subprocedure, let us
make some useful remarks on the procedure and the
approach.

Remark 2.1 Step 2 of Procedure P; is stronger
than what is really needed. It is sufficient if zxi;
satifies

- T
9(ze41) =0, |Izkqr = Zppa|| < 7 (2.5)

By the first inequality of (2.4), and (2.2) it follows
that zp4; also satisfies (2.1). Though the feasibilty
problem, (2.5) is usually as difficult to solve as the
optimization problem, (2.3), it is useful because its
solution is simpler to verify.

Remark 2.2 With all the popular integration
methods, something more than an Z,; satisfying
S%.?) is available: an interpolant, & : [tg,tx41] —

" that satisfies Z(¢;) = =k, Z(tg41) = Zik41, and,
|1Z(t) — 2()|| < 7/2 Vt € [te, tiy1]. For each t, define
z(t) to be the solution of

min ||z — Z(t)|| s.t. g(z) = 0. (2.6)
Then, using the same ideas of Theorem 3.1’s proof, it
is easy to establish

Z(t) € M, ||F(t) - z(t)l| < 7 Vit € [tr, e

Thus 7 is a natural interpolant associated with the
perturbation approach. The evaluation of this inter-
polant is somewhat expensive because it requires the
solution of (2.6) at each t.

Remark 2.3 In step 1 integration is done using
half the tolerance specified for the solution accuracy.
This means that the perturbation approach is ineffi-
cient when compared with the direct approach of sim-
ply integrating (1.5). This is a cost one has to pay
for ensuring (1.6). It should be mentioned that halv-
ing the tolerance does not double the integration cost.
This is because, all the popular integration methods
use a formula of the form ah?+! =tolerance, to deter-
mine the step size, where p is the order of integration
formula used. Let NINT, represnt the number of in-
tegration steps for tolerance = 7. If p,ye denotes the
average order of formula used for integration, then we
can roughly say that

NINT,
NINT,

(2.7)

~r é (2)1/(1’4“"'1)‘



Even if we take paye = 4, which is a reasonable value
for good codes, r = 1.149. Thus, halving the tolerance
increases the number of integration steps needed to do
an integration task only by about 15%.

Now let us look at the possibility of replacing the
integration tolerance, 7/2 used in step 1 by something
bigger while ensuring that zx1 € M and (2.1) hold.
Thete is something special w-tlen: the norm used in

integration is a scaled ly-norm, ie., ||z|| = Vae'We,

where W is a symmetric positive definite matrix; and
g is affine in the 7 neighborhood of Zx41, ie.,
g(z)= Az +b VeI ||z - Zrpal[ < 7. (2.8)

Since 24, solves (2.3?, (y=2i 41 W (Zrg1—Zk41) =0
Yy € M3 |ly — Zx4a|| < 7. Thus

Zk4+1 — 2+l
= [|(Za1 = 2e41) = (2(Bea1) = 2ol
= ||(Zes1 — ze4)I? + I(2(t241) - fk+1)(||2 N

and hence,

le(tess) — zesall < Bear —2(tern)ll,  (2:10)
which means that zx4y is more accurate than Zg4i.
In such a situation, then, it is alright to replace the
tolerance 7/2 in (2.2) by 7.

The scenario is different when g is nonlinear. It
is easy to construct a near worst case situation to
show that using 7/2 in (2.2) is necessary. Although
such a severe case is improbable when 7 is small, the
nonlinearity of g does cause distortions which disal-
low the obtainment of nice bounds such as (2.10}.
However, it is alright to say that, at stringent tol-
correct for A = gz(Zr41),

erances (2.8) is very nearly
and so the probability of

b= g(Zr41) — 9z(Ze+1)Ta+15
(2.10) occuring is very high.

