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Abstract

Local performance optimization for joint limit avoidance and manipula-

bility maximization (singularity avoidance) is obtained by using the Jacobian

matrix pseudoinverse and by projecting the gradient of an objective fanction

into the Jacobian null space. Real-time redundancy optimization control is

achieved for art eight-joint redundant manipulator having a three-axis spher-

ical shoulder, a single elbow joint, and a four-axis spherical wrist. Symbolic

solutio_s are used for both fuU-Jacobian and wrist-partitioned pseudo-

inverses, partitione.d null-space projection matrices, and all objective func-

tion gradients. A kinematic limitation of this class of manipulators and the

limitation's effect on redundancy resolution are discussed. Results obtained

with graphical simulation are presented to demonstrate the effectiveness of

local redundant manipulator performance optimization. Actual hardware ex-

periments performed to verify the simulated results are also discussed. A

major result is that the partitioned solution is desirable because of low com-

putation requirements. The partitioned solution is suboptimal compared with

the full solution because translational and rotational terms are optimized

separately; however, the results show that the difference is not significant.

Singularity analysis reveals that no algorithmic singularities exist for the par-

titioned solution. The partitioned and full solutions share the same physical

manipulator singular conditions. When compared with the full solution, the

partitioned solution is shown to be ill-conditioned in smaller neighborhoods

of the shared singularities.

1. Introduction

Kinematically redundant maIfipulators, those

with more degrees of freedom than task constraints,

can have a secondary task of performance optimiza-
tion in addition to the primary task of providing

a Cartesian trajectory. Whitney (ref. 1) derived

the pseudoinverse solution for the primary task in
the framework of the resolved motion rate algo-

rithm. Liegeois (ref. 2) suggested the local redun-

dancy resolution method that is now commonly used.
This method uses the Moore-Penrose pseudoinverse

(ref. 3) to solve the primary task and projects the

gradient of an objective function into the mill space
of the Jacobian matrix to solve the secondary task. A

good review of pseudoinverse-based local redundancy

resolution is given in references 4 and 5.

Many authors who claiin that the Liegeois method

is too slow for real-time application to three-
dimensional redundant manipulators have developed

alternate methods that focus on reducing the compu-

tational requirements (e.g., refs. 6 8). The approach

described in this paper applies the Liegeois method

in real time by using symbolical pseudoinverses for

t)oth full and partitioned Jacobian matrices.

Other authors have investigated the use of par-

titioned or symbolic methods in redundancy resolu-

tion. Kirdanski and Petrovid (ref. 9) decompose a

manipulator into redundant and nonredundant sub-
assemblies; the redundant joints are solved by singu-

lar value decomposition or equivalent methods, and

the nonredundant joints are solved analytically. Holt

(ref. 10) presents numerical computation of the ap-
proximate pseudoinverse for a six-axis manipulator

near singularities by taking advantage of the wrist

partitioning of the Jaeobian nmtrix. Chevallereau

and Khalil (ref. 11) present symbolic pseudoinverse
calculations for nonredundant manipulators at sin-

gularities and for a six-degree-of-freedom manipula-
tor on a linear track. In reference 12, Podhorodeski,

Goldenberg, and Fenton use screw theory in an or-
thogonal decomposition of a Jaeobian matrix for a re-

dundant manipulator to determine analytical expres-

sions for the particular solution and the null-space
basis.

The references in the previous paragraph are lim-

ited in scope in that they deal either with non-

redundant nmnipulators at singularities or with re-
dundant manipulators having only one degree of

redundancy. In the partitioned solution of refer-

ence 9, only three joints are treated as redundant;
this treatment is limiting because the remaining four

joints do not participate in optimization. This paper
develops both flfll and wrist-partitioned solutions for



a manipulatorwith two redm,dantdegreesof free-
dora. Herethe partitionedsolutionis moreuseful
becauseeachsubassemblyhasaredundantdegreeof
freedom;thus,performanceoptimizationis accom-
plishedfor each. To the author'sknowledge,this
workhasnot beenpublishedbefore.Tile motiva-
tion for this work is real-timeredundancyresolu-
tion of manipulatorsfor remotespaceapplications;
Earth-basedapplicationscanbenefitalso.Thiswork
wasperformedwith graphicalsinmlationandactual
hardware.

Thispaperdescribesreal-timelocalperfornmnce
optimizationeffortsforaneight-jointredundantma-
nipulatorhavinga three-axissphericalshoulderS,

a single elbow joint E, and a four-axis spherical

wrist W. (See fig. 1.) The Advanced Research Ma-

nipulator II (ARMII) is an eight-axis manipulator in
this class. NASA Langley Research Center has two

of these arms. This paper has four objectives: (1) To

apply the Liegeois method for local performance op-

timization (joint limit avoidance and manipulat)ility
maximization) of the eight-axis manipulator in fig-

ure 1 and implement the method on actual hardware
in real time. (2) To investigate a kinenmtic limitation

of this class of manipulators mid report its effect on

re(tundmmy resolution. (3) To present closed-form

symbolic solutions for reduced computation. (4) To
develop a wrist-partitioned solution for reduced com-

putation and show that it is as wdid, robust, and
effective as the full solution.
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Figure 1. Class of eight-axis manipulators.

This paper is organized as follows. Local per-

formance optimization of redundant manipulators is

presented for general applications and for the con-

figuration of figure 1. A partitioned solution is de-

veloped where optimization is accomplished for each

subassembly. Singularity analysis is presented for

both full and partitioned solutions. Results are pre-
sented to show the effectiveness of local performance

optimization. Results are also given to compare the
effectiveness of the partitioned and full solutions. A

kinematic lilnitation of this manipulator is investi-

gated, the lilnitation's effect on redundancy resolu-

tion is described, and proposed design alternatives

are presented to alleviate the problems. Finally, the
accoinplishments of this paper are summarized.

2. Symbols

ai-1

ci

d,

d3, d5

H

VH

VHi¢4

HA

VHA,i¢4

Hj

HM

HW

VHw

Ip

J

j*

J4

Jsx7

J_x7

JUL

Denavit-Hartenberg parameter

cos Oi

Denavit-Hartenberg parameter

Denavit-Hartenberg parameters, fixed

manipulator lengths

objective function for optimization

gradient of H

VH excluding the fourth term

objective function for arm

subassembly optimization

gradient of H A excluding the fourth
terln

objective flmction for joint limit
avoidance

objective function for

manipulability maxilnization

objective function for wrist

subassembly optimization

gradient of H W

identity matrix of order p

manipulator Jacobian matrix

Moore-Penrose pseudoinverse of
Jacobian matrix

column 4 of J with row 1 removed

reduced Jacobian nmtrix with row 1

and colunm 4 removed, dinmnsion
5x7

Moore-Penrose pseudoinverse of

reduced Jacobian matrix, dinmnsion
7x5

upper left partition of J, order 3 x 4



JLL

JL_?

