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Abstract

In previous papers we have reported successful lab-
oratory implementations of a family of juggling algo-
rithms. In all but the one degree of freedom case, these
empirically successful algorithms have so far resisted
our analytical efforts to explain why they work. This
is in large measure a consequence of our inability to
write down using elementary functions an expression
for the closed loop dynamics they induce. We discuss in
this paper a modified juggling algorithm whose result-
ing closed loop dynamics can be written down directly.
We offer data establishing the empirical success of the
new algorithm. Theoretical analysis of the closed loop
dynamics is presently in progress.

1 Introduction

For the last five years we have been building and the-
orizing about machines that bat one or two balls into
stable periodic vertical orbits. The study of such tasks
has design implications for locomotion [7], for dexter-
ous manipulation [2], and for sensory attention [10]
problems in robotics. Our achievement of the spatial
two juggle, reported in last year’s ICRA conference (9],
brings this effort to an interesting juncture. Our abil-
ity to build robust laboratory demonstrations of vari-
ous dexterous manipulation tasks has now considerably
outstripped our ability to analyze the causes of their
success. In this paper we take a step back from the
building and behavioral recording to report on some
recent analytical work in progress.
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Most generally, what we seek (and do not presently
have) is a systems theory for coupled oscillators. 1 By
this we mean a qualitative theory that permits the in-
terconnection of oscillators in such a manner that the
limit set of the coupled system is the cross product of
the individual limit sets and, in the event that both are
limit cycles, affords a tuning procedure for their rela-
tive phase. Despite more than four decades of interest
in such a nonlinear theory [15], this understanding does
not yet appear to be at hand. The present paper re-
views our application of a strong regulation theory for
one degree of freedom oscillators and documents our
efforts to analyze some specific instances of coupling
between two and three degree of freedom oscillators.

We are interested in the motion of partially actuated
mechanisms that interact in an intermittent and dy-
namical fashion with their environment. When consid-
ering legged locomotion or juggling, the environment is
modeled as gravity pulling masses toward ground: in-
dividual cases vary according to the contact model and
actuation strategy. The exchange of kinetic and po-
tential energy guarantees oscillatory behavior in phys-
ically viable hopping and juggling machines. However,
the designer must devise a strategy for imparting en-
ergy via the available actuators in such a fashion that
the desired motion is regulated. The presumption of
hopping and juggling machine designers has been that
a stable limit cycle in the vertical degree of freedom
affords the possibility of “entraining” other purposive
rhythms in the transverse plane [2, 8]. Empirical suc-
cess suggests the validity of this presumption. But it is
crucial to put these ideas on a sound theoretical footing
as well.

The paper is organized as follows. The next sec-

1Throughout this paper the term oscillator denotes a non-
linear dynamical system with a globally attracting compact for-
ward limit set. For example, point attractors are trivial oscilla-
tors. The term tunable denotes oscillators that persist (despite
likely bifurcations in the limit set topology) over large volumes
in the parameter space that defines the dynamics.




tion offers a tutorial account of a one degree of free-
dom version of our juggling algorithms: its theoreti-
cal properties are well understood. Section 3 shows
how these algorithms generalize to higher degrees of
freedom and afford extremely robust laboratory imple-
mentations but resist analytical understanding: they
induce closed loop dynamics that cannot be written
in terms of elementary functions. Section 4 presents
successful empirical results for a modified family of al-
gorithms whose induced closed loop dynamics can be
written down directly. We are hopeful that the avail-
ability of the closed loop expression will permit a com-
plete stability analysis elucidating the manner in which
horizontal convergence is yoked to the vertical “heart-
beat” in our machines.

2 A Regulation Theory for One
Degree of Freedom Oscillators

This section reviews the case of an analytically
straightforward one degree of freedom batting algo-
rithm whose feedback structure will be generalized
to less analytically tractable (but empirically success-
ful) higher degree of freedom analogues in the se-
quel. We will merely allude to the parallels with
hopping machine studies 7). We first introduce the
notion of a return map and then sketch the theory
of S-unimodal return maps developed two decades
ago within the dynamical systems community. The
“gedanken juggler”[3] is used to exemplify these theo-
retical ideas.