Remark 2.4 Shampine cautions the use of a
variable order multistep integration method, such as
Adams method, in step 1 of Procedure P;. His main
objection is that, the perturbations of step 2 may
cause some “roughness” in the interpolant of the mul-
tistep method, which in turn may affect the order
changing mechanism and cause inefficiencies. But,
gince the perturbations are structured (i.e, they are
associated in a special way with the fundamental con-
straint, (1.6), of the true solution), it is our belief that
Shampine’s caution is not serious. However, except
for the case when g(z) is affine, we do not have a
proper theory to support our argument. In numerical
tests conducted on several problems we have found
that the order changing process associated with the
solution obtained by the perturbation approach is not
much different from that associated with the direct
solution of (1.5).

Let us now consider the solution of (2.3) required
in step 2 of Procedure P;. Scaled !, and I, norms
are the popular norms used for measuring integration
errors. Shampine suggests a method for solving (2.3)
when the scaled !; norm is used. He supports the
use of Iz norm by saying that, “if the ODE solver is
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based on the maximum norm (ly), one might well
prefer to alter it to use the Euclidean norm (I2) so
as to arrive at a linear algebra problem which has a
classical solution.” For the scaled (lglnorm we suggest
a method which is slightly different but more efficient
than Shampine’s metﬁod.

Let lliz[ = V2'Wz, where W is a symmetric pos-
itive definite matrix. Typically, W is a diagonal ma-
trix, the diagonal elements representing the variable
weights applied to the different components of z. To
simplify the notations, let us assume the objective
function in (2.3) is replaced by half its square, and

an appropriate coordinate transformation,
= Zp41 + TX, (2.11)

T = a nonsingular matrix such that T'"WT = I,) is
one, so that (2.3) becomes

min || X||3/2

where

st. G(X)=0, (2.12)

G(X) = 9(Ze41 + TX). (2.13)
The first order necessary conditions for (2.12) are

X -G (X)p=0, G(X)=0. (2.14)

Remark 2.1 says that finding an optimal solution of
(2.12) is not crucial. This allows us to incorporate
the following efficiency-improving modification: re-
place the term G'(X) in (2.14) by G%(0). Thus we

solve
X -G%0p=0, G(X)=0,

instead of (2.14), to obtain a solution X*.

Remark 2.5 Clearly, the X* found above may
not solve (2.12). If ||X')|J < 7/2, then we accept it
and set zy41 = Ep41+T X" for use in step 2 of Proce-
dure P,. This is because such an x4 satisfies (2.5),
and, Remark 2.1 says this is sufficient for the success
of Procedure P;. If || X*]| > 7/2 then there are two
alternatives. FEither a more detailed method is used
to solve (2.12), or, step 1 of Procedure P is repeated
with a smaller integration step size and then step 2 is
solved via 52.14). We feel the latter to be better be-
cause, the failure of the first order approach indicates
a rapid change in g and so it is good to do a careful
solution with a smaller integration step size. Our ex-

erience with numerical problems is that, cases where
X 'tl > 7/2 occurs are extremely rare.

Although the Newton-Raphson method can be used
to solve (2.12?, it will not be efficient because it re-
quires the evaluation and factorization of the J acobian
of G at each iteration. The modified Newton-Raphson
(MNR) method, which approximates the Jacobian of
the future iterations by the Jacobian of the first it-
eration, is more appropriate for solving (2.15). The
appropriate starting iterate for the MNR method ap-
plied to (2.15) is Xg = 0, o =0. Let (z;,m) denote
the I-th iterate. It is easy to verify, using the struc-
ture of the system in (2.152, that the (I +1)-th MNR
iteration consists of: (1) solving

(2.15)

Gx(0)G (0)6, = G(X1) (2.16)



for 6,; and (ii) setting

Bier = pi+ 8y, Xip1=Gx(Opyr.  (217)

An efficient, as well as accurate, way of solving
(2.16) is by computing the skinny QR decomposition
of G%(0), i.e.,, G%(0) = Q1Ry, where @, € R**™
has orthonormal columns and R; € R™*™ is upper
triangular. Then (2.16) can be solved by replacing
Gx(0)G'%(0) by R|R; and solving the resulting twin
triangular systems.