JUL4

J_UL4

k

kA

k.l

kM

kII."

71

Ni×j

8i

v

vi

X

Xl

(_i- 1

Oci

Oi

AO i

0

0

04

OAH, i¢4

OAP, i¢4

lower left partition of J, order 3 x 4

lower right partition of J, order 3 x 4

column 4 of JUL with row 1 removed

Moore-Penrose pseudoinverse of JUL

with row 1 and cohmm 4 removed

Moore-Penrose pseudoinverse of JLR

scalar gain for homogeneous solution

scalar gain for arm subassembly

homogeneous solution

scalar gain for joint limit avoidance
homogeneous solution

scalar gain for manipulability

maximization homogeneous solution

scalar gain for wrist sut)a.ssembly

homogeneous solution

dimension of task space

dimension of joint space

rotation matrix representing orien-

tation of frame {8} in frame {4}

array of real numbers, dimension i x j

sin Oi

translational terms of X, { J: :0 _ }T

v with first term removed

Cartesian translational and rota-

tional end-effector velocity

X with first term removed

Denavit-Hartenberg parameter

center of travel for joint i

Denavit-Hartenberg parameter,

joint angle i

half range of travel for joint i

vector of eight joint angles

joint rate vector

arm subassembly joint rates,

{_)t 02 03 04} T

homogeneous solution for arm sub-

assembly joint rates excluding joint 4

particular solution for arm sub-

assembly joint rates excluding joint 4

/)AT

_)AT, i¢4

OH,i#4

Oi

Oe.i/. 

OT, i¢,l

OW

OWH

OWP

0W7"

02

M at helnat ical

{}

{.,., ..., .}T

total solution for arm subassembly

joint rates

total solution for arm subassembly

joint rates excluding joint 4

homogeneous solution for joint rates

excluding joint 4

ith joint rate

particular solution for joint rates

excluding joint 4

total solution for joint rates excluding

joint 4

wrist subassembly joint rates,

06 07 T

homogeneous solution for wrist
subassembly joint rates

particular solution for wrist
subassembly joint rates

total solution for wrist subassembly

joint rates

rotational terms of X,

notation:

Cartesian coordinate frame

vector components

(teternfinant of a matrix

Arm reference points:

E elbow

EE end effector

S shoulder

W wrist

Coordinate frames:

4 elbow

8 wrist

Abbreviations:

ARMII Advanced Research Manipulator II

JLA joint limit avoidance

MM manipulability maxinfization



3. Local Performance Optimization

Using Redundancy

3.1. General Redundant Solution

The resolved motion rate algorittun (ref. 1) is
a coimnon method for Cartesian control of redun-

dant manipulators. Joint rates 0 are mapped to

end-effector Cartesian velocities X by the Jacobian

matrix J a.s follows:

X = J0 (1)

Ill equation (1), X E _m×l, J E _Rm ×T_, and

0 E ,_n×l, where m is tile dimension of tile task space

(m - 6 for spatial Cartesian control) and n is tile di-
mension of tile joint space (n = 8 in this paper). To

command a trajectory X to a manipulator, 0 nmst
be solved.

A kinematically redundant nmnipulator has more

degrees of freedom than required to perform the

task; that is, m < n. In this case, equation (1) is
underconstrained, and an infinite numt)er of solutions

for 0 generally exist. A resolved motion rate solution

(ref. 2) is expressed as follows:

0 = J*X + k(I,, - J*J)VH (2)

The first term of equation (2) is the particular solu-

tion. The matrix J* is tile Moore-Penrose pseudo-

inverse (ref. 3) of the Jacobian matrix, which pro-

vides the least-squares solution of equation (1) to
achiew_ tile Cartesian velocity conunand (called the

primary task). Tile second term, the homogeneous

solution, causes zero motion of the end effector. The

linear operator (I,, - J'J) projects an arbitrary vec-
tor into the null space of the Jacobian matrix. This

null-space projection matrix provides the self-motion

of the redundant manipulator. To optimize perfor-

mance criteria, the gradient of all objective flmction
of joint angles VH is used (ref. 2). The gain k is

positive to maximize H and negative to nfinimize H.

Figure 2 shows a geometric interpretation of the

Jacobian matrix null space for the manipulator in

figure 1. The self-motion of this nmnipulator is the
orbit of the elbow joint about the line SW. That

is, by a reconfiguration of joints, the position and
orientation of the end effector can be held fixed while

the elbow joint assumes any position along tile circle

of figure 2.

3.2. Eight-Axis Redundant Solution

This section presents the adaptation of the gen-
eral solution in equation (2) to the eight-axis manip-

ulator shown in figure 1. To the author's knowledge,

?'%/",.A'

w

Figure 2. Geometric interpretation of eight-axis arm self-
motion.

the solutions in this section have not been published
before. This manipulator can be viewed as two sub-

assemblies: an arm portion (0:, 02, 03, 04) respon-

sible primarily for positioning and a spherical wrist

(05, 06, 07, 08) centered at W responsible primarily
for orienting tile end effcctor. The arm subassembly

consists of a three-axis spherical shoulder centered

at S, and a single elbow joint at E. The four-axis
wrist inechanisnl is a roll-yaw-pitch-roll mechanisnl.

The ARMII is an eight-axis manipulator of the
class shown in figure 1. The theory of this paper

has been implemented in real-tinm (33 Hz update)

on the ARMII. Appendix A presents the following

information for the ARMII: a photograph, the de-

sign attributes, the kinenmtic diagram, the Denavit-
Hartenberg parameters, the joint limits, tile Jacobian

matrix referred to frame {4} (which is symbolically
tile least complex among all possibilities), and a ve-

locity coordinate transformation for use with this

Jacobian matrix. In addition, reference 13 presents

ARMII forward and inverse position and velocity
kinematics equations, where the inverse solutions are

limited to six degrees of freedom.

3.2.1. Independent solution for elbow joint
rate. For manit)ulators with a spherical wrist, a

spherical shoulder, and a single elbow joint, the

length of reach from S to W is a function of only
the elbow joint angle. The SEW manipulator sub-

assembly is shown in figure 3. To simplify the re-

solved rate solution, the elbow joint rate is calculated

independently of the remaining unknown joint rates.

