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Abstract 
This work is focused on the analysis of manipulators with 

both joint and link flexibility. Due to the different order of joint 
and link stiffness, the full-order nonlinear system can be decom- 
posed into different time-scale subsystems, namely, slow subsys- 
tem, mid-speed subsystem, and fast subsystem. It is shown that 
when the link stiffness is much greater than joint stiffness 01- when 
the two kinds of stiffness are comparable the vibrations due to 
joint or link flexibility can be suppressed whatever the control 
effort is made. Therefore, a composite control law is proposed in 
the case where the joint stiffness is much greater than the link 
stiffness to eliminate the structural vibrations while the tracking 
objective is achieved. 

1. Introduction 
The problem of controling mechanism with nonrigid links 

or joints has received widespread attentions in the past 
decade. Since for some special applications, such as low power- 
consumption, high motion speed, the need of designing mechani- 
cal arms with light weight has been increasing gradually. A lighter 
arm has much more complex dynamics due to its flexibility dis- 
tributed along the mechanical beam, which have caused great dif- 
ficulty in its control task. Consequently, to overcome this difficul- 
ty, improved control strategies must be developed, e.g. in [1]-[9], 
where the modeling and control problem are well addressed. Fur- 
thermore, as we have known that most today's industrial robots 
were equipped with gear-boxes such as harmonic drives that will 
introduce joint flexibility which is always neglected. This kind of 
neglects may be acceptable when the operation speed is low, but 
may be quite devastating when the speed gets high. Thus, when 
high manipulating performance is needed, the elastic phenomena 
must be taken into account, [lO]-[lS]. 

The nonrigidity of a light-weight flexible arm may consist of 
distributed link flexibility and lumped joint flexibility. Because 
of the high complexity of the dynamical equations for a multi- 
link manipulator with both joint and link flexibility, most of the 
literatures on the control of flexible manipulator have discussed 
arms with joint elasticity and with link flexibility separately. In 
(21, [lo], the authors used the singulai perturbation technique to 
reformulate the manipulator dynamics either in flexible-joint or 
in flexible-link case, however, they must assume either the links 
or the joints are rigid. Recent work [14] on the control of ma- 
nipulatois having both flexible joints and links had the similar 
formulations, but it only treated the two time-scale problem. 

Hence, in this paper, some discussions on the singular pertur- 
bation approaches to the model formulation for the manipulator 
with both flexible links and joints are given. It will be seen that 
when the link flexibility and the joint flexibility are compara- 
ble, the corresponding subsystems are strongly coupled, indicat- 
ing singificant interactons between link and joint flexibility. This 
coupling, however, will vanish when the two kinds of stiffness are 
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widely separated. 
This paper is organized as follows: Section 2 discusses the sin- 

gular perturbation approaches and the properties of a three time- 
scale system, and provide proofs of the system stability under 
some conditions. In section 3, we make some discussions on ma- 
nipulators with both joint and link flexibility under three different 
cases, respectively, defined as situations where the former dom- 
inates the latter, the latter dominates the former, and the both 
are comparable. In section 4, the controller design of these three 
cases is given and a conclusion is made that the system is control- 
lable only when the joint stiffness is much larger than the links 
stiffness, or when the two kinds of stiffness are of the same order. 
Section 5 shows the simulation results. Finally, some concluding 
remarks are given in section 6. 

2. Preliminaries 
In this section, we briefly review some relevant results due to 

the singular perturbation approach and discuss the characteristics 
of a multiple time-scale system. Then we propose a two-stagr 
analysis to prove the stability of the overall system. A flexilJe 
robotic manipulator with both link and joint flexibility may ha, e 
different-order of stiffness and, therefore, the two perturbatiort- 
parameter system is considered in this section. 