Shampine suggests a method that is equivalent to
the Newton-Raphson method applied to (2.15). The
first iterations of his method and our method are
equivalent. Each additional iteration of his method
requires the evaluation of a jacobian of G and the com-
putation of a partial QR decomposition of its trans-
pose; whereas, our method does not require these com-
putations.

3 Specialization to Constrained Me-

chanical Systems

The vector field (1.5) and (1.6), which is de-
rived from (1.1)-(1.4) has special features that can
be nicely utilized to improve the efficiency of the per-
turbation approach. There are two key computations
which benefit from the special structure: (i) the evalu-
ation of f(z); and (ii) the manifold-correction in step
2 of Procedure P;. The evaluation of f(z) requires
the solution of the (N + L) dimensional square linear
system defined by (1.1) and (1.4). Special linear equa-
tion solvers, such as those described in [4] can be used
to solve this system efficiently.

The manifold-correction step requires a more de-
tailed discussion. Let v = ¢,z = (g,v) and ||z,
the integration norm on &, be defined by ||z||* =
¢? Wig + vT Wy where W, and W; are positive defi-
nite matrices. Compute N x N nonsingular matrices
T: and T3 such that T{WlTl = TIW,T5 = In. Usu-
ally W, and W, are diagonal weig%ting matrices and
so the computations of T} and T; is easy.) Let T' =
Block Diag{Ti,T3}, Zr+1 = (§,7) and X = (@, V) so
that (2.11% comes

¢=7+T1Q, v=v+ToV.
Also, (2.12) becomes,

min ([|Q[2 + ||V|I2)/2 s.t. G1(Q) =0, G2(Q,V) =0,
(3.2)

where
G1(Q) = ¢(7+T1Q), G2(Q,V) = J(6+T1Q)[6+T(%tg)-

As mentioned in Remark 2.1 an exact solution of
(3.2) is not necessary. This allows a simplifying as-
sumption to be made on (3.2}1. ypically J (qz isa
slowly varying function of ¢. Also, since the value of
Q in the solution of (3.2) is small (||Q], < 7/2 so that

g varies over a small range) we can replace G2(Q, V)
in (3.2) by G3(V) where

Go(V) = I@)[v + ToV).

3.1)

(3.4)
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It is then easy to see that (3.2) gets decomposed in to
the following smaller problems:
min|Q][3/2 G1(Q) =0,
min |V]j3/2 Gy(V)=0.
Each of these problems can be solved using ideas sim-
ilar to those in (2.1?—(&2.17). The MNR iterations
and (2.

parallel to (2.16 17) require the skinny QR
decomposition o

(G1)g(0) =J@T; and (Ga)v(0) = J(@T2. (3.7)

(3.5)
(3.6)

s.t.
s.t.

Since G is an affine function of V one MNR iteration
will yield the exact solution of (3.6). The solution of
(3.5) may require more than one iteration. Usually a
tolerance on the satisfaction of (1.2) is used to termi-
nate these iterations.

A particular assumption on the integration norm
helps to improve efficiency significantly. Suppose we
assume that W, and W5, the weighting matrices for
the position and velocity vectors, satisfy

Wz = 02W1,

where « is a non-zero scalar having the units of time.
(This is a reasonable assumption because it simply
requires that the relative weighting among the posi-
tion variables is the same as the relative weighting
among the corresponding velocity variables.) Then
Ty, = (1/a)Ty. Therefore, if J(q)T1 = @1 R, is the
skinny QR decomposition of J(q)Ty then J(§)T> =
Q2Ry with Q2 = @y and R; = (1/a)R; is the skinny
QR decomposition of J(§)T>, and so a separate com-
putation of the decomposition of J(§)T, is unneces-
sary.