For the eight-axis arm, this solution (ref. 13) is given
as follows:

04 = -1 ( d3c4 + ds _l"_ (3)d_ x" + d3s4 ]



In equation (3), d3 and d5 are kinematic parame-

ters (fig. 3), 5: and y are wrist Cartesian velocity
commands expressed in frame {4}, and s4 and c4

are the sine and cosine of tile elbow joint angle 04.

Equation (3) is the general form of the particu-

lar solution for the elbow rate because the required
wrist velocities can be calculated from commanded

velocities in frames different from the wrist (I)ut

rigidly attached to frame {8}) via rigid-body velocity

transformations. (See ref. 14.
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Figure 3. Elbow joint geom_t.ry.

3.2.2. Reduced Jacobian solution. Given tile

solution in equation (3), the fourth colunm of the

Jacobian matrix nnfltiplied by t)4 is moved to the

left side of equation (1). The result is a 6 x 7
Jacobian matrix that has a nmximum rank of 5

because the elbow relationship uses one degree of
freedom. Therefore, either row 1 or 2 nmst be

removed from both sides of equation (1); row 1 is

removed because it has more symbolic terms. (See

appendix A.) With this reduced ,]acobian matrix, the

particular solution for the remaining joint rates is

(4a)

Thc vector X 1 is the Cartesian velocity comnmnd

and J4 is the fourth column of the Jacobian matrix;
both have row 1 removed. The pseudoinverse of tire

reduced Jacobian matrix (J_×7) was derived with a
computer symbolic manipulation program (ref. 15)

with J*= jT(jjT)-I. "When jjT is singular, a

numerical singular value decomposition can be used

to calculate J5xT, the exact Cartesian trajectory
cannot be achieved, but this alternate solution is tile

best available given the singular condition.

No loss of generality occurs when equations (3)

and (4a) are used for the particular solution to equa-

tion (1). If the geometric relationship of equation (3)

is not exploited for the solution of 04, the pseudo-

inverse of the 6 x 8 Jaeobian matrix and equation (3)

always yield the same value.

The hoinogeneous solution of equation (1) for

local redundancy optimization is

OH,it 4 = k(I7 - J_x7Jr)×7)VHi¢4 (4b)

The null-space projection operator is a square ma-
trix of order 7 that was obtained from the reduced

,]acobian matrix. The homogeneous term for 04 is

zero because of the geometric elbow constraint. Any

addition to the particular solution (eq. (3)) would

cause a deviation from the commanded trajectory.
The fourth term of the constraint fimetion gradient

is excluded, as explained in the next paragraph.

Again, no loss of generality is incurred when

equation (4b) is used a_s the homogeneous solution

to equation (1). In general, J J* = Ira, trot J*J _ I_.
However, because of tile geometric elbow constraint

of the eight-axis arm, the fourth row and cohmm
of J*J are tlle same as tile fourth row and column of

the identity matrix, when J is the fifll 6 x 8 ,Iaeobian
matrix. The null-space projection matrix thus has
zeros for the fourth row and cohmm. This condition

has two consequences. (1) Because the fourth row

is zero, a homogeneous term for 04 does not exist.

(2) Because the fourth eohmm is zero, the partial
derivative of a constraint filnction with respect to 04

never adds to the homogeneous terms for the other

joint rates.

The total solution to equation (1) is as follows.

The particular solution for the elbow joint rate is

given in equation (3), and the total solution for the
remaining joints is the sum of the particular and

homogeneous solutions:

OT, i¢. l = Op, i¢. 1 + OH.i¢. 1 (4C)

3.2.3. Partitioned reduced Jacobian solu-

tion. To greatly reduce the computation require-

ment, a partitioned approach for the particular solu-

tion of equation (1) was implemented. The particular
solution for the fifll Jacol)ian matrix requires 25 times

more computation time than the partitioned particu-

lar solution (ref. 15). This section discusses the par-
titioned solution and extends the theory to include

the partitioned homogeneous solution.

Wrist partitioning is a common method for solv-
ing the inverse position and velocity problems of

5



nonredundantindustrialmanipulatorswithspherical
wrists.Fornonredundantmanipulators,thefull and
partitionedsolutionsyield the same results. How-

ever, for redundant manipulators, the partitioned so-
lution yields a suboptimal result because the con-

straints are optimized separately for translation and

orientation. For instance, the full particular solu-

tion for joint rates is the least-squares solution. Tile
magnitude of the partitioned solution joint rates is

higher, but the difference is not significant. (See

section 4.2.1.)

For a nmnipulator with a spherical wrist, equa-

tion (1) can be written in the following partitioned
forIn:

_o = [Jt./, JLn 0w (5)

The vectors v and oa are the translational and rota-

tional Cartesian velocity commands. The Jacobian
matrix is partitioned into upper-left, lower-left, and

lower-right 3 x 4 submatrices. The vector C)A repre-

sents the translational (arm) joint rates 1 through 4,

and 0 W the rotational (wrist) joint rates 5 through 8.

The upper-right submatrix in equation (5) is the
3 x 4 zero matrix because of the spherical wrist: The

wrist joint rates do not affect the translational veloc-

ities of tile wrist center. In the translational equa-
tions, 04 is first determined from equation (3). The

particular solution for the remaining arm joint rates
is as follows:

OAP, i¢,I J*= IUIA(Vl--JuL40,I) (6a)

The joint rate vector OAP, i#4 contains the transla-

tional joint rates excluding &|, J_UL4 is the 3 × 2
pseudoinverse of JUL with cohmm 4 and row 1 re-

moved, Vl is v with row 1 removed, and JUL4 is

cohunn 4 of JUL with row 1 removed.

Tile hon)ogeneous solution for tile arm joint rates
excluding 04 is given in the following equation,

where H A is a function of the arm joint angles:

OAH,i¢4 = kA(Ia - J*IUL_IJ1uL4)VHA,i¢4 (6b)

The total arm joint rate solution is ms follows. The

particular solution for the elbow joint rate is given !n
equation (3)• Again, the homogeneous solution for 04

is zero. The total solution for the remaining arm
joints is the sum of the particular and homogeneous
solutions:

OAT,i¢4 = OAP, i¢4 + OAU,i¢4 (6c)

For the same rea_sons stated for the non-

partitioned solution, no loss of generality is incurred

by using equation (3) and reducing JUL to JIUL4

for both particular and homogeneous translational
solutions.

The particular and homogeneous wrist joint rate

solutions are given in equations (7a) and (7b). The

total wrist joint rate solution is the sum of the
particular and homogeneous solutions:

0wp : J_A? (w - JLLOAT) (Ta)

OWH = k W (I 4 -- J*LRJLR)VHw (7t))

Owr = Owe +/h_'H (7c)

The full JLR is used for the rotational equations so

the order of the pseudoinverse J*LI¢ is 4 x 3. The
effect of the total arm joint solution nmst t)e sub-

tracted for the wrist particular solution. The ob-

jective function H W is a fimction of the wrist joint
angles.