Let us consider the three time-scale system as follows 

j- = f(~,ZlrZz.e,P) ( 1 )  

C i l  = 9 1 ( ~ , 2 1 , ~ z , c , P )  (2)  

P i 2  = 92(2,21,ZZ,€,P) ( 3 )  

Supposing p << e << 1 ,  we can spilt the full-order system in- 
to two subsystems by letting p -+ 0, and use overbar to de- 
note either slow variables or a mixture of slow variables, then 
gZ(f, 21,22, c,  0) = 0. Assume 22 can be represented as a function 
o f f ,  and 21 as fz = hz(f, 21, e )  which is the equilibrium state of 
the boundary layer system, and the boundary layer system, name- 
ly, the fast subsystem, is given by defining qz = zz - 3 2 ,  TZ = 

61 ' 
and letting p = 0, so that ( 3 )  can be rewritten as 

Note that the slow and mid-speed variables that parametrize the 
boundary layer system are quasi-static and can be treated as con- 
stants. Now, the slow subsystem can be represented as 

+ = f ( 5 ,  f l ,  h2(z, T I ,  € ) , e ,  0 )  ( t ) )  

€21 = g1(%, 51 1 hZ(5, f l ,  €1, c ,O) ,  It;) 

which, however, still has two different time-scales. Therefore, nc 
denote the above system as a "virtual slow subsystem", and fo, 17s 

on this subsystem in a little more detail. 
Consider the virtual slow subsystem ( 5 ) ,  (6 ) ,  and decompose 

it into a slow subsystem and a fast subsystem again by letting 
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E = 0. For the same reason as stated above, we use the notation 
- to denote either the slow variables or functions of them, i.e., 
g l ( t , i l , h z ( 5 , i l , O ) , O , O )  = 0. Likewise,Assumeil can besolved 
in terms of t to yield 51 = h l ( i )  which is the equilibrium state 
of the boundary layer of the mid-speed subsystem. After defining 
71 = Z1 - 21,  71 = i ,  we can get that subsystem from (6) by 
letting 6 = 0,  i.e., 

( 7 )  

Similarly, the slow variables are treated as constants in this mid- 
speed subsystem. Therefore, the really slow subsystem is given 
by 

5 = j ( 5 )  (8) 
Since the stability issue in a control problem is our most impor- 
tant consideration, in the following we will propose a two-stage 
analysis inspired by Kokotovic (1986) to show the stability of the 
full-order multiple time-scale system. 
Proposi t ion 1 C o n s i d e r  t h e  t w o  p e r t u r b a t i o n  - p a r a m e t e r s  s y s -  
t e m  d e s c r i b e d  by  (I), (2), (3) .  T h e  s y s t e m  c a n  be d e c o m p o s e d  
i n t o  t h r e e  s u b s y s t e m s ,  n a m e l y ,  slow s u b s y s t e n ~ ,  m i d - s p e e d  s u b -  
s y s t e m ,  f a s t  s u b s y s t e m ,  r e s p e c t i v e l y .  I f  t h e  t h r e e  s u . b s y s t e m s  a r e  
a s y m p t o t i c a l l y  s t a b l e  i n d i v a d u a l l y ,  t h e n  t h e  f u l l - o r d e r  s u h s y s t e n z .  
i s  u l m a t e l y  s t a b l e  in t h e  s e n s e  t h a t  

I X I+ O(C) + O b )  

I 21 I+ hl (XI  + O(e)  f O ( P )  

I 22 I+ h z ( z ,  21 7 e )  + O ( P )  (9) 

Pwoj:Consider the three subsystems (4). (7), and ( 8 )  as follows: 

d 5  
dt 
- = j ( 2 )  

which are the so-called "high-speed", "mid-speed" , and "low- 
speed" subsystems, respectively. Since the three subsystems are 
all asymptotically stable, there exist three Lyapunov function can- 
didates VI, Vz, and V3 with respect to "low-speed", "mid-speed", 
and "high-speed" subsystems, respectively, satisfying the follow- 
ing conditions according to a converse theorem of Lyapunov. 

for appropriate positive constants a3, a4, and ag. 
Now we begin with the virtual slow subsystem. Similar to 

Kokotovic (1986), the following conditions are assumed. For some 
positive constants 7 4  - 7 6 ,  the functions f and 91 satisfy the 
following conditions. 

where ft and 91, are defined as 

f 2  E r(X,hl(.),~z(~,~l(.),e),o,~) 

f 3  f ( Z , Z I ,  hz (z, 21 3 € 1  
9 1 1  = 91 (x, 21 I h2(2,211 O ) , O , O )  

