
Mobility of Bodies in Contact-11: 
How Forces are Generated by Curvature Effects? 

Elon Rimon (elon@robby.caltech.edu) Joel Burdick (jwb@robby.caltech.edu) 
Dept. of Mechanical Engineering, CALTECH, Mail Code 104-44, Pasadena, CA 91125 

Abstact 
We investigate the contact forces generated by Znd or- 
der effects for a body 23, in frictionless contact with 
finger bodies dl, - - - , dk. A simple paradox shows that 
rigid body models are inadequate to explain how con- 
tact forces are generated by 2nd order effects. A class 
of configuration-space based elastic deformation models 
are introduced, and are shown to explain the restrain- 
ing forces produced by surface curvature. Using these 
elastic deformation models, we prove that any object 
which is kinematically immobilized t o  let or 2nd order 
is also dynamically locally asymptotically stable with 
respect to perturbations. 

1 Introduction 

The 2nd order mobility theory discussed in [12] is kine- 
matic in nature. However, potential applications of 2nd 
order immobility rely on contact forces generated by 
surface curvature effects. For example, consider fizture 
planning. The goal is to design fixtures that completely 
restrain a given object. In the c-space framework of 
[12], the god is t o  completely isolate the object's con- 
figuration from the remainder of its freespace, where 
the fixtures determine the c-obstacles. The frictionless 
equilibrium grasps of Fig. 1 are work holding exam- 
ples. mi, = 1 for both grasps, and let order theories 
wrongly predict that  the objects are not immobilized. 
It can be verified that mi, = 0 for both grasps, and 
the objects are completely immobilized using 2nd order 
effects. How are the forces which immobilize the ob- 
ject using 2nd order effects generated? We study this 
problem in this paper. 

Using an ideal rigid body model, we relate 2"d or- 
der effects t o  the time-derivative of the contact forces. 
A simple example, that  we term the Mason Poradoa: 
[7], shows that ideal rigid body models are inadequate 
to explain the origin of forces due to 2nd order effects. 
Additional assumptions must be introduced to explain 
these forces. Similar observation, in the context of peg 
insertion, was made by Rajan et. al [lo]. 

In Section 3 we introduce a class of "lumped parame- 
ter" elastic deformation models that  are non-linear and 
admit a c-space based representation. We also intro- 
duce a lumped parameter energy loss model that  ap- 

lWe rely on the terminology and results developed in (121. 
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Figure 1. Znd order immobile grasps 

proximately captures the effects of elastic hysteresis 
during contact deformations. Using these models, we 
prove that an object which is (kinematically) immobi- 
lized using eather let or 2nd order effects is  (dynami- 
cally) locally asymptotically stable. This stability result 
justifies the exploitation of 2nd order effects in the prac- 
tical applications that are discussed in the conclusion. 

Other authors have considered elastic deformations 
or the stability of grasps. For example, Pai and Donald 
[2] used a linear spring model to study the elastic defor- 
mation of snap fasteners. Hanafusa and Asada [5] im- 
plemented a stable multi-finger grasp algorithm based 
on first-order ideas. Montana [8, 91 analyzed the stabil- 
ity of grasps under small perturbation of the contacting 
fingers. 

2 

By an ideal rigid body model we mean that no defor- 
mation or interpenetration occurs when two bodies are 
pressed into contact. This section physically interprets 
let and 2nd order free motions, and shows via a paradox 
that 2nd order effects can not be satisfactorily explained 
by a ri id body model. In the following propositions, 
let A.,($ denote the set of points occupied by finger SZ, 
at time t .  

Znd Order Mobility and Rigid Body Models 

Proposition 2.1 Let A, push on €3 with a non-zero 
frictionless contact force F i ( t ) ,  as B moves along its c- 
space trajectory q ( t ) .  Then i ( 0 )  i s  a let order escape 
motion relative to &(O) if€ the wrench w(q,Fi)  satis- 
fies w(q, Fi) q(0) > 0 .  I n  particular, this implies that 
the kinetic energy of B increases at t = 0:  

K ( q ( t ) , i ( t ) )  > K(q(O),+(O)) for  all t E (074 (1) 



(a) @) 

Figure 2. (a) 13 cannot be stopped along its la* order 
escape motions (b) but can be stopped along its la* order 
penetration motions 

for  some E > 0 .  Ifq(0) is a lSt order roll-slide mo- 
tion, then $I ,=oK(q(t) ,q( t ) )  = 0 .  

