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Abstract

We review our progress to date in eliciting dynamically dex-
terous behaviors from a three degree of freedom direct drive
robot manipulator whose real-time stereo cameras provide
60 Hz sampled images of multiple freely falling bodies in
highly structured lighting conditions. At present, the robot
is capable of forcing a single ping-pong ball into a specified
steady state (near) periodic vertical motion by repeated
controlled impacts with a rigid paddle. The robot sustains
the steady state behavior over long periods (typically thou-
sands and thousands of impacts) and is capable of recov-
ering from significant unexpected adversarial perturbations
of the ball’s flight phase. Gain tuning experiments corrobo-
rate our contention that the stability mechanism underlying
the robot’s reliability can be attributed to the same nonlin-
ear dynamics responsible for analogous behavior in a one
degree of freedom forebear. We are presently extending an
algorithm for simultaneously juggling two bodies developed
in that earlier work to the three dimensional case.

1 Introduction

This paper describes our progress in extending certain no-
tions of how to achieve dynamical dexterity originally de-
veloped in the context of a one degree of freedom robot
[8]). From the point of view of manipulation, the work sug-
gests that good performance can be achieved by recourse
to simple but appropriate contact models (we employ the
naive coefficient of restitution as a means of describing the
passage between free flight and ball-paddle impact) when
effectively corrected by feedback. This would be fortunate
if valid in any generality since the adoption of such facile
descriptions results in mathematically tractable systems of
equations whose stability properties have begun to yield to
analysis [12, 6]. From the point of view of coordination,
we seek increasingly taxing problems by which to test our
assertion that a “geometric” mode of programming (feed-
back laws) can simultaneously offer an effective means of
expression (representation of what we want a machine to
do) along with a correct means of implementation (a map-
ping of sensor-readings to torque-profiles that produces the
desired behavior). The intuitively generated extensions we
present here of the single body “mirror law” to the two

*This work has been supported in part by the Superior Elec-
tric Corporation, SGS Thomson-INMOS Corporation and the
National Science Foundation under a Presidential Young Inves-
tigator Award held by the second author.

0-8186-2720-4/92 $3.00 ©1992 IEEE

body case have as yet no better claim to analytical origins
than any old computer program. But, by the same token,
their generation has been no more arcane than writing code
in any new computer language. Moreover, there is strong
reason to hope that analyzing their effect will be simpler.
Finally, from the point of view of sensor management, we
have now reached an interesting stage of our work where
it seems that previously viable algorithms may not avail in
the absence of a more comprehensive approach to control-
ling our robot’s state of attention.

The paper is organized as follows. The next section de-
scribes the pieces of our experimental apparatus along with
the models we have adopted in thinking about and program-
ming its operation. Section 3 presents a generalization to
the present case of the mirror laws developed in our pre-
vious one degree of freedom planar juggler studies [8, 12].
Section 4 details the results to date of our empirical work.

2 Juggling Apparatus

This section describes the constituent pieces of our jug-
gling machine. The system, pictured in Figure 1, consists
of three major components: an environment (the ball); the
robot; and an environmental sensor (the vision system). We
now describe in fairly specific terms the hardware underly-
ing each component and propose a (necessarily simplified)
mathematical model in each case that describes its proper-
ties in isolation.

2.1 Environment: Striking a Ball in Flight

The two properties of the ball relevant to juggling are its
flight dynamics (behavior while away from the paddle),
and its impact dynamics (how it interacts with the pad-
dle/robot). For simplicity we have chosen to model the
ball’s flight dynamics as a point mass under the influence
of gravity. This gives rise to the flight model

b=4a )
where b € B=1R?, and & = (0,0, —)7 is the acceleration
vector experienced by the ball due to gravity. A position-
time-sampled measurement of this system will be described
by the discrete dynamics,

Wi =F’(w,-)éA.w,-+a,
b =Cuwj
- 2
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A.—[o I]' a.—[ i | C =[I,0],



Figure 1: The Yale Spatial Juggler

where s denotes the sampling period, and w; € TB.

Suppose a ball with trajectory b(t) collides with the pad-
dle in robot configuration ¢ € @ at some point, p on the
paddle which has a linear velocity v. Letting T £ BxQde-
note the total configuration space of the problem, we seek a
description of how the ball’s phase, (b, b) € TB, is changed
by the robot’s phase, (g, ¢) € TQ, at an impact.