Symbolic expressions for J_UL.1 and J_A_ are given
in appendix B. Also, the symt)olie forms of the

partitioned mill-space projection matrices arc given

in appendix C.

3.2.4. Eight-axis arm singularity analysis.

Singularity conditions for redundant nmnipulators

arise when IJJTI = 0. This matrix is symmetric

and positive semidefinite (IJJT[ _> 0). For the par-

titioned solution, singularity analysis is presented as
follows. The calculation of 04 in equation (3) fails
when da = 0 or d5 -- 0 (neither is possible) or when

04 = 0 °, 180 °. The joint angles follow Craig's con-
vention (ref. 14), and the zero position for all joint

angles is given in figure A2 of appendix A. The singu-

larity condition for the remaining translational joints

is independent of 01. (In appendix B, DUL is given.)

J1U/AJtT_/L4 : d_s_DuL : 0 (8)

Of the three terms in equation (8), only the last two

can become zero. When 04 = 0°, 180 °, the transla-
tional joints are in the elbow work space limit singu-

larity. At 04 = 0 °, the elbow is fully extended and

the freedom to translate along EW has been instan-

taneously lost. Similarly at 04 = 180 °, tile elbow is

folded upon itself. The term DI: L can become zero
in two ways.

1. 02 =0 °,180 ° and 0a =+90 ° . (See fig. 4(a).)

In this ease, joint 4 can instantaneously move
W tangentially to the link EW, and joint 1, 2,
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Figure ,1. Singularity contigurations.

or 3 can move \¥ perpendicular to the plane of

the side view. However, the freedoln to trans-

late radially along link gW is gone (singular

direction).

2. 02 =04 =0 °,180 ° • This case is doubly de-

generate with respect to translation. (See

fig. 4(b).) The zeros of DUL were obtained

numerically because of its complexity.

The singularity condition for the wrist joints is

independent of 05 and 0s and is given as follows:

J LRJTR =2(1-- 2s2\s6' 7) = 0
(9)

The wrist singularity occurs only when 06 = ±90 °

and 07 = ±90 ° simultaneously. As shown in fig-

ure 4(c), joints 5 and 7 provide yaw, joints 6 and 8

provide roll, but the freedom to pitch has been lost.

7



The symbol EE in figure 4(e) represents the end
effector.

Table 1 sunnnarizes the four singularity condi-
tions for the general eight-axis arm. For the ARMII,

as shown m table A2, the cases where 02 or 04

equal 180 ° and 07 = +90 ° are out of joint motion
ranges, and the case 06 = 4-90 ° coincides with the

joint limits.

Table 1. Singularity Conditions

Number Condition

04 = 0°, 180°

02 - 0°, 180°; 03 = +90 °

02 =04 - 0°,180 °

06 = :t:90°; 07 - -t-90°

Entries 1 and 3 (3 is a subset of 1) are work space

limit singularities, an(t entries 2 and 4 are work space

interior singularities. These singularity conditions
were derived from the partitioned solution. The sym-

bolic analysis for tJsx T7J5×71 is too complicated for
analytical treatment. With tile exception of tile el-
bow joint work space limit singularity, 0.1 = 0 °, 180 °.

However, an intensive nmnerical computer search in-
dicated that the full Jacobian matrix shares all four

singularity conditions fi'om table 1. The computer

seareh also indicated that no additional singularities
exist for the fifll solution. This result is expected

because of the spherical wrist. Reference 16 shows

that for a nonredundant manipulator with a spherical
wrist, the partitioned arm and wrist singularities cor-

respond one-to-one with the singularities of the full
Jacobian matrix. This condition is not true for ma-

nipulators with a nonspherical wrist. The computer
search involved all possible combinations of joint an-

gles in steps of 5° ow_r a fifll 360 ° rotation. At each
"],

step, ]Jax735xT] was computed an(t the cases near
zero were printed.

In the neighborhood of inanipulator singularities,

both flfll and partitione(t symbolic solutions be-

come ill-conditioned. A numerical singular value de-
composition solution can be used, where the trajec-

tory cannot be satisfied, but tile alternate solution is

the best available given the singular condition.

3.3. Objective Functions

This section presents three objective flmctions for

use in the homogeneous solutions to optimize the
t)erformance of a redundant manipulator. Two ob-

jective functions have been implemented for the full

and partitioned solutions: joint limit awfidance and

manipulability maximization (singularity avoidance).
A tIfird objective function fl_r obstacle avoidance is
discussed but has not been used.

Tile following function was proposed by Liegeois

(ref. 2) to allow the manipulator to avoid joint limits:

Hj(O) = L (Oi - Oci _ 2x-x- (10)

where Oi is the current value for joint i, O,,i is the

center of traw_l for joint i, and AOi is half the range
of travel for joint i. The function is normalized by

its denominator so that each joint has equal weight

regardless of its range of travel. This function is
minimized for joint limit avoidance. Equation (10)

is defined for the full solution. For the partitioned

solution, H A is defined for i = 1 to 4, and H W for

i = 5 to 8. Klein and Huang (ref. 5) state that equa-
tion (10) leads to a suboptimal joint limit avoidance

solution. The optiInal norm to use is the maxiinum

norm; they use the p-norm to approach the maxi-

mum norm with a tractable gradient. Equation (10)
is used in this paper.

From referenee 17 Yoshikawa's definition of

manipulability is ms follows:

HM(O ) = V_JJT (11)

theThis flmction is maximized to ensure that

manipulator operates far from singular configura-

tions. The value of equation (11) is zero when

tile manipulator is in a singular configuration. For
the full homogeneous solution, the fllnction is

/ij_ _T
H M = VI ax7o5x7 and h_r tile partitioned solution

are H A = V/]J1uL4JII_/L,11 and H W =

2

the fimctions

V/IJLRJT[RI. The gradients of tile two inlplenlented
v

objective functions have been derived symbolically.

Yoshikawa (ref. 17) proposes minimization of the

following function for obstacle avoidance:

He(0) = _(0 - O,.)'rW(O - O,.) (12)

where Or is a single constant manipulator configu-

ration that is good for avoiding collisions with an
obstacle, and W is a diagonal matrix with posi-

tive gains. Except for normalization, equation (12)

is similar to equation (10). Equation (t2) has not
been implemented for the eight-axis arm because pre-

determined information is required on the obstacles

in the work space. In unstructured environments



suchasspace,this methodis to()limiting because
it is not adaptiveto unknownobstacles. Other
authorshaveproposedmore robustand adaptive
methodsfor obstacleavoidancewith redundantma-
nipulators.Forinstance,Karlenet al. (ref. 18)dis-
cussan algorithmfor reflexiveobstacleavoidance
usingproximitysensorsalongtheredundantmanip-
ulator.In reference4,Nenchevpresents21references
dealingin part.with obstacleavoidance.