Proof: Let C d ,  and its boundary Si be associ- 
ated with d , ( t )  a t  t = 0. I t  suffices to show that 
$l,=,K(q(t) ,Q(t))  = w(0) - q(0) > 0. According to 
[12, Theorem 11, w(0) = xi(O)&(q(O)), where Xi(0) > 0 
for non-zero finger force. From the definition of the 
lSt order escape motions it follows that q(0)  satisfies 
Fii(q(0)).  q(0)  > 0. The last two facts, together with 

cl 
In other words, if q(0) is a lSt order escape motion 

relative to d , ( O ) ,  no pushing force realizable by d, can 
decrease B's kinetic energy during a small time interval 
[O,E], nor can d, slow B to  a halt during this interval 
(Fig. 2(a)). Conversely, any non-zero force Fi strictly 
decreases B's kinetic energy when q 0 is a lSt order 
penetration motion relative to d,(O) \dig. 2(b)). 

A physical interpretation of the 2nd order free mo- 
tions is based on the following proposition: 

Proposition 2.2 Let Ai push on B with a non-zero 
frzctionless contact force Fi( t ) ,  as B moves along its 
c-space trajectory q ( t ) .  The pair q 0 , q ( O )  is a 2"d 
order escape motion relative to i[O]if€wlq, Fi) and 

the relation K = w . q ,  imply the result. 

satisfy w q, Fi).q(O) = 0 and 
his implies that the 

K ( q ( t ) , i ( t ) )  > K(q(O),G(O)) f o r  all t E (074  

> 0.  

for  some E > 0 .  If q(0) is a 2nd order roll- 
slide motion, then $ I t = , K ( q ( t ) , q ( t ) )  = 0 and 

Proof: From the definition of 2nd order free motions 
it follows that  q(0 in the air ( i ( O ) , q ( O ) )  is a lSt order 
roll-slide motion. kence q(!) is tangent to Si at qo E S i ,  
and $ I t Z o  K ( q ( t ) , i ( t ) ) . =  w(O).q(O) = 0, by Prop. 2.1. 
The time derivative of K = w q is: 

The wrench due to  Fi(t)  is given by ~ ( t )  = Ai(t)i?i(q(L$! 
where X i  0) > 0 for non-zero finger force. Substituting 

K = W * q + w * 9. 

for w an d  ti^ in (2) gives 

mltz(t) d' = (Xi(o)ii;(qo) + Xi(0) $lt=oci(q(t))) .  4 
+Xi(O)C(qo) * i 

since 4 is tangent to Si at qo = q(0)  E S i .  But this is 
exactly the second-order term in the Taylor expansion 
of d i ( q )  along q( t ) ,  given in [12, Eq. 31. The 2"d or- 
der escape motions are defined as the pairs ( q ( O ) , q ( O ) )  
that make this term positive. Hence k(0) > 0. Since 
k(0) = 0, it must be that k(t) is strictly positive im- 

0 

Remark: The change in B's kinetic energy along 2"d 
order free motions is affected by the pair (w ,w) ,  not 
just w, for we must consider K in addition to  K. The 
term w.4 in (2),  when q is a unit length tangent vector, 
is exactly the curvature of Si along q,  at qo E Si .  Thus, 
K along the 2nd order motions depends on the lst and 
2nd order geometry of Si at qo E Si .  