4 Comparison with other approaches
Our comparison of the perturbation approach
with others will be brief. A detailed comparison re-
quires a detailed discussion of each of the other ap-
proaches, and it will be given in a future paper.
In the parametrization approach [5, 8] M is locally
parametrized around a given initial point, zo € M:

T = 'l’(y): (41)

where ¥ : Oy — Ox N M, zo = ¢(0), Oy is an open
set in R"~™ containing the origin, ©x is an open set
in R® containing zq, and 9 is a diffeomorphism. This
parametrization is used to replace (1.5) by a differen-
tial equtaion in y:

v = f. (42)
- The determinations of ¥(y) and ;}y) given y are simul-
taneous and require the numerical solution of a square

system of m nonlinear equations. The parametrization
approach consists of numerically solving (4.2).
The chief defects of the parametrization approach

are that: (i) each f evaluation requires the solution of




an m-dimensional nonlinear system of equations apart
from one f evaluation; and (i) since the parametriza-
tion is local, a change in parametrization may be re-
quired during the so ution, leading to an integration
restart with associated inefficiencies. The perturba-
tion approach does not suffer from these defects. It re-
quires only one solution of an m-dimensional nonlinear
system of equations in each integration step. (step 2 of
Procedure P;). Also, it does not require any integra-
tion restarts because it deals with the full ODE system
in (1.5). The parametrization approach has the advan-
tage that it integrates only the (n — m)-dimensional
system of ODEs, (4.2), whereas the perturbation ap-
proach requires the integration of the n-dimesional
system of ODEs, (1.5). This advantage, however, is
only slight because the difference in the integration
overhead costs of the two approaches is only O(m)
whereas the cost of every extra m-dimensional non-
linear system solution required by the parametriza-
tion approach is O(m®). A special parametrization
approach called coordinate-partitioning [5}) overcomes
defect (i) mentioned above. However its theory is not
strong and it still suffers from defect (i).

In the inexact constraint stabilization approach [1],
as applied to constrained mechanical systems, (14)1s
replaced by

V(@i + o, )] + el (@)d) + Blo@] =0, (43)
i.e., ¢ = 0 is replaced by the equation ¢ + a¢ + f¢ =
0, which makes ¢ = 0 stable if @ and § are chosen
to be positive. Then the ODE system, derived by
solving (1.1) and (4.3) for § (and X), is simply solved
to obtain a solution of the dynamical system. The
advantages of the approach are that it is simple and
efficient. However it suffers from important defects
such as: (i) a lack of a systematic way to choose &
and g; (ii) the effect of a and 8 on the accuracy of the
numerical solution; and (iii) the effect of @ and f on
the stiffness.

In the exact constraint stabilization approach [2, 3],
as applied to (1.5) and (1.6), (1.5) is replaced by

z= f(t) - g;(t)’l,

and (1.6) form a system of differential-
algebraic equations (DAEs) in (z,p). It can be eas-
ily shown that p = 0 along every solution of (4.4),
1.6). Thus this DAE system is the same as the vec-
tor field, (1.5)~(1.6) and, its numerical solution using
an appropriate DAE method (e.g., usin backward dif-
ference formulas) yields a solution of 1.5) and (1.6).
The approach can be nicely specialized to constrained
mechanical systems [2, 3]. The cost per integration
step of this approach is only slightly more than that
of the perturbation approach. However we expect that
the exact constraint stabilization approach will require
many more integration steps to complete a solution
since it can employ only the restricted set of DAE
methods.
Let us now compare the performance of the vari-
ous approaches on a constrained robotic system. The

(44)

so that (4.4)
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equations of motion

of a 3-link cylindrical coordinate
manipulator [7] are g

given by (1.1) and (1.2) where
M(q) = diag {Ji+J2+Ja-+ms(gls)’, mz+ms, ms},

H(q,4) = [2ms(qls)d1ds, (m2 + m3)g, —ms(gls)a:”]-
The position of the robot end-effector, given by

z = (ql3) cos g1,y = (ql3)sin g1, 2 = @2,

is constrained to move on a circle defined by y —
0.169 = 0 and 22 + 22 — 0.2214 = 0, leading to the
constraint (1.2) where

#(q) = [(¢ls)sinqs - 0.169, (an)zcosqu +¢3 —0.2214],

and ¢ls = ¢a + 3.