4. Results

The data reported in this section were obtained

via graphical sinmlation. The ARMII manipulator

was used for the examples in this section to verify
the sinmlated results on actual hardware.

4.1. Local Optimization Results

This section presents local redundancy optimiza-

tion results for the full solution. Results are given h)r

joint limit avoidance, manipulability nmxilnization,
and a combination of the two. The units are me-

ters per second and radians per second for Cartesian

translatioxml and rotational velocities, respectively,

and degrees for joint angle. The joint limit con-

straint flmction H,] is (timensionless, and the milts
for nmnipulability H:_ I are square meters.

Figure 5. Initial configuration fl)r joint limit avoidance.

_.I.1. Joint limit avoidance. The constraint

function used is equation (10) with n = 8. The tra-

jectory is an end-effector roll, X {0,0,0,0,0,0.4} T.
As shown in fgure 5, 0 = {0, -3(}, 0, -7(I, 0, 0, -50, 0} T is

the starting configuration. Table A2 gives the joint

limits for the ARMII. Joint 8 was designed to provide
continuous bidirectional roll, but the limits were set

to ±300 ° . The trajectory for this example is satisfied
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(a) Constraint function.
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(c) Cartesian error.

Figure 6. Joint limit avoidance.

by a combination of all joints. Figure 6(a) shows tile
constraint flmetion value for the particular solution

only (k = 0 in eq. (4b)) and the particular solution

with joint limit avoidance (minimization, k = -0.5).

With no optinfization (k = 0), the objective fimction
is greater, which means the joints are generally far-
ther from their center of travel and thus nearer to

limits. Optimization (k = -0.5) improves this situ-
ation and forces tile joints to be farther from their
limits.

A compelling demonstration of the benefit of joint
limit avoidance optimization shows when a joint limit

is encountere(t. For the stone trajectory, figure 6(b)

9



shows05 hitting a linfit at 9.5 sec, t)ut avoiding the
limit when tile function is minimized. The associated

Cartesian error due to the joint limit is shown ill

figure 6(c). With joint limit avoidance, tile resulting

Cartesian trajectory is useful for a larger time span.

4.1.2. Manipulability maximization (sin-

gularity avoidance). The constraint function H m
is defined following equation (11). The commanded

Cartesian trajectory is X- {0.01.0.01.{}.()1, (), 0,0} T,

and the initial manipulator configuration 0 =

{0,- 10, 75.-7(}, (},-80,-90, o} T (fig. 7) is near both arm
and wrist, singularities. Figure 8 shows H M for the

particular solution only (k = 0) and with manipula-

bility maximization (k = 1). Both curves start with

manipulability near zero because the initial config-
uration is nearly singular. As tile curve for k = 0

shows, the chosen trajectory tends to increase the

manipulability gradually even when no lnaxinfiza-

lion is applied. However, the optimized solution in-
creases the manipulability rapidly and then main-

tains it at a high level during the move. Both curves
fall off rapidly as the trajectory drives the manip-

ulator into the work space limit singularity where

0,1 = 0 °. Optimization does nothing to improve this
situation because no homogeneous term exists for 04,

as exl)lained in section 3.2.2.

Figure 7. Manipulability maximization for initial
configuration.
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Figure 8. Manipulability maximization for H M.
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Figure 9. Manipulability maximization fl)r 1tM.

Figure 9 dramatically demonstrates the bene-
fits of manipulability maximization. For this fig-

ure, the initial manipulator configuration is the same

as the one in figure 7, but tile Cartesian trajec-
tory is X- {0,-0.01,0,0,0,0} T. Without optimization

(k = 0), tile trajectory drives the manipulator into

the neighborhood of the 06 = -90 °, 07 = -90 ° in-

ternal wrist singularity, and the manipulability mea-
sure remains near zero for the entire time. With nm-

nipulability maximization (k = 1), the manipulator

avoids the singularity and achieves the commanded

trajectory with high manipulability.

4.1.3. Combined optimization. Experiments
with nmnipulability maximization with the full solu-

tion revealed that regions exist where the local maxi-

mum for H M lies outside the joint limits of table A2.

The algorithm attempts to increase H3I, but it is

not physically realizable because of the physical joint
linfits. Such cases indicate that combining optimiza-

tion criteria is sometimes necessary. For the example
in this section, the Cartesian command and initial

confguration are the same as those for the manipu-

lability example in figure 9. The objective fimction is

constructed to maximize manipulability while awfid-

ing joint limits:

H(O) = kmH M + kjHj (13)



where tim manipulability and joint limit flmctions

are defined in equations (11) and (10); k M nmst be

positive to maximize HM, and k d must be negative

to avoid joint limits.

An example of a case where manipulability maxi-

mization and joint limit avoidance must be combined

is given in this section. The Cartesian trajectory

is X - {0.01, 0.01,0.01,0, 0, 0} T. The initial nmnitmla-

tor configuration is 0 - {0, 10, 85, 70,0,-80,-90.0}'1;

this configuration is the same as tile one in figure 7,

with one change: 03 starts at 85 °, which is 10 ° closer

to the internal arm singularity. In this example, joint

limits are reached for 07 and 03 during the trajectory

with manipulability maxinfization only'.

Figure 10(a.) compares Hal for manipulability

maximization only (Ic3I- 1, k! = 0) and for ma-

nipulability maximization with joint limit avoid-

ance (JLA) (k M = 1,kj --1). A third plot. shows

the manipulability for tile trajectory without any

optiinization, k = 0 (actually, /vM = (L k.l = 0) for

comparison. \Vithout any optimization (k = 0), the

manitmlat)ility remains low for the entire trajectory.

With manipulability maximization and without joint

linfit avoidance (MM in fig. 10(a)), the manipulabil-

ity is highest, but this condition is not physically

realizabh_ because of the ,joint limits encountered. A

joint linfit for 07 is reached at. 9 sec, which causes

the Cartesian error to increase rapidly (fig. 10(b)) as

the actual trajectory deviates fronl the commanded.