The proposition and its proof lead to the following in- 
sight. Whenever q(0) is a lst order roll-slide motion and 
( q ( O ) ! q ( O ) )  i.s a 2nd order escape motion, K is strictly 
positive during some interval (0 ,  €11. Further, accord- 
ing to Prop. 2.1, for a non-zero finger force, K ( t )  > o 
if and only if q(t)  is a lSt order escape motion with 
respect to di(t) .  Hence if ( i (O) ,@(O))  is a 2nd order es- 
cape motion, q(t) (which is a lSt order roll-slide motion 
at t = 0) must be a lat order escape motion during 
(O,q]-i.e., for t > 0. However, once q(t)  becomes a lSt 
order escape motion, it ceases to be a lSt order roll- 
slide motion. Thus trajectories of B can be lst order 
roll-slide and 2nd order escape motions only at isolated 
points of time. That is, the only physically realizable 
motions of B which are continuously lSt order roll-slide 
motions with respect to d, ( t )  must also be continuously 
2"d order roll-slide motions. This insight leads to the 
following paradox [7]. 

Mason's paradox: Let B be an ellipse, held by two 
concave fingers along its major a x i s  (Fig. 3(a)). The 
fingers push on B with, equal and opposite forces, so 
that the net wrench on B is zero. During t E ( - o o , O ) ,  
the three bodies travel upward with constant velocity. 
At t = 0, the fingers deccelerate, in an attempt to bring 
B to a halt, while maintaining their upward motion, 
without rotating or sliding sideways. Clearly B must be 
slowing down with the fingers. 

Let us examine the lo ical conclusion of the rigid 
body assumption. Let q p )  be B's c-space trajectory. 
Since q(t)  changes only its magnitude, not its direc- 
tion, and since t? is slowing down, it must be true that  
K ( t )  < K(0)  immediately after t = 0. Since q(0) is 
perpendicular to the fingers' contact forces, it is a lSt 
order roll-slide motion. According to Prop. 2.1, this im- 
plies that k(0) = 0. Since K ( t )  < K(0)  immediately 
after t = 0, it must be true that K ( 0 )  < 0. Indeed, it 
can be shown that ( i ( O ) , @ ( O ) )  is a 2nd order penetra- 
tion motion with respect to both fingers. According to 
Prop. 2.2, this implies that K(0)  = 0 and K(0)  < 0 as 
expected. 

Although 2nd order effects seem to predict the slow- 
ing down of B at t = 0, a paradox arises at times t > 0. 

mediately after t = 0, which implies the result. 

. ,  . - I  - 

= Xi(0) {( i i i (q( t ) ) )  . q + Si(q0) q }  , q(t), being continuously perpendicular to  the fingers' 
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Figure 3. (a) The fingers and object move with uniform 
velocity. (b) Once the fingers slow down, the object must 
penetrate the fingers 

contact forces, is continuously a lat order roll-slide mo- 
tion with.respect to the fingers. It follows from Prop. 
2.1 that  K is continuously zero, contradicting the pre- 
diction of Prop. 2.2, that  K(0)  < 0 and hence that 
k(t) < 0 immediately after t = 0. 

The contact points must therefore shift their rela- 
tive position at time t = 0. In the rigid body model, 
this is possible only if the fingers move apart from each 
other. Otherwise we get interpenetration of the bodies 
(Fig. 3(b)). We conclude that under the ideal rigid 
body model, where no interpenetration is allowed, the 
two fingers cannot slow €3 down along a purely upward 
motion. Since practical experience indicates that this 
conclusion is not true, we must conclude that the rigid 
body model is inadequate to  explain Znd order effects. 
In the next section the rigid body idealization is relaxed 
to allow elastic deformations. 

3 Elastic Deformation Contact Models 

By an elastic deformation model, we mean a lumped 
parameter model that  relates the deformation of con- 
tacting objects to their interbody force, We first es- 
tablish some properties required for our c-space elastic 
deformation models. 

3.1 The overlap distance 

As proposed by Gesley [3], small elastic deformations 
can be modeled by assuming that the contacting bodies 
are rigid, but that  their volumes are allowed to  overlap. 
This overlap gives rise to a force. To generalize this 
notion and adapt it to  our c-space framework, let oi(q) 
be the overlap between B(q)  and d,, defined as the 
minimal amount of translation of E? that separates it 
from A, (Fig. 4(a) . That is, oi at confi uration qo = 
(do,8,) is obtained by minimization of gd do I over 
all translations d such that B(d,Bo) and a ;ouch each 
other while their interiors are disjoint. 

oi can be interpreted as a distance function in c-space 
as follows. Let Sle, be the slice of Si by the c-space 
hyperplane with fixed orientation 80. Then oi is: 