As in [8, 12, 14] we will assume that the components of
the ball’s velocity tangent to the paddle at instant of contact
are unchanged, while the normal component is governed by
the simplistic (but standard [17]) coefficient of restitution
law. For some a € [0, 1] this impact model can be expressed
as (b — v4) = —a(bn — vn), where !, and v/, denote the
normal components of the ball and paddle velocities im-
mediately after impact, while b, and v, are the velocities
prior to impact. Assuming that the paddle is much more
massive than the ball (or that the robot has large torques
at its disposal), we conclude that the velocity of the paddle
will remain constant throughout the impact (v' = v). It
then follows that the coefficient of restitution law can be
re-written as b, = by, + (1 + @)(vn — bn). and, hence,

F=b+(+ a)nnT(v —b),

where n denotes the unit normal vector to the paddle.

®

2.2 Kinematic and Impact Models

At the heart of the juggling system is a three degree of
freedom robot — the Biihgler Arm! — equipped at its end
effector with a paddle. There are two primary aspects of the
robot relevant to the juggling task, the kinematic proper-
ties associated with making contact with the environment,
and the manner in which the robot can interact with the
environment.

The robot kinematics relevant to the task of batting a
ball relates the machine’s configuration to the normal vec-
tor at a point on its paddle. In order to represent this for-

1Pronounced bydog'—ler.
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mally we parameterize the paddle’s surface geometry. Let
P represent (in homogeneous coordinates) a planar trans-
formation taking points in the unit box, S 2 [0, 1] x [0,1]
diffeomorphically onto the paddle’s (finite) surface area ex-
pressed with respect to the gripper frame, F4. Associated
with each point on the paddle’s surface, §(s), is the unit
normal, (s), again the homogeneous coordinate represen-
tation of the vector with respect to F,;. Denote by H(q)
the robot’s forward kinematic map taking a configuration,
¢ € Q, to the homogeneous matrix representation of the
gripper frame with respect to the base. The world frame
representation of any paddle normal at a point is thus spec-
ified by the extended forward kinematic map,

G :Q—N() :d [0(2),p(d)] = H(g) [A(s), 5(s)]
i=(¢5)€@£0xs.
(4)
Lying in the total configuration space is the contact sub-
manifold, C, — the set of ball/robot configurations where
the ball is in contact with the paddle — given by

C2{(b9)€T:3s€5,b=p(g59)},

which is evidently the only place that the normal appearing
in (3) becomes relevant. Since § is one-to-one by assump-
tion there is a map s. : C — S such that b = p(q, sc(b, q)).

For the Biihgler Arm, we choose a gripper frame, Fg,
located at the base of the paddle whose z-axis is aligned
with the paddle’s normal and whose z-axis is directed along
the paddle’s major axis, thusa=[1 0 0 0] and p=
[dg s1 s2 1]7 (for reasons to be made clear below we
artificially set s; = 0). The frame transformation, H(g), is
developed in [15], and yields the extended kinematic map
given by

Glg,s) = [n(d),p(d)] (8)
C1C2C3 - 8153
w C2C3S; + C1S
) = [ 2R 5, ]
0
- (5142) 4 (C1C2C3 — 5183) dg + C1S232
(..) — Cida 4 (C2C381 + C1S3) dg + S1S232
e = - (Caszdiq) + C2s2 :

Finally the inverse kinematic image of a point b may be
readily computed as
sin(qs d;)

a,ta.n(’__;%)-*'mm( bi+b3
-7 + atm(?zf—;?ﬁﬁ:ﬁ?)_
. cos(q3
e A R
q3

0
\/bTb — sin®(gs)d2 — cos?(g3)d?

with the freely chosen parameter, ¢s, describing the one di-
mensional set of robot configurations capable of reaching
the point b. Having simplified the kinematics via the arti-
ficial joint constraint, 3; = 0, the paddle contact map, s,
may simply be read off the inverse kinematics function,

At the instant of impact with a ball the linear velocity
of the hit point due the robot’s motion may be written

p7(b) =




explicitly as
v= T aDyl ()p(s) = Depd =Dplled
I =[Dxe]

Notice that the appearance of IIg eliminates the velocity
contribution due to the ball’s motion tangential to the pad-
dle surface.

Combining this with the paddle contact map s. we may
rewrite the impact event (3) in terms of a “collision map”
c :TC = TB, as

Y =b+¢(,b,9,4)
c(b,b,9,4) £ -(1+a)n(g,8:)nT (g, ) (b~ DpTad) .