2.1 Return Maps

A standard analytical tool for investigating the stabil-
ity of limit cycles is the return map [5]. Let the dynam-
ical system £ = f(z) generate a flow f*(z) (an integral
curve through the initial condition). A codimension-
one manifold, ¥ C X results from the zero set of
a smooth scalar valued map, ¢ : X — IR, that is,
£ = o7![0], as long as ¢ | £ has a full rank jaco-
bian. Suppose there is such a X through which the flow
passes repeatedly — that is, after some finite interval
of time, [0, T, solutions starting in ¥ will return,

rc | A,

t<T

Every £ € ¥ has a time of first return, r(z). The

function ®(z) = F7@)(z) is called the return map.
The function ¢ generally must be derived first by
solving the differential equation to get f' and then by
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solving for t the equation
cofi(z)=0 (1)

to get 7.

2.1.1 The Mirror Law for a Gedanken Robot

As an example, consider the gedanken juggler — a ball,
b and robot, r, both confined to a vertical line in space
[1]. Their dynamics are described in the phase vari-

ables,

wé[b] andvé[r],

b r
as
& =F(z):=Az+bu
_|0 1] -0 (2)

<o) o= Y]

where u = —7 is the gravitational constant when z =

w and and u = ( is the force applied to the robot’s
shaft when z = v.

The body’s integral curves are given by
] w—qt [ t/2
We model collisions between the robot and the ball us-
ing the simple (but standard [14]) coefficient of resti-

1
tution law, leading to the collision map

Cy (w)

t

Fi(w) = [(1) ‘ @3)

=Rw+ (I - R)v
R= [ 1 0

] ;0<a< 1.
—a
relating the body state after a collision to the body
and robot states before collision.

The juggling algorithm for this system, the mirror
law introduced by Biihler [1], describes the motion of
the robot as a function of b, and takes the form

(4)

r=p(b,b) := k(w) - b (5)
where k(w) = (ko + £1(n* — 1)), with 5 = %52+7b the
scaled total energy of the ball, and n* the desired total
energy for the specified juggling task.

2.1.2 Computation of the Return Map

Assuming that some force law, ¢, is applied to the
robot in (2) causing r to track u(w) by the time an
impact occurs, we are guaranteed that the ball will fall
until

b= pu(b,b).

Imposing the (physically necessary) assumption that

k(w) < 1,



implies that collisions only take place when
o(b,b):=b=10

so we take X to be the abscissa of the ball’s phase
plane. The body collides, then flies,

F(w) := F' o Ci(w),

until the next impact. Thus in order to compute the
return map, it remains to determine the robot’s ve-
locity at impact, #, and the time of flight, £, both as
functions of w. )

Since we assume no energy loss in flight(k(w) = 0),
the robot’s velocity at impact is

r= k(w) . b = 6('(1)) (6)

Since impacts always occur on X, we obtain a simple
solution for time of flight 2

T(w) := [C‘;(,,,)(w)]2 2/7. @)
The return map can now be written explicitly as

T(w) = F™®) o Cyyy(w)

= [ b[l—ﬁ(l}02—l}‘2)] ]

where = 1—'12'3.%1.

For reasons to become clear below we choose to
rewrite this return map in “apex” coordinates (i.e. to
measure the height of the ball at apex rather than the
velocity pre-impact). In these coordinates we have

(8)

P(@) = (a+k(w>él+a)>”f$] ©)

2.2 Unimodal Return Maps

We have developed simplified models of a variety of
dynamically dexterous machines that permit the exact
derivation of I', as above. For example, simple hop-
per models result from considering the purely vertical
mode of Raibert’s machine [8] — an elastic mass that
falls to the ground, exchanges its kinetic energy for
some potential energy stored in the elastic spring, then
rises and eventually leaves the ground as the spring,
further restored by energy contributions from an ac-
tuator, works against gravity. The various stages of
flight, touch down, stance, and liftoff are modeled by

2Here and in the sequel we will use []; to represent the i**
component of a vector, or vector valued function.
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distinct mechanical systems whose initial and final con-
ditions are pieced together to obtain a discrete model
of the return dynamics [7], similarly as above.

In developing these one degree of freedom hopper
and juggler models, we have encountered an unusually
strong stability mechanism. In the cases considered
carefully to date, the return map, I' is a unimodal func-
tion: there is a single critical point and the function
is monotone up or down on respective sides. More-
over, the Schwartzian derivative [5] of each is negative.
Singer showed that in this case there can be at most
one attracting periodic orbit [13]. Guckeheimer showed
the domain of attraction of such a periodic orbit is al-
most all of the state space [6]. We take this as a model
of regulation theory.