(3) 
dst(d, S i l e )  if q is inside C A ,  

if q is outside Cd,. oi (d ,8)  = 

Note that  oi is similar to  d;, the Euclidean distance 
from S i ,  except that 0, is positive inside Cd, and is zero 

Figure 4. (a) The depth of overlap 0, (b) C-space interpre- 
tation of 0. 

overlap segment overlap segment 

Figure 6. The overlap segment lies in B n  A; for small 
overlaps, but not for deep ones 

outside it (Fig. 4(b)). Both oi and di are identically 
zero on Si. However, 0; is non-smooth on S i .  

o i ,  is measured with respect to  two points, one on 
the surface of B(q) ,  denoted x i ,  and one on the surface 
of A,, denoted y i .  x i  and yi  correspond to the points 
of maximum penetration of the two bodies. Thus, the 
minimum translation of B that will separate it from SZ, 
occurs along yi - z i .  Thus oi = llyi - .ill. 
Lemma 3.1 Let x i  and yi be the oints on B(q0) and 
A, where the depth of overlap, oi(q05, is achieved. Then 
x iy i  is perpendicular l o  the surfaces of B and A, at 
its endpoints. 

- 

A proof of this lemma can be found in [ll]. For the 
model to  be viable, ziyi must lie in the intersection of 
B and A,. 
Lemma 3.2 For all suficiently small values of the 
overlap o i ( q ) ,  the overlap segment siyi lies wholly in- 
side B ( q )  n A.,. 
Fig. 5 shows that the overlap segment may cease to  lie 
in B(q) n A, for “deep” overlaps. However, physically 
plausible interpenetrations are always small. 

We assume that the interbody forces that arise due to 
elastic deformation can be considered as a single force 
acting at  x i ,  pointing into B in the direction yi - x i .  
The real-world force acting on B at x i  due to  its inter- 
penetration with A, is denoted F i ( x ; ) ,  or Fi for short. 
Let fi(zi) be the inward pointing unit normal to the 
surface of B at  x i .  According to  Lemma 3.1, since ziyi 
is perpendicular to  the tangents of the surfaces of B and 
A,, Fi acts in the direction f i ( x ; ) .  

Proposition 3.3 Let A, be stationary and let B(q )  
have overlap oi(q) > 0 with A. Let F ( x i )  be the 
inter-body force which arises f ”  an elastic deforma- 
tion model. If F ( x i )  is directed along siyi into 8, then 
the corresponding c-space wrench is:  
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3.2 

We now summarize different possible elastic deforma- 
tion contact models. 

The Gesley model[3]: In this model, it is postulated 
that  the magnitude of Fi depends on oi and on its rate 
of change, bi,  as follows: 

A Summary of Possible Contact Models 

where qi ,& > 0. This is basically a c-space “spring” 
(with sprin constant q )  with damping (with damping 
coefficient 8. Note, this is NOT a linear spring model, 
since 0, does not in general vary linearly with respect to 
the displacement of B. The damping term is a simple 
lumped parameter approximation of energy loss pro- 
cesses that  arise from inelastic effects, such as elastic 
hysteresis. The factor oi in the damping term ensures 
that  no damping occurs when the bodies do not inter- 
penetrate. 

The Hertz Contact model: A more traditional 
lumped parameter elastic contact model, which has 
been corroborated in experiments, is due to Hertz 
(1882) [l]. When interpreted in our c-space framework, 
it can be shown that  the Hertz model produces a con- 
tact force of the form (neglecting damping effects): 

( 5 )  

where qi depends on the elasticity of the bodies and 
their undeformed contact geometry [l]. 

A general class of contact models: It can be shown 
that  the c-space wrench corresponding to  the Hertz and 
Gesley models is the negated gradient of the following 
c-space elastic potential energy function: 

where p = 0 in Gesley’s model and p = 0.5 in Hertz’s 
model. More generally, the stability results of Section 
4 will hold for any model of the form (6), and in fact 
for any elastic contact model in which Vi(q)  satisfies the 
two requirements: (1) Ui(q)  must be strictly positive for 
q inside C A ,  zero on Si ,  and zero outside C A  (i.e., the 
inter-bod force increases with increasing deformation); 
(2) W i ( q 7  is Lipschitz continuous. 