®

Note that the vector direction attained by c is governed
entirely by the choice of some the paddle normal. This will
serve the role of input in an abstracted model of impact
events to be developed below (9).

2.3 Sensors: A Field Rate Stereo Vision System

Two RS-170 CCD television cameras constitute the “eyes”
of the juggling system. In order to make the vision task
tractable we have simplified the environment the vision sys-
tem must interpret. The “world” as seen by the cameras
contains only one or more white balls against a black back-
ground. The CYCLOPS vision system, described in [14, 9],
allows the straightforward integration of these cameras into
the larger system.

Following Andersson’s experience in real-time visual ser-
voing [2] we employ the result of a first order moment com-
putation applied to a small window of a threshold-sampled
(that is, binary valued) image of each camera’s output.
Thresholding, of course, necessitates a visually structured
environment, and we presently illuminate white ping-pong
balls with halogen lamps while putting black matte cloth
cowling on the robot, floor, and curtaining off any back-
ground scene.

In practice it is necessary to associate a signal process-
ing system with the sensor to facilitate interpretation of the
data. For the vision system in use here, sensor interpreta-
tion consists of estimating the ball’s position and velocity,
correcting for the latency of the vision system, and improv-
ing the data rate out of the sensor system - the 60 Hz of
the vision system is far below the bandwidth of the robot
control system.

Given reports of the ball’s position from a triangulator
it is straightforward to build a linear observer for the full
state — positions and velocities — since (A,, C) in (2) is an
observable pair for s # 0. In point of fact, it is not the ball’s
position, b,, which is input to the observer, but the result
of a series of computations applied to the cameras’ images,
and this “detail® comprises the chief source of difficulty in
building cartesian sensors of this nature.

2.4 Trajectory Tracking via Inverse Dynamics

The manipulator’s kinematics (5) gives rise to enormously
complicated nonlinear dynamics through application of the

familiar Euler-Lagrange operator to the kinetic energy func-
tion [1, 3]. In our original implementation of the spatial ver-
tical one-juggle [14] we obtained sufficiently good manipula-
tor response by recourse to simple decoupled proportional-
derivative feedback around the desired joint trajectories de-
scribed in the sequel. The new vertical two-juggle task
taxes the manipulator’s capabilities sufficiently that we
have shifted to an inverse dynamics scheme that matches
exactly our model of the robot’s Lagrangian dynamics.
In order to obtain the dynamical parameters required for
matching we run an adaptive version of this algorithm [19]
as a part of the calibration procedure for the machine.

2.5 Controller: A Flexibly Reconfigurable Com-
putational Network

m

Figure 2: The Spatial Juggling System: Network Dia-
gram.

A block diagram for the interconnection of signals modeled
above can be seen on the left side of Figure 1. It should be
clear that with the exception of the signal processing and
motor operation blocks of this diagram, we are faced with
the need for a very large amount of computation at varying
data rates.

All of the growing number of experimental projects
within the the Yale University Robotics Laboratory are
controlled by widely varying sized networks of Transput-
ers, produced by the INMOS division of SGS-Thomson
[13, 10, 18]. The recourse to parallel computation consid-
erably boosts the processing power per unit cost that we
can bring to bear on any laboratory application. At the
same time the serial communication links have facilitated
quick network development and modification. Figure 2 de-
picts the network used to support the particular apparatus
described in this paper [16].



3 Juggling Algorithms

This section describes how the juggling analysis and con-
trol methodology originally introduced for the planar sys-
tem [8] may be extended in a straightforward manner to the
present apparatus. Introducing the “environmental control
system,” a higher level discrete representation of the robot’s
effect upon the ball’s motion, clarifies how to encode an el-
ementary but abstract task, the “vertical one juggle,” as a
stable equilibrium state of an appropriate dynamical sys-
tem. A simple computation reveals that every achievable
vertical one juggle can be made a fixed point, and con-
versely, the only fixed points of the environmental control
system are those that encode a vertical one juggle, confirm-
ing the clear intuition that the task is logically achievable.
Leapfrogging the intermediate linearized analysis of our pla-
nar work [4], we pass immediately to a “commented” pre-
sentation of the mirror law, a nonlinear function from the
phase space of the body to the phase space of the robot
that generates a reference trajectory — a time varying pro-
file of desired robot states — as the ongoing time history
of the ball’s position and velocity is fed through it. Finally,
the mirror law, now considered as a behavioral primitive, is
used in conjunction with certain analytic functions that in-
tuitively implement our notions of “if-then-else” within this
“geometric programming framework,” to develop a juggling
strategy for keeping two balls aloft simultaneously.

