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Abstract 

The angular momentum of a free-flying space robot 
is a conserved quantity. This conservation law acts as 
a nonholonomic constraint and manifests itself when 
cyclic motion of the joints of the space robot produces 
a change in the orientation of the whole system. Con- 
sequently closed trajectories in the joint space of the 
robot usually fail to produce closed trajectories in the 
workspace. In this paper we first show that there exist 
some closed paths that are “holonomic loops” in the 
sense that the nonholonomic space robot exhibits holo- 
nomic behavior globally on these trajectories. When 
the joints of the space robot move along these tra- 
jectories, the end-effector traces a closed curve in the 
workspace. In this paper, we present a simple method 
to plan such trajectories that produce repeatable mo- 
tion of the space robot. 

1 Introduction 

A free-flying space robot is a nonholonomic me- 
chanical system. The nonholonomy in its mechan- 
ical structure is due to the conservation of the t e  
tal angular momentum of the system. The motion 
planning and control of such systems have been stud- 
ied extensively by a number of researchers. Some of 
the early work in this field was done by Alexander 
and Cannon [l], Vafa and Dubowsky [13], Longman 
et.al. [5], Umetani and Yoshida [12], Nakamura and 
Mukherjee [SI, Miyazaki, et.al. [6], Papadopoulous 
and Dubowsky [9], Sreenath [llj, etc. A more com- 
plete list of references in this area can be obtained from 
the references within the above references. Some of 
the above mentioned researchers addressed the prob- 
lem of reorientation of the space vehicle by using the 
joint motion of the robot. The motivation was to uti- 
lize the nonholonomic property of the space robotic 
system and achieve reorientation in the absence of ex- 
ternal generalized forces. 

With growing interest in the area of motion plan- 
ning of multibody systems in space, the problem of 
reorientation of a space robot using internal motion 
has been revisited. Some of the recent work in the 
area of motion planning are due to Reyhanoglu and 
McClamroch [lo], Yamada and Yoshikawa [l6], Walsh 
and Sastry (151, and Mukherjee and Zurowski [7]. In 
these works, the approach to the nonholonomic motion 
planning problem has been based on the theory of in- 

tegration on manifolds where a closed path in the joint 
space of the robot was appropriately chosen to produce 
a desired change in the orientation of the space vehicle. 
It is possible to find these closed paths in the space 
of the independent variables that produce a change in 
the dependent variables because of the nonholonomic 
nature of the constraint. 

The configuration variables of a holonomic system 
evolve in a way that when the independent variables 
move along closed trajectories, the dependent vari- 
ables also move along closed trajectories. This prop 
erty of repeatability is ensured if the differential con- 
straints of motion of a system are integrable, and nat- 
urally holonomic systems exhibit this property. How- 
ever, it  should be realized that systems with nonin- 
tegrable differential constraints may also exhibit this 
property for certain closed spatial trajectories of the 
independent variables. In other words, the integra- 
bility of the differential constraints is only a suffi- 
cient condition for repeatability, it is by no means a 
necessary condition. In the case of the space robot, 
closed paths in the joint space do not usually produce 
closed paths in the workspace because of the associ- 
ated change in the orientation of the space vehicle. 
But it can be shown that there exist closed paths in 
the joint space such that the space vehicle does not 
undergo any net change in its orientation as the joints 
move along these closed paths. These closed paths 
are like “holonomic loops” on which the nonholonomic 
space robot system exhibit holonomic behavior glob- 
ally. It is important to find such closed paths because 
a space robot may be required to perform a task re- 
peatedly in its workspace without any drift in its con- 
figuration variables. 

In section 2 of this paper we derive a necessary con- 
dition for the repeatability in the motion of free-flying 
planar space robots. A11 nonholonomic systems do 
not exhibit repeatability or pseudeholonomic behav- 
ior; we show this with an example in section 2. In 
section 3, we discuss a simple method for planning re- 
peatable trajectories for space robots. Section 4 con- 
tains some of the results that we have obtained from 
simulations. 