3.3 

The damping-force in Gesley’s model, denoted Di ( z , )  
where Di(z i )  = &oib i f i ( z i ) ,  is crude and is not con- 
sistent with tribological studies or physical intuition. 
For example, it does not account for energy loss in the 
situation shown in Fig. 6(a). In this example is sta- 
tionary, has planar surface, and is soft relative to B. As 
B translates parallel to  A ’ s  surface, a fixed overlap oi 
is maintained. Since bi = 0, D i ( x i  vanishes. However, 
intuition suggests that  inelastic e f l  ects due to material 
displacement caused by the passing of B must result in 

A More Realistic Damping Model 

(a) (b) 

Figure 6. (a) Pure translation with constant 0; (b) Pure 
rolling with constant 0; 

energy loss. We now introduce a comprehensive lumped 
parameter energy loss model. 

Let si be the point in B’s body-frame coordinates 
that is coincident with y i :  

Also recall that zi =.x(q,ri) = R(6)ri + d. The ve- 
locities XT, = R T ~  + d and X 3 ,  = Rsi + d describe the 
instantaneous velocity of the body fixed points ~i and si 
in world coordinates. The components of these veloci- 
ties that are tangential to the surface are given by their 
projection onto the plane normal to z;y;: [I-fiifiFIX,., 

and [I - f i i f i ? ] X 3 , ,  where f i i  is short for f i ( z i ) .  The 
damping due to [I - f i i f i : ] X , . ,  acts at x i ,  and the one 
due to [ I - f i i f i ? ] X 3 ,  acts at y i .  The resulting damping 
forces are: 

y i  = X ( q ,  s i )  = R(6)si + d where q = (d,  e).  

* (7) 
D ; l ( z ; )  5 &o,(o,fii - [ I  - fiifiT]X,.,) 

A 
D i 2 ( y i )  = - ( i ~ i [ I  - f i i f i : ]X8,  

The following lemma (proved in [ 111) provides an equiv- 
alent expression for Dil and Di2. 

Lemma 3.4 If st, is stationary, then D i l ( z ; )  = 
- < i O i X p i  and Di2(y i )  = - [ i 0 i X 3 , .  

A justification for inclusion of the term Di2(y i )  is shown 
in Fig. 6(b), where B performs pure rolling on a line 
at a fixed depth oi. Pure rolling is characterized by 
XTi = 0. Since = 0 and X,.; = 0, Dil is identically 
zero. Yet intuition suggests that material deformation 
causes damping due to inelastic effects. Indeed, X 8 , ,  
and consequently D i 2 ( y ; ) ,  are non-zero for this motion. 
Our intuition in this example is backed up by tribo- 
logical studies [4][pp 177-1821, where a term much like 
D i 2 ( y i )  is derived. 

4 

We now consider the predictive powers of our kinematic 
mobility theory when applied to the dynamic stability 
of kinematically immobile, but elastic, bodies. Let us 
first define kinematic immobility. 

Definition 1 A n  object B held in  equilibrium grasp b y  
k finger bodies is completely immobile if its configu- 
ration qo is isolated from the reminder of the freespace 
b y  the fingers’ c-obstacles. B is immobile to lSt order 
if mko = 0 ,  and is immobile to 2nd order if m5 = 0. 

Dynamic Stability of Immobilized Objects 
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Recall that  a grasp which is not immobilized to ldt 
order may be immobilized when 2nd order effects are 
taken into account. The undeformed bodies are as- 
sumed t o  contact at a point. A contact is termed 
generic if the surfaces generated by the 2nd order ap- 
proximation to  the bodies' surfaces are in point contact. 
This requirement is almost always satisfied. Theorem 
1 below relates kinematic immobility to the forces of 
restraint, and is a major contribution of this paper. 