Because of this error, figure l()(a) shows that with-

out .joint limit aw_idance, tile manipulator reaches

the 0,1 = 0 ° work spaee linfit singularity (where HAt

goes to zero) sooner than it does with joint limit

avoidance. \Vith both inanipulability maxinfization

and joint limit avoidance (MM + JLA in fig. 10(a)),

the maniimlability assunles intermediate values that

are realizable because no joint limits are encoun-

tered. Joint limits were not encountered for the no

optimization (k = 0) case, and the plot is st) simi-

lar to MM + JLA in figure 10(b) that it. is not in-

cluded. Tile instability reflected around 28 sec in

figures 10(3) and 10(b) for the MM case is due to tim

work st)ace linfitation singularity; these data were ot)-

tained through the use of simulation not the actual

ARMII hardware.

4.2. Comparison of Partitioned and Full

Solutions

Tile results presented previously arc for the full

solution. The partitioned solution is suboptimal

because the particular and tlomogeneous solutions

are optimized separately for the translational and

rotational parts. However, a.s shown in the results

of this section, the difference is not. significant.

-- MM

MM + JLA

liar k=o

0 5 10 15 20 25 30

Time, sec

(a) HM.

E 140
E 120

_. 100
80

60

40

L; 20
MM + JLA

5 10 15 20 25 30
Time, sec

(b) Cm'tesian error.

Figure 10. Combined optimization.
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Figure 11. Full vs partitioned joint rate magnitude.

4.2.1. Comparison of particular solutions.

Tile flfll particular solution (eq. 4(a)) yields the

least-squares solution for joint rates. The parti-

tioned particular solutions (eqs. 6(a) and 7(a)) re-

sult in a higher Euclidean norm joint rate magnitude.

Figure 11 shows a typical result. This sinmlation

moves the manipulator toward the singularity where

04 = 0 °. Tile maximum percent difference between

the flfll and partitioned joint rate magnitudes is 2.5,

which decreases as the manipulator approaches the

singularity.
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4.2.2. Joint limit avoidance. The Cartesian

trajectory and initial manipulator configuration

in this example are :K = {0,0,0,0,0,0.4} r and
0 = {0,-30,0,-70,0,0, 50,0} T, the santo as the exam-

ple of section 4.1.1. Figure 12 shows joint limit

avoidance for the full (k =-0.5, repeated from

fig. 6(a)) and the partitioned (k A = kw = -0.5) so-
lutions. The results are nearly identical. The full

objective function is only slightly less than the par-

titioned objective function. Theoretically, the full

sohttion avoids joint limits better than the parti-
tioned because the objective function is minimized to

smaller values, but practically there is no difference.

4

3

9

l .____.__._.._.-._--._ --- Part

I I I I I I I

5 10 15 20
Time, sec

Figure 12. Full vs partitioned joint limit avoidance.

4.2.3. Manipulability maximization. The

Cartesian trajectory and initial manipulator configu-
ration in this section are X - {O.Ol, 0.01,0.01, 0,0, o} _r

and 0= {0,-10,75, 70,0,-80,-9(}.0} T, the same as

the first example of section 4.1.2. Figure 13 com-

pares nmnipulabilities for the full (k = 1, repeated
from fig. 8 with a different vertical scale) and the

partitioned (k A = k W = 1) solutions. The constraint
functions for the partitioned case are the arm and

wrist manipulabilities, H A and HW, defined follow-

ing equation (11). The units for H A are m 2 and H W
is dimensionless.

1.6
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1.2
1.0

.8
.6
.4
.2

Figure 13.
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Full vs partitioned manipulability maximization.
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Figure 13 shows that the wrist manipulabil-

ity for the partitioned case increases rapidly to
v_ and is held there for the remaining trajectory.

The partitioned arm manipulability increa_ses to a

lower value and falls off as the elbow work space

limit singularity is approached. The full manipula-
bility increases to a value in between the arm and

wrist curves. It also falls off as the elbow work space

limit singularity is approached. Therefore, the wrist

nmnipulability appears to be superior to the flfll so-
lution, and the arm manipulability tends to be lower
than the full solution.

4.2.4. Accuracy of partitioned solution. In
the eight-axis singularity analysis of section 3.2.4,

the singularities of the partitioned solution were con-
cluded to be identical to those of the flfll solu-

tion; these are the physical manipulator singulari-

ties. Therefore, the partitioned solution does not

add algorithmic singularities to those found in the
full case.

When a determinant is zero, the solution is sin-
gular; when it is near zero, the solution is ill-

conditioned. The following question arises: Is

the partitioned solution ill-conditioned in a larger

neighborhood around the singularities than the full

solution? To answer this question, joint trajectories
were designed to drive the grat)hieal sinmlation of the

manipulator through two work space interior singu-

larities (02 = 0°, 03 = 90 ° and 06 = 90 ° , 07 -- -90 ° )

simultaneously, and the full and partitioned IJJTI
were studied. Figure 14 shows the manipulator in

these singular conditions, where the full configura-

tion is 0 = {0, 0, 90, 70, 0, 90, -90, 0} :r. This configura-

tion is a combination of those shown in figures 4(a)
and 4(c).

Figure 15 presents tile results of this study. Start-
ing from 0= {0, -10, 80, -70, 0, 80, -100, 0} T, .ioints 2,

3, 6, and 7 were updated by l°/sec, so both sin-

gularities were reached at 10 sec. Figure 15 is a

plot of IJsxvJ_'x71 (5 x 7), lJlu,r.4JT,_r.4l (arm) and

IJLRJTRI (wrist). Tile arm curve is symnmtric; the
5 x 7 and wrist curves arc not because joint 6 hits

a limit at the wrist singularity and does not. move

through.

Figure 15 provides a clear answer to the question

of ill-conditioning: The fifll solution (5 x 7) is ill-

conditioned in a much greater neight)orhood around

the singularities than the partitioned solutions (arm
and wrist). Therefore, the robustness of the parti-

tioned solution is an advantage when compared with
the full solution.



Figure14.Internalarmandwristsingularconfigurations.

.O6

E
= .04
..,.E

.02

\

'\

\
\

- \
\

\

- J-'=-c _--_l_

5 l0
Time, sec

/

5x7

--- Arm /

---- Wrist / /

/

///

/;/

15 20

Figure 15. Full vs partit.ioned solutions near singularities.

5. Eight-Axis Arm Design Limitation

This section discusses a limitation in the eight-

axis arm design regarding redundancy optimization.
Design alternatives are presented in appendix D to

alleviate the problem.

As discussed in section 3.2.1, the length of reach

from shoulder to wrist for manipulators with a spher-

ical wrist, spherical shoulder, and a single elbow joint

is a function of only the elbow joint angle. Figure 3

shows this relationship. Regardless of the 03, 05 val-
ues, the length SW (fixed by the Cartesian trajec-

tory) is a function of only 04. This function is ob-
tained from the cosine law discussed in reference 15.