It must be emphasized that the functions we present
here comprise at once a mathematical description of our
algorithm and its actual implementation. Implementating
“geometric programs” of this type amounts to merely plac-
ing the particular transformation law — in the present case,
(14) or (15) — in the juggling block of the data flow path
depicted in the left side of Figure 1. One immediate prac-
tical benefit of this arrangement is the availability of very
powerful high level development environments in the form
of commercial symbolic manipulation packages. In practice,
we craft these functions in Mathematica on a SPARCsta-
tion and use the automatically generated C code on the
target controller.

3.1 Task Encoding

Denote by V the robot’s choices of impact normal velocity
for each workspace location. Suppose that the robot strikes
the ball in state w; = (bj,;) at time s with a velocity
vj =(g,4) € V and allows the ball to fly freely until time
s+1;. According to (8), composition with time of flight (2)
yields the “environmental control system”

|- o

that we will now be concerned with as a controlled system.
with control inputs in V x IR (v, and ¢;).

Probably the simplest systematic behavior of this sys-
tem imaginable (beyond the ball at rest on the paddle),
is a periodic vertical motion of the ball. In particular, we
want to be able to specify an arbitrary “apex” point, and
from arbitrary initial conditions, force the ball to attain a

tjc(wj, v5)

wit1 = f(wj,05,t5) = Acjwj+oe,+ [ c(wj, vj)
?
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periodic trajectory which passes through that apex point.
This corresponds exactly to the choice of a fixed point, w*,
in (9), of the form

w'=[z,]; ¥ e IR%; I;'=|:

denoting a ball state-at-impact occurring at a specified lo-
cation, with a velocity which implies purely vertical mo-
tion and whose magnitude is sufficient to bring it to a pre-
specified height during free flight. Denote this four degree
of freedom set of vertical one-juggles by the symbol J.

The question remains as to which tasks in J can be
achieved by the robot’s actions (i.e. which elements of J
can be made fixed points of (9)). Analysis of the fixed
point conditions [15] similar to that of [8] shows that only
those elements of J satisfying the condition

B ep(@); Q@ 2{geQ: cos(gs)sin(qx) = 1},

will be fixable. In particular, Q* corresponds to the paddle
being positioned parallel to the floor, and thus p(Q*) is an
annulus above the floor, as is intuitively expected.

0
0
v

] i veIR', (10)

3.2 Controlling the Vertical One-Juggle via a Mir-
ror Law

Say that the abstract feedback law for (9), g : W — VxR,
is a verticle one-juggle strategy if it induces a closed loop

system,

fo(w) = f(w,g(w)), (11)
for which w* € J is an asymptotically stable fixed point.
For our original planar machine [4] it was shown that the
linearization of the analogous system to (9) was controllable
around every vertical one juggle task. A similar analysis
has not yet been completed for the Bithgler Arm, although
a gimilar result is expected.

In [8] a novel juggling strategy was proposed that im-
plicitly realized an effective discrete feedback policy, g, by
requiring the robot to track a distorted reflection of the
ball’s continuous trajectory. This policy, the “mirror law,”
may be represented as a map m : TB — @, so that the
robot’s reference trajectory is determined by

q(t) = m(w(t))-

The juggling algorithm used in the present work is a
direct extension of this “mirror” law to the spatial juggling
problem. In particular begin by using (6) to define the the
joint space position of the ball

(78
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2p70).

(12)

We now seek to express formulaically a robot strategy that
causes the paddle to respond to the motions of the ball in
four ways:
(i) ga1 = ¢» causes the paddle to track under the ball at
all times.



(ii) The paddle “mirrors” the vertical motion of the ball
through the action of 8, on g42 as expressed by the
original planar mirror law [8].

(i) Radial motion of the ball causes the paddle to raise
and lower, resulting in the normal being adjusted to
correct for radial deviation in the ball position.

(iv) Lateral motion of the ball causes the paddle to roll,
again adjusting the normal so as to correct for lateral
position errors.