Theorem 1 Let B be in static equilibrium at config- 
uration qo, in a generic point contact with k disjoint 
and stationary fingers, positioned in an  essential finger 
arrangement. Let the finger bodies satisfy the elastic 
contact model (9), such that none of the fingers inter- 
penetrates B at the equilibrium. If B i s  (kinematically) 
immobilized to lst or Znd  order, the state (q0 ,O)  is 
(dynamically) locally asymptotically stable. 

Before proving the theorem we consider its physi- 
cal interpretation and importance for practical appli- 
cations. The theorem can be interpreted to  say that  if 
a perturbing force is applied to  B while I3 is immobilized 
to or 2nd order, then when the perturbing force is 
removed, B is guaranteed to  stabilize to  its equilibrium 
grasp configuration with zero velocity. In particular, 
Mason's paradox can now be explained in terms of the 
temporary deformation of the decelerating finger bodies 
so as to generate forces opposing the motion of €3. 

The proof of the theorem is based on the following 
fact. A Lagrangian mechanical system of the form 

a d d  
d t a q  t3q (8) K - - K = w ,  -- 

is a damped mechanical system when w(t) is of the form 
w ( t )  = -VU(q)  + f d (  ,i), where U ( q )  is a potential 
energy function and fd?q ,  q )  is a dissipative vector field. 
f d ( q , q )  is a dissipative vector field if it acts to reduce 
the total mechanical energy, E = U + K, of the system. 
That is, $ E ( q ( t ) , q ( t ) )  < 0 along system trajectories. 
S i n c e E = U + K = U + w . q =  f d (  ,q) .q ,h<O 
whenever f d ( q ,  q)+ < 0. w e  say that f d f q ,  4) is negative 
definite at q (with respect to  4) if f d ( q , q )  q 5 0 and 
f d ( q . , q )  . q = 0 only for q = 0. The stability result, 
attributed to Kelvin [6], is: the local min ima of U ,  with 
zero velocity, of a strictly damped mechanical system 
(i.e. f d ( Q ,  q )  is negative definite at q )  are local attractors 
of its pow.  

We now consider the proof for the Gesley model (the 
proof can be extended to any model in Section 3.2). 
When €3 is contacted by k finger bodies satisfy the Ges- 
ley model, its corresponding Lagrangian dynamics are 
of the form (8), where w = 

. .  

wi, where 

(9) B is consequently subjected to a potential energy 
U ( q )  = ia io?(q) .  It is also subjected to 
a dissipative vector-field of the form f d ( q , q )  = 
- < i o i ( D X z X r i ( q , Q )  + DX,TiXai (q , i ) )*  

Proof of Theorem 1: The potential energy of B is 
U ( q )  = xi=1 iq ;o i (q) .  U(q0) = 0, since o;(qo) = o 
for i = 1, ..., k. Let q ( t )  be a smooth c-space path 
such that q(0) = qo. By definition, lst order im- 
mobility implies that %It=,di(q(t))  < 0 for some 
1 5 i 5 IC. Similarly, 2nd order immobility implies 
that either &ItZod i (q ( t ) )  < 0 for some 1 5 i 5 
k, or $It=,dj(q(t))  = 0 for j = 1 ,..., k and then 

In either 
case at least one di becomes negative after t = 0, which 
implies that  at least one 0; becomes positive after t = 0. 
Thus U ( q ( t ) )  is locally increasing along any path q( t ) ,  
and qo is consequently a strict local minimum of U. 
This establishes the first requirement of the stability 
theorem. 

Next we check if f d ( q , q )  is negative definite. By the 
chain rule, $ x r , ( q ( t ) )  = [DXr , (q ) ] i  and $ X s , ( q ( t ) )  = 

k 

da d ; ( q ( t ) )  < 0 for some 1 5 i 5 I C .  
Z F  I t = O  

[DX, , (q ) l4  Hence, 
f d ( q ,  4) * 4 = - zf=i < i o , ( x ~ D x r , q  + X s , D x s , q )  

= - < i ~ i ( ~ / ~ r , ~ ~  + l l X s , l 1 2 ) .  
2 

Since o? > o fpr at least one i ,  fd is dissipative.exk$ 
when X,, = X,, = 0. Since it is possible for X r ,  and 
X,, to  be zero for nonzero q,  it follows that  f d  is only 
negative semi-definite, since f d ( Q ,  4) . q might vanish for 
non-zero q. However, it can be shown [11] that f d ( q ,  q )  
q can vanish for non-zero q only at isolated points of 
time. A sim le extension of Kelvin's stability result 
reveals that  &o, 0) is locally asymptotically stable in 
such situations as well. 