912 = 91 (X,21, h z ( z ,  21, e )  

so that, a composite Lyapunov function of the following form 

V4 = (1  - d)V1 + dV2; d E (O,l) ,  

which is the first stage composite Lyapunov function. Then, we 
take the time derivative of V* with the above conditions, and get 

which implies that there exist e,' and d,' such that, when e 5 
€6 and do' 5 d 5 1, $1(z) and c$1(21 - h l ( z ) )  will converge to 
a resdual set with size of O ( e )  until the solution trajectories of 
(5), (6) leave a priorly given compact set. Now, we consider ( l ) ,  
(2) together as a subsystem which evolves relatively slow to the 
subsystem (3), i.e., 

or, equivalently, .(; = ~ ( w , h z , O )  where w = [z ' , ezT] ' .  There- 
fore, according to the above description, V4 can be interpreted in 
an alternative form. 

[ h ( w  - a )  - O(E)] 9 a6 > 0 

where tZ = ( O , e h F ) T .  Now, further conditions are needed for the 
stability proof of the full-order system, which are quite similar 
to (12) ,  and (13) accounting for the interconnection between (15) 
and the full order system, i.e., 

(16) 1-(322 a v3 - g z l ) l  I ̂19+2(22 - h2)0 (P)  a 22 

for some positive constants 7 7  - 79, where T ,  and 92, are defined 
in the following. 

T I  r(w,hz(w),O) 

T 2  E T ( w , h Z ( w ) , P )  
T3  G T(w7229cL) 

921 g2 (w7z2 ,0 )  

922 gn(w,Z2,P)  

Given These conditions we can define the second stage composite 
Lyapunov function as follows 

I/ = (1 - d)v4 + dv3, d E ( 0 , l )  

and, then, obtain the same results as the former by taking time 
derivative of V, i.e, 



Again, this implies that there exist p* and d* such that for all 
p 5 p* and d' 5 2 5 1 we have $2 (w-  W) and $2 ( 2 2  - h2)  will be 
converging to a resdual set of size O(c) + O ( p )  and O ( p ) ,  respec- 
tively, so long as the solution trajectories of the overall system 
remains bounded inside a priorly given compact set. Repeatedly 
using the robustness argument of each subsystem, we can then 
conclude that, in fact, all signal trajectories will never leave that 
aforementioned compact set, and, hence, all signals remain uni- 
formly bounded. non 

3. Applications to  Flexible Manipulators 
3.1 Dynamic model 

Consider an n-link robotic manipulator with both joint and 
link flexibility. The deflection of link 1 ,  z = 1 5 z 5 n, can be 
considered as: 

03 

Y, (x, t )  = 613 &, 
, = I  

which is governed by the Euler-Bernoulli beam equation 

subject to some appropriate boundary conditions, where $,, is 
the mode shape function for mode J of link I ,  E is the Young's 
modulus, I is the moment of inertia, and p is the mass density 
per unit length. Here, we assume all links have the same I and p .  
Furthermore, the flexible joints can be modeled as linear torsional 
springs with constant spring stiffness. Thus, by using Lagrangian- 
Euler formulation, the equations of the dynamic model can be 
shown in the following: 

where 
q1 E R" : a vector joint angles associated with links, 

6 E R"' : a vector of m flexible modes of all links, 

42 f R" : a vector of shaft angles associated eith each actu- 
ator, 

M E Rnxn: inertiamatrix, 

f l  E R", fz  E R": nonlinear coupling terms, including 
Coriolis, centrifugal, and gravitational forces. 

11-1 E R m X m :  equivalent spring constant matrix of the links, 

1<2 E R'"=: torsional spring constant matrix of the joints, 

J E Rnxn: motor inertia matrix, 

U E Rn: a vector of control input torques from motor actu- 
ators. 