It is easy to see in (8) that I' has a single criti-
cal point over the regime of physical interest (the real
interval bounded by the two zeroes of the cubic func-
tion). Moreover, since the second component of I' has
all real roots, we are assured of a negative Schwartzian
[4). The Singer Guckenheimer Threory now applies
immediately.

3 Missing: A Systems The-
ory for Intermittent Dynamic
Tasks

In this section we present two and three degree of free-
dom generalizations of the gedanken juggler introduced
above. We will point out two major obstacles to ex-
tending the regulation theory described:

e the time of flight (1) must be explicitly solved to
get T

o The Singer-Guckenheimer theory of S-unimodal
maps applies only to one-dimensional maps

The first of these obstacles is mitigated in the next
section by the substitution of a new mirror law (15).
Addressing the second remains the principle focus of
our theoretical work in progress on this problem.

3.1 A General Family of Robot Con-
trol Laws for Intermittent Dynam-
ical Tasks

Our research has concerned the development and im-
plementation of a class of control algorithms suitable
for performing “robot juggling”. This has lead to the
emergence of an increasingly coherent set of rules for
generalizing these algorithms to machines with more
degrees of freedom and different kinematic structure.




What follows is an application of these rules in the spe-
cific context of a planar and a spatial juggling machine.

3.1.1 The Planar Juggler

Consider the planar juggling task, which was the cen-
tral topic of [3]. In this example the ball is free to
travel on an inclined two dimensional plane. Thus the
particular environmental dynamics (3) are given by

b= ap, (10)

where b € IR?, and a, = (0,—7)T is the acceleration
due to gravity. The “actuator” used to impart control
over this ball is a one degree of freedom robot with a
long bar attached to it. In this case the kinematics are

given by
_ A |arctan(b, /b,
CEL iy ) B

Following a strategy similar to that used for the
gedanken juggler, the algorithm for this system de-
scribes a reference trajectory (angle as a function of
time) for the robot to track as a function of the ball’s
stated :

r=mw) = k(w) - [g7I0), +lw)  (12)

where k(w) is defined as in (5), and ! is an affine linear
map implementing proportional and derivative spatial
regulation terms:

I(’U)) = K?lo(b: - b;.) + Kllb,.
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Figure 1: The spatial juggling system.

3 [g“] ; is used here, as in (7), to represent the i** component
of the inverse kinematic image of the ball.

3.1.2 The Spatial Juggler

Next consider the spatial juggling task as implemented
on the system shown in Figure 1 [12, 9, 11]. In this
case we consider a three degree of freedom falling ball,
whose dynamics are identical to (3) save that b € IR®
and a, = (0,0,—)7. This ball is “actuated” by a
three degree of freedom robot. As with the planar
Jjuggler, the juggling algorithm is constructed by first
taking the inverse kinematic image of the ball, then
“mirroring” it with the robot. Briefly, the resulting
algorithm takes the form

[s71], ®
~5-k([], 0+ 5) +-ued) |, (13)
15(5, b)

m(w) :=

where as in the planar case I, and l5 are linear affine
transformations implementing proportional-derivative
spatial regulation terms in the radial and lateral direc-
tions.

3.2 Unsolvable Return Map

Our interest in generalizing these algorithms is contin-
gent upon their correctness. In each case the coupled
robot and environment gives rise to a discrete dynami-
cal systems sampled by the event of the ball impacting
the robot. The stability of this system comprises the
feature whose correctness is to be demonstrated.

Even for the “simple” planer machine attempting
the analysis of Section 2.1 is not fruitful here. The
primary difficulty arises from the unsolvability of time
of flight: computation of r from (1) which requires
solution of the transcendental equation

arctan (%:) = k(w) - arctan (%:) +1(bz,b,), (14)

when b, b,, and b, are replaced by their appropriate
time functions. No closed form solution exists for this
equation, and thus derivation of an explicit return map
is not possible. This has impeded a global closed loop
analysis.

Not surprisingly, similar difficulties arise with the
spatial juggling system, although in this case the re-
sulting transcendental equation is significantly more
complicated due to the more complicated kinematics.
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4 A Modified Mirror law
4.1 Solvable Time of Flight

One variant of the planar mirror law which will afford
a solvable time of flight is

r= m(w) = k(w) ' [g_I] (b)+
(1 - k(w)) . l[g_l] 1 (I ] F" (w))

where k(w) is defined as in (5), but now

(15)

1(w) & [k10(be — bz) + K162, b2 ],

and F's is the newtonian flight map which returns
a ball w to its apex (to(w) := %)% This “new”
mirror law eliminates the transcengental structure of
(14) by passing the spatial regulation terms through
the inverse kinematics of the machine, and simplifies
the computation by writing the proportional derivative
terms in the ball’s apex frame. Thus the time of flight
computation (1) is reduced to solving

1 (@)
1-k

b, = (16)
for t after substituting the appropriate time functions
for b, 3, where w is the apex location from which the
ball fell.