5 Simulations 

Consider a planar object which is "grasped" by two 
disc-like fingers (Fig. 7). The lSt  order mobility of 
this grasp is mio = 2. However, because of the concav- 
ity at the contact points, the object is immobilized to 
2nd order. Thus, 2"d order effects play an important 
role in this example. The object's center of mass is lo- 
cated at its geometric center of symmetry, where the 
object frame is also located. Further, we assume the 
Gesley-like elastic deformation model and the general- 
ized damping model of Section 3.3. That is, we imple- 
ment the dynamics of Eq.s (8) and (9). Other elastic 
deformation models lead to analogous results. The dy- 
namic constants are: m = 0.5, Io,# = 0.05 (rotational 
inertia), q = 2 0 0 0 ,  = 800. Fig. 8 shows the time his- 
tories of the x, y, and 6 coordinates of the object frame 
for a situation in which the object is perturbed by 0 . 1  
units in the y direction, and then released at t = 0. As 
seen in the simulations, the object does indeed converge 
back to the equilibrium state at (x, y ,  0) = (0, 0,O). 

6 Summary and Applications 

We have shown [ 1 2 ]  that curvature effects can act to 
lower the mobility of a grasped object (as predicted 
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Figure 7. Two fingered planar grasp which is 2”d order 
immobile, but has la* mobility of 2. 

0.11 0.11 

-0.1 - 0 . 1  i 
Figure 8. z, y, and 0 (in radians) coordinates versus time 
(in seconds). 
by lSt order theories). Hence, 2nd order effects can be 
used for the purposes of immobilization. However, we 
showed (via Mason’s paradox) that  rigid body mod- 
els are not adequate to  explain the origin of contact 
forces in systems that  are immobilized by 2nd order 
effects. Consequently, we introduced a useful class of 
lumped parameter c-space elastic deformation models 
which explain how the contact forces are generated by 
small deformation of the contacting bodies. According 
to Theorem 1, lst and Znd order kinematic immobility 
guarantees asymptotic stability of the “grasped” object 
with respect to  small perturbations of its position and 
velocity. This result provides physical justification for 
applications of our 2nd order mobility theory. Below 
are some obvious applications of this work which have 
motivated our investigation. 

WorkHolding: In [12] we considered the use of 2nd 
order effects to prove new lower bounds on the number 
of frictionless fingers necessary to immobilize an object. 
In this paper we justified these results from a dynamic 
perspective. These results have obvious uses for fixture 
planning. Our 2nd order mobility results suggest that 
many objects can be immobilized with fewer numbers 
of fixtures than previously thought possible. 

Differentiating Between Equilibrium Grasps: 
The 2nd order mobility index can differentiate between 
alternate grasps that  are equivalent to  lSt order. A care- 
ful grasp planner should choose the most secure grasps, 
i.e. those with the lowest 2nd order mobility. 

Quasi-Static Posture Planning: Current motion 
planners are not equiped to  handle the problem of plan- 
ning the motion of a mobile articulated robot in a sta- 
tionary piecewise rigid environment. Examples are a 
“snake-like” robot that  crawls inside a tunnel by em- 
bracing against the tunnel walls, or a “monkey-like” 
limbed robot that climbs a trussed structure by push- 
ing and pulling. In these examples, one must plan the 

robot’s motion to satisfy high-level goals while main- 
taining quasi-static stability. We are primarily con- 
cerned with planning the “hand-hold” states (analogous 
to the hand-holds used by rock climbers between dy- 
namically moving states) where the grasped object, or 
the robot mechanism in the dual case, is at a static equi- 
librium. We term this problem the quasi-static posture 
planning problem. Our analysis is useful for these prob- 
lems because we may map the mechanism-environment 
pair to  a dual fingers-object pair. A cautious locomo- 
tion planner will always look for equilibrium postures 
that minimize the mechanism’s mobility. 
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