3.2 Problem Formulation 
In this section, we reformulate the original dynamic equations 

in singular perturbation forms. Let 

and multiply it to both sides so that we can rewrite the dynamical 
equations as: 

41 = --hlfl - h2fZ - hzI(1S + hlKZ(P2 - 471) 

-h,Tf1 - h3f2 - h3KlS + h,TKz(qz - 41) 

592 + K z ( q z  - 4 1 )  = U 
6 = 

(19) 
Further define 11-16 = w; , -Kz(qz - 41)  = w i  where we let Kl = 
h / p i , K z  = &/m,  with kl E Rmxml k2 E RnX", and p 1 , p z  E 
R. If we define w1 = ~ F ' w ; ,  w2 = k;'w; and X I  = 41,  x2 = 
q z ?  21 = w1, 22 = w z ,  23 = wz, 24 = w z ,  and fil = €1, fiz = 
€ 2 ,  then equation (19) can be represented as 

' 

11 = 5 2  

Clil = 22 

1 2  = - h l f l  - hZfZ - hZ2l + hlz3 

€ l i Z  = -hFf l  - h3fZ - h321 + hF.3 

C2Z3 = 2 4  

f Z i 4  = h l f l  + h2fZ + hZzl - (hl + J - ' ) Z 3  

+ J-'U (20)  
which is clearly a three time-scale system. In the following discus- 
sion, we decomposed the full-order system into three subsystems 
whose time-scales are t ,  L, L, respectively. 

€1 € 2  

3.3 Discussions on Three Cases 
In the following, we discuss the two perturbation parameters 

system in three different conditions. These three conditions r.:- 
veal how the flexible manipulator behaves when the ratio of the 
flexibility of the link to that of the joint varies, and are shown ds 
follows: 
Case I:( e:  << << 1 ) In this case, the link stiffness is much 
larger than that of the joint so that € 1  is the smallest perturba- 
tion parameter, and thus the subsystem associated with € 1  can be 
regarded as the fast subsystem. Then we set €1 = 0 in equation 
(20) and use variables with overbar to denote the resulting slow 
variables to yield 

z2 = 0 

z1 = h;I(-hF f l  - h3fZ + hFZ3) 

which is the equilibrium state. The fast subsystem can thus be 
found by defining 71 = I, = 21 - 21, 1/2 = 22. and, then, by 
setting € 1  = 0 to obtain 

d1/i 

dT1 

€1 

1)Z - _ -  

which is the boundary layer of the fast subsystem. Note that t,he 
slow and the mid-speed variables in that subsystem are quasi- 
static, and, hence, can be regarded as constants. ApparentlJ., 
(21) becomes a linear system which is uncontrollable since thele 
is no direct external input to the subsystem. 

Now to derive both the slow and the mid-speed subsystems, we 
let c2 = 0 in equation (29), and denote i s ,  il as slow variables 
with respect to the slow subsystem, i.e, 

24 = 0 

23 = ( h ,  - hzh3-I + J-1)-1 

[ (hl  - h2h;lh:)fl + J - 1 4  

E H3-'H2 f l  + H g ' J - I i i  (22)  
to get 

al-1 = j-2 

$2 = - H l f l  + H l i j  
= ( - H I  + HiH, 'Hz) f l  + HIH,'J-'C (23) 
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which clearly corresponds to the rigid slow subsystem, and then 
we define 7 2  = I, 7 3  = 33 - 2 3 ,  7 4  = 34 , and let € 2  = 0 so that 

€ 2  

which is the mid-speed subsystem as required. Similarly, all the 
slow variables involved in (24) are all treated as constants. 
Case 11: (c$ << z: << 1) Different from the previous case, here 
the link flexibility is the dominant one, and, hence the dynamics 
associated with the joint flexibility becomes the fast subsystem. 
Now, by letting € 2  = 0 in (20), we obtain the following equilibrium 
state. 

4 = 0 

23 = (h i  + J-')-'(h1fl + h z f 2  + h231 -t J - l i i )  
Similar to the discussion above, the fast subsystem can thus be 
derived by defining 7 2  = L, 71 = 23 - 23 ,  7 2  = 2 4 ,  and by letting 
€ 2  = 0 as: 

€ 2  

7 2  
d v i  - 

drz  
- - 

= - (hi  + J-1)71 + 3-1uj1  (25) 
which is the boundary layer of the fast subsystem that obvious- 
ly can be controlled under state-feedback. Again, the variables 
corresponding to the slow and the mid-speed subsystems are all 
treated as constants in this fast subsystem. 