To this end, define the ball’s vertical energy and radial dis-

tance as

(13)
respectively. The complete mirror law combines these two

measures with a set point description (f, 5, and §) to form
the function

72 ybs + -;-133 and, ps = sin(8s)se

@)
~=
L3
“r-otm-m)(0+3) +

N

v

o

m(w) = . (14)

(i) _
xgo(pe — Pv) + K01/
N s

@

K10(ds — $3) + K118

e e
(iv)

3.3 The Two-Juggle

A two-juggle task requires that the robot perform two si-
multaneous one-juggle tasks with two independent balls
separated in both space and time. Separation in space
avoids ball-ball collisions, which are not currently part of
the environmental model, while temporal separation (mean-
ing that the two balls should not fall simultaneously) is nec-
essary to ensure that the machine is capable of striking one
ball and moving into position under the second, prior to
the first falling to the floor. Apparently there is an obsta-
cle present in the phase space of the system which we are
attempting to “avoid”. Thus the juggling algorithm must
be able to control the phase relationship between the two
balls in addition to the three new variables associated with
the position and energy of the additional ball.

Individual mirror laws for the two balls, constructed as
in [7], are combined to form the overall two-juggle law by
the use of a scalar valued analytic switch s € [0, 1],

myr(wo, w1) s(wo, wy ymo(wo, w1) +
(1 — s(wo, w1)) ma(wy, wo).
The function s encodes the mixture between the need to

juggle ball 0 (follow mo) or ball 1 (follow m;). An “ur-
gency” function is defined for each ball by

o(w)= }(1—cos(2atan(xc (ks + tan(<F)
xa (ko + tan(55))°)

(15)

+

where €(w) 2 —7"’55 is the phase of the ball. Finally s is
then given by

_ 1—o(w)

~ 2—o(w) —o(w1)’

(16)

s
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Figure 3: One-Juggle ball trajectory: Height vs. Time.
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Figure 4: Period two One-Juggle ball trajectory: Height
vs. Time.

The motivation for this implementation is as follows. ¢
varries smoothly from —1 immediately after impact, to 0 at
the balls apex, to 1 immediately prior to impact. o then
describes the urgency of the ball (being near 1 when the
ball is near impact, and 0 as it rises to its apex). Finally
s combines these two urgencies by smoothly mapping the
unit box onto [0,1] so s = 0 when ¢; =1, and s = 1 when
oy = 1.

4 Present Status

We have succeeded in implementing the one-juggle task as
defined in Section 3.1 on the Biihgler arm. The overall per-
formance of the constituent pieces of the system — vision
module, juggling algorithm, and robot controller — have
each been outstanding, allowing for juggling behavior that
is gratifyingly similar to the impressive robustness and re-
liability of the planar juggling system. We typically record
thousands of impacts (hours of juggling) before random sys-
tem imperfections (electrical noise, paddle inconsistencies)
result in failure [14].  Figure 3 depicts the ball’s height
over time over a short segment of a typical run, and demon-
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Figure 5: Two-Juggle ball trajectories: Height vs. Time.

strates that the machine has been capable of controlling the
height of the ball trajectories to within 5cm of the desired
height of 55cm.

Analysis of our planar juggler [6] revealed that the strong
stability and robustness properties of the machine could
be attributed to the Singer-Guckenheimer unimodal return
map [11, 12]. We have not yet undertaken an analogous
formal study of the closed loop return map (11) induced
by the spatial mirror law (14) but conjecture that the same
stability mechanism will be found here too. In advance of
this analysis, we note in passing our ability to generate the
bifurcation to a period two orbit in (11) predicted by the
Singer-Guckenheimer theory as depicted in Figure 4.

To date we have not achieved a working two-juggle. The
usual sequence of events follows the pattern:

(i) Introduce the initial ball which the machine juggles
well.

(ii) Introduce the second ball while the machine continues
to juggle the first.

(iii) Release the second ball. This generally results in one of
the balls being missed, while the other is “captured”
and batted into its specified steady state one-juggle
limit cycle.

As an example, Figure 5 shows the height of both balls

during a typical two-juggle attempt. In this case the sec-

ond ball was missed immediately after release, while the
machine continued to juggle the first ball. Extremely poor
release of the second ball (closely in phase with the first
ball) has resulted in both balls dropping. Conversely, ex-
tremely favorable release of the second ball (nearly out of
phase) results in multiple impacts with both balls. In no
case have we yet seen two-juggles of a quality at all remi-
niscent of that achieved in the planar case [5]. We expect
that careful consideration od the robot’s focus of attention

— “sharpening” its knowledge of when and where either

ball was batted — should substantially improve the jug-

gling performance. We are currently exploring this class of
improvments.
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