2 Necessary Condition for 
Repeatability 

We consider a space robot with two links mounted 
on a space vehicle as shown in Fig.1. The Cartesian 
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coordinates of the end-effector XE, YE have a func- 
tional dependence of the form 

where xo and yo are the coordinates of the center of 
mass of the space vehicle, 00 is the orientation of the 
vehicle, and 81 and 82 are the joint variables. The 
motion of the center of mass of the space vehicle is 
governed by the holonomic constraint due to linear 
momentum conservation. For zero initial linear mo- 
mentum, this can be reduced to the form 

Since we are looking into the repeatability problem 
of a planar space robot, we consider closed trajectories 
of the joint variables. If the orientation of the space 
vehicle trace a closed curve as the joints move along 
a closed trajectory, it is clear from Eqs.(l) and (2) 
that all the configuration variables including 50, yo, 
ZE, and YE will move along closed trajectories. This 
is not true in the general case. 

When the joints move along closed trajectories, and 
the system maintains zero angular momentum, the 
change in the orientation of the space vehicle is ex- 
pressed as a line integration along the closed path in 
the joint space. This line integral may be conviniently 
expressed as a surface integral using the generalized 
Stokes’ theorem on a manifold. If D is an oriented 
manifold of dimension k, and if w is a (k - 1)-form on 
D ,  then from Stokes’ theorem [2] we have 

LDW=Ldw (3) 

where, d D  is the path of the line integration and is the 
boundary of the domain D, and dw is a differential k- 
form obtained by exterior differentation of w. In the 
case of a space robot with two links, the domain D is a 
two dimensional manifold, and the differential 1-form 
on D is given as 

= gl(&,e2) a 1  +92(4,02)  dB2 (4) 

where, 00 is the orientation of the space vehicle, 81 and 
02 are the joint variables of the manipulator, and A,  
B,  and C are functions of 81 and 82. The expressions 
for A, B ,  and C are defined in the Appendix. 
Using Stokes’ theorem, the line integration of d8o 
along a path d D  on the two-dimensional manifold D 
of O1 and 02 is expressed as 

= J,[%-as,] dgl (de1 A dB2) . a 

where “A’’ denotes the exterior product, and CY, the 
orientation of D has the same orientation as dxl A dx2 
when the direction along the path is counterclockwise, 
otherwise a has the same orientation as dx2 A dx1. 
The symbol “.” in EQ.(5) denotes the inner product 
operation between d x 1  A dx2 and a. 

If the constraint given by Eq.(4) were a holonomic 
constraint, then we would have 

Then the change in the variable 00 would be zero for 
all closed paths in the domain D because of the in- 
tegrable nature of the constraints. This would ensure 
repeatability. Our contention is that integrability is a 
sufficient condition for repeatability but is not a neces- 
sary condition. For a space robot where the condition 
given by Eq.(6) does not hold good, repeatability can 
be still achieved for specific closed paths in the domain 
D. Let us define 

(7) 

Then we realize that the change in the orientation of 
the space robot for a positive direction of travel is 
equivalent to 

where, Eq.(8) was obtained by the application of the 
mean value theorem of integral calculus. The function 
F can be shown to be continuous in the entire domain 
D and hence the mean value theorem applies. 0; and 
0; denote some point within the domain D, and r ( D )  
is the measure of the domain D; in this case it is sim- 
ply equal to  the area enclosed within the closed curve 
dD. F(8* 0.) can also be interpreted as the mean 
value of thk ?unction F ,  defined in Eq.(7), taken over 
the domain D. If this mean value happens to be zero, 
then we would have a zero net change in the orienta- 
tion of the space vehicle when the joints move along 
closed paths. This would ensure repeatability in the 
motion of the end-effector in the workspace. We are 
now ready to state the necessary condition for the re- 
peatable motion of the space vehicle. 

Proposition: A necessary condition for the repeat- 
able motion of the space vehicle is that the closed path 
d D  which is the boundary of the domain D in the joint 
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space should enclose at least one point where the func- 
tion F defined by Eq.(7) is equal to zero. 
The proof of the proposition stated above is quite 
straightforward and is left to  the reader. 