The nominal parameter values are I3 = 02 m;
mg = 1 Kg; mg = 2 Kg; J1 = 01 Kg.m?% and
Js = 0.1 Kg.m?. The control law for stabilizing the
system to the equilibrium point, e = (0.436,0.3,0.2),
designed using a linearization approach [7), is given by.

u, = .363 — 3.655(q1 — -436) — 4.181(¢> — -3)
+3.136(gs — .2) — 45541 — 2.1674a + 1.0834s,
ug = 29.4 — 15.934(¢q1 — 436) — 18.229(g2 — -3)
+13.672(gs — .2) — 2.167¢) — 10.325¢2 + 5.163¢3,
ug = 423 + 8.267(q1 — .436) + 9.455(g2 — .3)
— 7.091(gs — -2) + 1.083¢; + 5.163¢5 — 2.5814s.
4.5

The Adams-Bashforth-Moulton predictor—corréctoz
method was used to do the integration. The inte-
gration norm used was the lo-norm, with integration
tolerance, 7 = 10~%. The ideas in [8] were used for
implementing the parametrization approach. The pa-
rameters for the inexact constraint stabilization ap-
proach were chosen to be o = 26 and g = &%, as
suggested by Baumgarte [1] to give a critical damp-
ing. Various values for § were tried and § = 2 gave
an optimal performance. The numerical solution cor-
responding to § = 0 (i.e., a direct solution of the ODE
system corresponding to (1.1 and (1.4)) itself satis-
fied the constraints (1.2) and (1.3) very well. Table
5.1 and 5.2 give the comparative performance of the
four approaches. These tables correspond to the ini-
tial conditions, ¢ = (0.486,0.345,0.162),& = 0, and
q = (2.8,0,03),4 = 0, respectively. In these ta-
bles, the perturbation, the parametrization, the in-
exact constraint stabilization and the exact constraint
stabilization approaches are respectively abbreviated
as PERT, PARAM, ICS and ECS. Also, number of
integration steps and the number of f-evaluations i.e.
solutions of (1.1) and (1.4) are abbreviated as N; and
Ny respectively.

Let us now make some comments about the perfor-
mance of the approaches. Owing to the strongly sta-
bilizing nature of the feedback law, (4.5), Baumgarte’s
approach worked very well. In general this is not true.
The initial condition corresponding to Table 5.1 was
very close to the equlibrium point and hence all ap-
proaches except ECS performed nearly equally. The



Approach | N; f)
PERT 33 | 66
PARAM 134
1C5,0=0T713271 6
105,60 =2134 17
ECS 8 [ 170

Table 4.1: Comparative Performance for the initial
condition, ¢ = (0.486,0.345,0.162),¢ = 0.

Approach [ N; [
PERT 121 [ 24
PARAM [ 1837378
ICS, =098 |19

1ICS, 6=21T104
ECS 11601

Table 4.2: Comparative Performance for the initial
condition, ¢ = (2.8,0,0.3),§ = 0.

second initial condition was far from the equilibrium
point. Thus the parametrization approach required
several changes in parametrization, leading to an over-
all inefficiency. As expected, the exact constraint sta-
bilization approach required many more steps than
others. The perturbation approach performed very
well on the whole.

5 Conclusions

In this paper we have introduced a new approach
for the numerical solution of constrained mechanical
system dynamics. The approach has a number of ad-
vantages over existing approaches. The comparison
of the approaches on a constrained robotic system
demonstrates this fact.
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