Making similar use of the inverse kinematics of the
robot we can construct a solvable time of flight mir-
ror law for the spatial juggler as well. In this case
the “new” mirror law will take a form related to (13)
reminiscent of that relating (15) to (12).

4.2 Closed Loop Return Map

Given the closed form solution for (1) (which now taked
the specific form of (16)), we are in a position to exhibit
the closed loop dynamics induced by (15). Since ¥
has co-dimension one, we expect a three dimensional
discrete system.

For reasons explained below, we choose to work in
“apex” coordinates. More formally, using over-bars to
denote states in the apex coordinates we have

Wy = h(w) 1= F'*(w) a7

where t,(w) = ;L is the time of flight to the apex of

flight.

4Note that /(w) is now a vector valued function mapping the
phase space of the ball onto the ball’s configuration space.

5For a ball falling under the influence of gravity this is a
quadratic equation.
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The return map in these coordinates is now 6

W41 = (i) := F'* 0 Csa, o F™(@).  (18)

Explicitly, ® may be simplified to the form.

B+ be(ri + 1) + (1 + )(k + 1datal(Bs, b:)
T(3.) + (b=, bz )d(wn)

®(w) = b+ (1 + a)(k + 1)6ui(85,52)

(19)
Here d(w) represents the coupling of the horizontal sys-
tem back into the vertical, and T is the return map of
(8). In particular
2
@) =1~ B+ 2t + €10, @0
where
=(a+k-(1+a)y

and

Finally 6, and py denote to the time derivatives of
g '1] (b) and [g‘l] (b) respectively.

We find this form partlcularly attractive since it ex-
presses the behavior of the overall planer system in
terms of the better understood “line-juggler” of Section
2 and a nearly linear dynamical system representing
the “horizontal” evolution. This structure is revealed
by rewriting (20) as

I'(5,) + I(b=, b2) - d(s)

o 9] [E]wvet]

. (21)
where &2 := (14a)(k+1)6;. In this form the effect of /
on the horizontal subsystem (b;) can clearly be seen as
a (stabilizing) input, while it’s coupling to the vertical
system is scaled by d, which will vanish with b, and b;.
The effect of the vertical subsystem on the horizontal
behavior is slightly less clear, as the primary coupling
is through the time of flight (7% and t,4).

Bu(k+1)
EJaen

4.3 Experimental Results

We would not wish to waste our efforts by attempting
to prove correctness for a class of algorithms which do
not function! To validate these new ideas in the ab-
sence of theoretical stability guarantees, we have im-
plemented a slightly modified version of (13) on the

€ Although @ looks more algebraically complicated than I'
from (8), the apex coordinates force £ to be a linear subspace,
{b, = 0} which I leaves invariant. In contrast, the equivalent
three dimensional invariant manifold, T, left invariant by return
map taken at impact is a rather complicated algebraic surface.




spatial juggling machine. In practice the performance
of the “modified” mirror law is nearly indistinguish-
able from the algorithms which did not admit explicit
computation of time-of-flight.

5 Conclusion

Although it seems like a modest step, deriving a closed
form expression for the return map generated by our
juggling robots represents a significant advance for us.
We are finally able to display the dynamics of the two
degree of freedom system (19) in a fashion that shows
the component one degree of freedom dynamics (a uni-
modal map for the vertical subsystem; a PD compen-
sated double integrator for the horizontal subsystem)
and the manner in which they are coupled together.
There still remains the important step of demon-
strating that the coupling of these two subsystems does
not destroy the stability of the two in isolation. We ex-
pect a proof of this to take the following basic form:

1. Demonstrate an upper and lower bound on 7 and
tg.

2. Show robust stability of the horizontal subsystem
for t; and t,; in this interval.

3. Conclude by exhibiting stability of I from (8) even
in the presence of exponentially decaying distur-
bances (i.e. from d(-) in (19)).

Finally, we are hopeful that, when completed, this sta-
bility argument will generalize to systems where 7 is
available only in the implicit from indicated in (1).
This would greatly advance the prospect of for deriv-
ing practical design principles from our juggling work.
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