Before we go on to  the next section we would just 
like to point out that all nonholonomic systems do not 
exhibit pseudo-holonomic behavior. In the classical 
example of the rolling disk [4], the two nonholonomic 
constraints are 

drc-r sinad0 = O  

d y - r c o s a d 0  = O  (9) 

It can be shown that the change in the dependent 
variables for closed loop motion of the independent 
variables 0 and a are given by 

F ( o , ~ )  = ( -cos& sina )T (10) 

Since the function F(B,a) is not equal to zero at any 
point in the space of 0 and a,  the rolling disk does 
not satisfy the necessary condition for repeatability. 
Consequently, it does not admit repeatable motions. 

3 Planning Repeatable Paths  for 
Planar Space Robots 

In this section we present a simple method to plan 
repeatable paths for the space robot, shown in Fig.1. 
All paths that will ensure repeatability will have to 
satisy the necessary condition for repeatability, devel- 
oped in the last section. Therefore, we first take a 
look at all points in the 01-82 space where the func- 
tion F ( O 1 ,  02) in Eq.(7) is identically zero. The set of 
all such points constitute a smooth curve, as seen in 
Fig.2. 

We assume our closed path to have an elliptical 
shape. This path, as seen in Fig.3, can be parameter- 
ized as follows: 

O1 
02 

= Ol0 + a cos 4 cos 27rt - b s in  4 s in  27rt 
= 020 + a s i n  4 cos 21rt + b cos 4 s in  21rt 

t E [0,11 (11) 

where, a, and b are the major and minor axes of the 
ellipse, 4 is the angle of inclination of the ellipse with 
the 01 axis, and 810 and 020 are the coordinates of 
the center of the ellipse. The velocities of the joints of 
the manipulator can be easily obtained from the above 
equation as a function of time. Consequently, the rate 
of change of the orientation of the space vehicle can 
be obtained from Eq.(4) as a function of time. 

We start with an initial elliptical path which is char- 
acterized by the parameters 010, 020, a, b, and 4. The 
initial choices of these parameters are quite arbitrary. 

We only make sure that (1) the ellipse encompasses at 
least one point where the function F defined by Eq.(7) 
is equal to zero, and (2) the elliptical path lies in the 
workspace of the robot. Condition 1 can be easily sat- 
isfied by considering Fig.2 which provides the set of 
all points where the function F vanishes. Condition 
2 can be taken care of by applying methods discussed 
in [9]. 

Our goal is now to change the five parameters of the 
ellipse so that the value of the surface integral given 
by Eq.(5) is equal to zero. Of the five different parain- 
eters a and b are not allowed to change independent of 
one another. This is because we want to eliminate the 
trivial solution where the surface integral is zero be- 
cause the area of the closed path is equal to zero. One 
simple way to avoid this situation is to impose the re- 
striction that the area of the ellipse is a constant. This 
is equivalent to the constraint 

adb+  bda = 0 (12) 
We define a function V as follows 

and solve the unconstrained minimization problem by 
implicitly assuming that a and b are dependent. While 
there are many methods for unconstrained minimiza- 
tion, we choose the simplest method of steepest de- 
scent (141. Other alternative methods that can be 
used are the conjugate direction method by Fletcher 
and Reeves [3], and the variable metric method [14] 
that offer improvement over the method of steepest 
descent. In our case the method of steepest descent 
works well and therefore we adopted it only for its 
simplicity. 

The correct choice of the independent parameters 
010, 020, 4, and a that provied us with the steepest 
direction of descent of the function V are computed 
as 

In Eq.(14), the quantities (aC/a&o), (ac/aQ,o), (ac/a+), and (aC/aa) are computed by numerical 
partial differentiation. While computing the term 
(a</aa)  it has to be remembered that a change in a is 
accompanied by a change in b given by the constraint 
in Eq.(12). 