A derivative of this relationship yields the unique
solution for 04 in equation (3).

The limitation in this design is that the elbow

joint can only be used to satisfy the primary task, the

Cartesian trajectory. As discussed in section 3.2.2,

the elbow joint cannot be used in the secondary task
of manipulator performance optimization because it

does not influence the self-motion of the eight-axis

arm. As a trade-off, a benefit of this design is sim-

plified kinematics, and greatly reduced computation

requirement when exploiting the independent elbow
rate solution and the wrist-partitioned solution.

Although the eight-axis arm has two redundant

degrees of freedom, it has only one mode of self-

motion, the elbow orbit about the line SW. (See
fig. 2.) This self-motion is also achieved by seven-

degree-of-freedom manipulators with only one redun-

dant freedom. The question becomes, Is the ex-

tra overhead and reduced reliability with the extra
joint justified considering only one self-motion mode

is achieved and the elbow joint cannot be used for

optimization?

Appendix D discusses kinematic design modifica-

tions to address the existing eight-axis arm linfita-
tions. The emphasis is to provide a second mode of

self-motion, in the plane SEW, and to ensure that

the elbow joint participates in optimization.

6. Conclusions

This paper presents local redundancy optimiza-
tion applied to a class of eight-axis redundant arms.

The theory has been implemented on a member

of the class, the Advanced Research Manipula-

tor II (ARMII). The performance constraints for the
secondary task optimization are joint limit avoid-

ance, manipulability maximization (hence singular-

ity avoidance), and a combination of the two. Re-

sults are presented to show the effectiveness of the
redundancy optimization.

The methods used in this paper are well-known

from the redundant manipulator literature. The

contributions of this paper are fourfold.

1. Real-time local redundancy optimization for
an experimental eight-axis manipulator is

demonstrated. Most experimental efforts in

the past have used seven-axis arms.

13



2. A kinematic design limitation of this class

of eight-axis arms is explained. Tile length
of reach from the shoulder to the wrist is a

flmetion of only the elbow joint angle, which

means that the elbow angle participates only

in the primary task, and cannot affect the sec-

ondary optimization task. Even though there
are two redundant degrees of freedom, there

is only one mode of self-motion. The ge-

ometry is suited for low computation redun-

dancy resolution, but the trade-off is reduced
versatility.

3. Symbolic pseudoinverses and objective func-

tion gradients are used for both full and par-

titioned sohltions. In addition, for the parti-

tioned solution, the symbolic arm and wrist
null-space projection matrices are given.

4. This paper shows that a partitioned solution

Call bc applied to obtain silnilar optimization

results as the full solution, without the in-

troduction of algorithmie singularities. The

motivation for the partitioned solution is re-

duced computation. The partitioned solution
is suboptimal t)ecause translational and ro-

tational terms are optimized separately for

both primary and secondary tasks, but pre-

sented results show tile difference is not sig-

nificant. Singularity analysis reveals that no

algorithmic singularities exist for the parti-
tioned solution. The partitioned and hill so-

lutions share the same physical manipulator

singular conditions. Also, tile partitioned so-
httion is shown to be ill-conditioned in smaller

neighborhoods of the shared singularities than
tile flfll solution.

NASA Langley Research Center
Hampton, VA 23681-0001
Jaimary 10, 1994
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Appendix A

Advanced Research Manipulator II

This appendix describes the Advanced Research

Manipulator II (ARMII), which is representative of

the (:lass of redundant eight-axis manipulators ill

figure 1. This appendix also gives the Denavit-

Hartenberg parameters and tile Jacobian matrix for

this class of manipulators.

Figure A1 is a photograph of the ARMII, and

figure A2 is a kinematic drawing of the ARMII.

The following features distinguish the ARMII from

existing industrial manitmlators: two redundant

degrees of freedom; four-jointed spherical wrist;

continuous bidirectional end-effector roll; no kine-

matic offsets; a high payload-to-weight ratio (1:5);

high joint stiffness with 200:1 harmonic gearing

at each joint; absolute position potentiolneter, in-

put and outt)ut relative encoders, temperature s('n-

sor, limit switches, and mechanical stops for each

joint; high tor(lue direct current t)rush servomotors

with integral brakes and encoders; high link stiff-

hess with graphite or epoxy composite material; an(t

space-flight-qualifiat)le (:omt)onent.s.

Table A1. Eight-Axis Arm I)enavit-Hartenberg Parameters

i (ii 1 ai 1

1 0 0

2 90 ° 0

3 90 ° 0

4 90 ° 0

5 -91) ° 0

6 -90 ° 0

7 90 c 0

8 90 ° 0

di O,

0 Oi

0 02

da 03

0 04

dr) 05 - 90 °

0 06 + 90 °

0 07 90 °

0 0_

Tabh_ A2. ARMII Joint Limits

[Units are in d('grees]

i 011 lii.x

1 165

2 90

3 165

4 9O

5 75

6 90

7 0

8 300

OIIlill

- 165 0

- 90 0

-165 0

-90 0

-255 -90

-90 0

120 -60

300

O,,i AOi

165

90

165

9O

165

90

60

0 300

L-92-07518

Figure A1. ARMII photograph.
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Figure A2. ARMII kincmati(: diagram.

The eight-axis arm Denavit-Hartenberg paraine-

ters (Craig convention (ref. 14)) and ARMII joint

limits plus equation (10) terms arc given in tables A1

and A2. In table A1, nominal vahles for the fixed

lengths are d3 = 695 mm and d5 = 545 ram.
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The Jacobianmatrix for the eight-axisarmex-
pressedin theelbowCartesiancoordinateframe,{4},
is presentedin reference13asfollows:

JuL 0 ]4[j]__ LJLL JLR

JUL =
-As2s3 -At3 0 -d51

d3s28384 d3c3s 4 0 0

K16 -Bs3 d5s4 0

JLL =
K5 -s3c4 s4 0]

-K6 83s4 c 4 0

s2s 3 c 3 0 1

JLR =
0 c5 s5c6 KK3 ]
1 0 -s 6 c6c 7

0 -,s5 c5(:6 /x'K1

where

A = d3c4 + d5

B -- d3 + d5c4

K 5 = c2s 4 + 82c3c4

K 6 -- -c2s4 + s2c3s4

K16 = d3s2c3 + d5K5

KK 1 : s5s 7 + c586c7

KK3 : -c5s7 + sss6c7

Cartesian velocities used with this Jacobian matrix

must be expressed in frame {4}. If velocities are com-

manded in a different frame (e.g., {8}), the following

coordinate transformation is required (ref. 13):

w _R _v
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Appendix B

Symbolic Partitioned Pseudoinverse

Tile symbolic form for tile pseudoinverse of the

partitioned reduced Jacobian matrix is given in this
appendix (ref. 15). Because 04 is solved indepen-

dently with equation (3), cohmm 4 and row 1 are

removed Kern JUL. Thus, the following transla-

tional pseudoinversc, used in equation (7a), is of
order 3 × 2:

[ c3 K1 t

3, 1 ] rim:] _s2s3Kll

ll_/A Dt_LLrnal| dss4 (1- c2s_)

where

2 9
D_ L (d 2 + d5)s,5 + 2d5KT(das2 + d5c2c3s4)

._a)taKv, + _1_(,,'2+ ,'2_,:_c_._4)]
_'ttl 1 = d3s4

--2/s2 .d3,_2(d3s2c3 + dsK14) + a5t. 2(3 + c2.s4K13)
1_1,,21 =

d3,s4

d5c2s3 (d3c2c3 - d5 Ks)

*n31 = d3

K7 -- s2c4 + c2(:3,';1

Ks -- .s2& 1 -- (:2c3c4

/(9 = 2's2c,i + c2c3s4

KI0 = 2c2s4 + S2c3(:4

Kll -- d3s2 + daK7

K12 = das 2 + d5K9

K13 =- s2c 4 + c3/£10

K14 = c2s4 4- caK 9

The 4 x 3 rotational pseudoinverse used in equa-

tion (7b) is a.s follows:

7_11

, 1 /'"21

JLR = DL R / re/1
k ?L,| 1

where

DLR =

'_'1,11

7q3 =

7/21 =

?_23 =

ha1 =

1133 =

_141 =

KK7 =

KKs =

(2c 2 - 1)s 2 + 1
n13 ]

c6s7c7 n23 [

--s6 c2 n331

c6c 7 n,,13 _1

C6S7(C5C7 4- 2s5s6s7)

c6s7(--ssc7 4- 2c5s6ST)

c5KK7 + 2s5KK8

-s5KK7 + 2csKKs

c6(2s5 + c5KKs)

c6(2c5 - ssKKs)

_. 2
2s5s6c 7 -- C)C6S 7

2
2c586c 7 + s5c687

s6s7c7

17



Appendix C

Symbolic Partitioned Null-Space

Projection Matrices

The symbolic null-space projection matrix for
J1UL4, which is used in equation (6b), is given as
follows. This matrix is symmetric; DUL and Kll are
given in appendix B.

  =11J11J12]j22
J33

where

Jll =d212_'1- ( 282- 1)c32842] + N1

2j12 = dos2s3c3s4

J13 = d5KllC3S4

J22 = d2{A'l -+- [2C2 -- ( C2 -}-l)s_] 842} -{- N 1

J23 = -dsK11828384

2 2_-- 4(_- _3)_X
M1 = s2(s2 + 2c2c3s4c4)

N1 = das2(d3s2 + 2dsK7)

The symbolic null-space projection matrix for JLR,
which is used in equation (7b), is given as follows.
This matrix is symmetric; DLR is given in appen-
dix B. The subtraction from the identity matrix is
included in the following equation:

1

(I4- J[RJLR) DLI_

C 2 --C687C 7 ,";6(: 2 --C6C 7

C2 S2 C 287"6' 7 --s6c(is7c7

u2(, 2
' 6 7 86C6C7

4
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Appendix D

Kinematic Design Alternatives to the

Existing Eight-Axis Manipulator

Kinematic limitations regarding the existing eight-

axis arm of figure 1 and their effect on performance

optimization using redundancy are discussed in sec-
tion 5. To provide two modes of self-motion with two

redundant joints and to allow tile elbow joint to in-

fluence performance optimization, kinematic design
modifications to the arm of figure 1 are considered

in this appendix. Only one change is required: re-

configure joint 5 so that it is parallel to joint 4, as

shown in figure D1. With this modification, the sub-

assembly connecting the shoulder to the wrist no
longer assembles in only two configurations in plane

SEW (elbow up and down) but is a four-bar linkage

with one degree of freedom in plane SE1E2W. This

design has two modes of self-motion: the original el-

bow orbit (fig. 2), and tim new four-bar motion in
the plane of the links connecting S and W. These two

modes provide more flexibility for obstacle avoidance

and null-space optimization than the original design.
Since the relationship of equation (3) no longer holds,

null-space terms are associated with joint 4.

5

W

6

W

E
7 8

4 Replace joint 5
with a prismatic joint

Figure D2. Eight-axis redesign with slider-crank self-motion.

E l 6 8 9

Add revolute joint
between original
joints 4 and 5

E l

3

s(/

It'
///////

7 8

4 Reconfigure joint 5

Figure D1. Eight-axis redesign with four-bar self-motion.

An analogous design alternative is to replace the

revolute joint 5 with a prismatic joint acting along

the line connecting joint 4 and W. (See fig. D2.) In
this ease, the subassembly connecting S to W is a

one-degree-of-freedom slider-crank mechanism with
a similar second mode of self-motion in plane SEW.

Figure D3. Nine-joint redesign.

A drawback of the proposed design alternatives

of figures D1 and D2 is that the four-axis spherical

wrist subassembly of the original arm is reduced to

three joints. The partitioned solution applied to
the new designs would not be useful because the

wrist subassembly is no longer redundant, so no

wrist performance optimization using self-motion is

possible. Therefore, figure D3 proposes a nine-axis
redesign where a second elbow revolute joint (parallel

to joint 4) is added between joints 4 and 5 of figure 1.

(Alternatively, the prismatic joint can be used.) For

this concept, there are two self-motion modes, the

elbow joint is not excluded from optimization, and
a partitioned solution can be applied. However, a

similar problem from the original eight-axis arm in
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figure1exists:therearethreeredundantdegreesof
freedom[)tit only twomodesof self-motion.

Therearetrade-offsamongtileoriginaldesignof
figure1andtheproposedredesignsoffiguresD1,D2,
andD3. Theoriginaldesignhassimplerkinematics,
joint 4 variablessolvedindependently,and allows
an efficientpartitionedsolution. However,joint 4
hasnonullspaceandonlyonemodeof self-motion.

Theeight-axisredesignconceptsprovidetwomodes
of self-motion,anull-spacetermassociatedwith 0,1,

but no four-axis spherical wrist to allow a general

partitioned solution with reduced computation. The
nine-axis redesign provides all desired attributes, at

the cost of an extra joint. For general tasks, the

nine-axis alternative is recommended by the author,
although more work must be done to validate this
recommendation.
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