To derive the slow subsystem, we then let e1 = 0 to yield 

i 2  = 0 

21 = -f2 - ~c l~4f i  - T L ' T ~ C  (26) 
and then substitute (26) into the virtual slow subsystem to obtain 

21 = f 2  

k2 = (Ti - TZT,'T4)fl 

+ (T3 - T2TF1T6)U. (27) 
which is known as the slow subsystem. Finally the boundary 
layer of the mid-speed subsystem can be obtained by defining 
T I  = 73 = 21 - 21 ,  7 4  = 3 2 ,  and by letting €1 -+ 0 

€1  ' 

E Tz73 + T 6 U f z  (28) 
where all the slow-variables that parametrize the system are re- 
garded as constant as before. 
(iii) Case 111: (6: zz e $ )  In this case, € 1  and € 2  are of the same or- 
der. Therefore, we spilt the full-order system into two subsystems 
only, namely, a slow subsystem and a fast subsystem. 

Consider (20) again, and let € 1  = €2  = 0 so that 

where 

so that the slow subsystem can then be obtained by substituting 
equation (29) into the original full-order system ( 2 5 ) :  

z1 = 2 2 ;  

i 2  = -h1f1 - h z f 2  - h231 + hl33 (30) 
= - (h i  + h2hT1hT - h2h31hTB;1B~) f1  

- (h2hY1hTB;'B3 - hlBF1B3)G 

which is recognized as the rigid slow subsystem. 
To derive the fast subsystem in this case, we refer to (20),  set 

the time scale as r = $, and define 71 = 21  - 31, 72 = 2 2 ,  7 3  = 
23 - 23, 1)4 = 2 4 ,  so that the fast system can be expressed in a 
manner similar to the previous deviation. 

7 4  - d a 3  
d r  
dv4 - d r  = h z ~ i  - (hi + J - l )73  + J- ' (u  - ii) ( 3 2 )  

or, equivalently, & V  = Aq + B u f  , where q T  = [vT 7; V? 74TI2' 
and uf = U-ii. Equation (31) constitutes the so-called boundary- 
layer condition of the fast subsystem. 

_ -  

4. Controller Design 
When we encounter a system which is required to perform tasks 

in a desired manner, intuitive questions will arise, such as " Can 
it be controlled? " and " What is the difficulty if the previous 
answer is affirmative? " .  In fact, we are interested mainly in 
controlling the low-speed, gross behavior of a robot system. Thus, 
of primary importance to us is the stability or stabilizability of 
the fast subsystem. Hence, in this section, we take the stability 
problem into consideration and make an  attempt to design the 
controller for the robotic system. According to the aformentioned 
formulation, it is likely that we can design the controller of the 
three subsystems separately. The controller design procedure will 
be stated case by case as follows. 
(i) Case I: ( c f  (( << 1)  In this case, the fast subsystem, mid- 
speed subsystem, and slow subsystem are shown in equations (2 i ), 
(24) ,  (23), respectively. As shown in (21) ,  the boundary layer of 
the fast subsystem is uncontrollable due to a lack of fast controllz-. 
If there exist some structural damping in the original system, then 
the boundary layer system will be asymptotically stable, and tile 
control efforts we made will be concentrated on the mid-speed and 
the slow subsystem. If there is no assumed damping in the original 
full-order system, the boundary layer of the fast subsystem will 
then be oscillatory. 
( i i )  Case 11: (c; << z:) In this case, the three subsystems, namely, 
high-speed, mid-speed, and low-speed subsystem are discussed as 
shown in equations (25), (28), (27), respectively. 

First we consider the slow subsystem 

where 2'1 N T6 are defined as previous ones. Since the slow sub- 
system are equivalent to the rigid robot system which is always 
feedback linearizable [2], 6 may be designed as 

6 = (T3 - T2TF1TS)-'[-(T1 - T2Tc1T4)fl + U] 

where 'v = [ - ( T I  - ~ 2 ~ ; l ~ q ) f l  + qd - l ~ l ~  - kzej and q d  is the 
desired trajectory and &, e are the velocity and position tracking 
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errors, respectively. Thus, the slow subsystem will result in 2 -t 
kl C + kze  = 0, which assures e ,  e -+ 0 as t -+ 00. 