The optimization technique discussed above pro- 
vides us with a systematic way to reach the local min- 
imum value of the function V .  If this minimum value 
is zero, then we have converged upon the desired path 
around which the space robot will exhibit holonomic 
behavior. In the general case, the method of steepest 
descent does not guarantee the convergence of a func- 
tion to its global minimum value. However, in our case 
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the method always converged to the global minimum 
value of V = 0, because of the particular nature of the 
function F in Eq.(7). 

repeatable motion in the general case due to its non- 
holonomy, it is possible to find exceptions to the rule. 
We showed in this paper that there exist ‘‘holonomic 
loops” on which the space robot exhibit holonomic b e  

4 Simulations havior globally. We presented a simple method based 
on optimization techniques to  plan these trajectories 
that result in repeatable motion of the planar space We carried out several computer simulations. Here 

we present results of one particular case. The kine- robot. 
matic and dynamic parameters of the planar 
robot were chosen to be 

Table of Kinematic and Dynamic Parameters 

I 1 Mass I Inertia I Length I 

Link-2 I 2.640 I 0.028 I 1 2 = 0.35 

The initial parameters of the elliptical path were 
arbitrarily chosen as 

a = 1.50000, b = 1.00000, r$ = 0.75000 
el0 = 0.50000 eZO = 0.50000 (15) 

where the units are in radians. For these set of val- 
ues, the numerical value of the surface integral C was 
found to  be C = -0.162775. The convergence criterion 
was set at I C I 5 1.0 x lo-*. The values of the path 
parameters after convergence were 

a = 1.31117, b = 1.14381, r$ = 0.79302 
elo = 0,34094 eZO = -0.07054 ( 16) 

The two elliptical paths are shown in Fig.$. Ellipse I 
corresponds to the initial choice of the path param- 
eters given by Eq.(15) for which the value of C = 
-0.162775. Ellipse I I  corresponds to the optimized 
values of the path parameters given by Eq.( 16) and 
the value of C for this path was C = -9.9636 x lo-’. 
The sinusoidal curve in Fig.2 is inset in Fig.4. This 
curve passes through both paths I and I I  and there 
fore these paths satisfy the necessary condition d i s  
cussed in section 2. 

Figures 5 and 6 depict the motion of the end- 
effector of the space robot for 20 cycles for the el- 
liptical paths I and I1 respectively. The end-effector 
configuration is seen to drift in Fig.5 but has negligi- 
ble drift for the closed path in Fig.6. The magnitude 
of the drift was computed to be approximately 76.96 
“/cycle in the case of path I whereas it was only 
0.87 “/cycle for path 11. 

5 Conclusion 
One of the objectives of this paper was to show 

that integrability is merely a sufficient condition for 
repeatability; it  is by no means a necessary condition. 
We elucidated our point through the example of a pla- 
nar space robot. Though a space robot does not admit 

space 
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Appendix 
The terms A,  B, and C in Eq.(4) are defined as 

follows 

+ 

where, mo, ml, and m2 are the masses of the space 
vehicle and the two links of the manipulator, IO, 11, 
and 1 2  are the moment of inertias of the space vehicle 
and the two links about their center of masses, r is the 
distance of the first joint from the center of mass of 

the vehicle, 11 and 12 are the lengths of the two links, 
M mo + ml + m2, and It IO +I1 +I2. 

link-:! b/’ 
Space Vehicle 

(a,,, yo) = center of mass ( C h l . )  o l  space vcliicle 

Figure 1. A planar space robot with two links is ca- 
pable of exhibiting pseudo-holonomic behavior. 

Figure 2. All the points in the 8-82 space where 
F(el, e,) = 0. 
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Figure 3. Parametric representation of the elliptical 
path in the Q1-& space. 

2 .” 0 c 7 

8 ,  (rad) 

Figure 4. Elliptical paths in the joint space of the 
planar space robot. 

R 

x coordinate of riid-effeclol~ ( i n )  

Figure 5. End-effector drift in 20 cycles for path I 

x coordinate of end-effector (111) 

Figure 6 .  Repeatable end-effector motion for path 11. 
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