Secondly, the mid-speed subsystem is taken into account. Con- 
sider 

7 4  - d 7 3  

d7i 
dv4 

d r i  

_ -  

- TZ73 +T6ufZ (34) - _  

which is parametrized by the slow variables and hence Tz, T6 can 
be treated as constants. If the subsystem (33)  is a completely 
controllable pair, we can always use state feedback technique to 
stabilize the system, i.e, 

Therefore, ~ 3 , 7 7 4  - 0 as t i CO will be concluded. 
In the fast subsystem, 

(35)  

since hl + J-’ is positive definite in all configurations, regula- 
tion can be achieved with the addition of some damping terms. 
Therefore, 

which will result in 7 1 , ~  i 0 as t -+ 00. 

Proposi t ion 2 Consider the fu l l  order system (LO), i f  U = i + 
u f l  + u f z  as designed above, then (20)  is ulmately stable in  the 
sense that 

u f l  = -JI<d72 (37) 

I tel l ,  ll4l -+ + O b )  
lla111~ ll72ll -+ O(C) 
117311~ Ila411 -+ O(C) + O b )  

Proof: The proof can be directly derived from the argumants 
provided in section 2. 
(iii) Case 111: (c: =: € 2 2 )  In this case, the joint stiffness and the 
link stiffness are of the same order, and we can consider it as a 
standard two-time scale system. 

First consider the fast subsystem (31), 

Since { A ,  B }  is a completely controllable pair, we can conclude 
that the full order system is controllable, and hence obtained the 
following theorem. 
Proposi t ion 3 If the two perturbation parameters of the full O T -  

der system (20)  are ofthe same order, then this system is control- 
lable ,  and the controller can be designed similarly as in case (i i) .  
Besides, if the real parts of all the eigenvalues of A are negative, 
namely, 1) + 0 as t -+ 00 automatically, the asymptotic bounded 
tracking performance can also b e  achieved b y  only applying the 
rigid part controller. 
Proof: One can easily check the controllability index matrix 

c=[ 0 J-1 O 0 -(hl  + J-’)  1 0 0  0 h; J - l  
h; J - l  0 

J- ’  0 - (hi  + J - ’ )  0 

which is always non-singular. The rest of the proof is also s- 
traightforward from the discussion provided in section 2. 
Remark: Since matrix A is parametrized by the slow variables 
91, appropriate choice of the desired trajectories q1d becomes an 
important issue. 

5 .  Simulation Results 
In this section, we demonstrate the simulation result of the 

controller proposed in case (ii) and case (iii). The model for 
simulation is shown in [SI with additional joint flexibility. In case 
(ii), the joint flexibility € 2  is 0.01 and the link flexibility €1 is 0.1. 
The controller gains are IC1 = 3,  kz = 4, and kd = 3. The desired 
trajectory is chosen as qd = 3 + 0.5s in( t ) .  

Fig.1 and Fig.2 show the tracking errors of angular position and 
angular velocity, whereas Fig.3, shows the flexible mode, which 
is under fast controller. Obviously, the flexible mode damp out 
while the joint tracking the desired trajectory. 

In case (iii), both joint and link flexibility are €1 = €2 = 0.1, 
and the fast controller gains are chosen as k=[O 0 -3.2 -5.1 0 -3.8). 
Fig.4, Fig.5 show the tracking performance for both position and 
velocity, whereas, Fig.6 demonstrates the suppression of vibra- 
tion 

6. Conclusions 
In this paper, singular perturabtion approaches are applied to 

multiple time-scale systems. The stability of the full order system 
has been directly addressed. Estimates of domain of attraction 
and the upper bound of the perturbation parameters were al- 
so sought. Furthermore, some discussions are made about the 
flexible manipulator with both joint and link flexibility when the 
previous results are applied. In case (i), the link stiffness is much 
greater than the joint stiffness so that the perturbation parameter 
€ 2  dominates €1, which makes the link flexibility uncontrollable. 
In case (ii), as opposed to case (i), the joint stiffness is much 
greater than the link stiffness, and hence the perturbation pa- 
rameter € 1  dominates €2 so that controllers for three subsystems 
can be developed separately to achieve the desired control perfor- 
mance. In case (iii), the joint stiffness and link stiffness are of the 
same order, then the overall full-ore& system can formulated as 
a usually seen two time-scale singular perturbation system. Fur- 
thermore, if the fast subsystem is naturally asymptotically stable, 
the control performance of the full-order system can still be made. 
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