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Abstract

Local performance optimization for joint limit avoidance and manipula-
bility mazimization (singularity avoidance) is obtained by using the Jacobian
matriz pseudoinverse and by projecting the gradient of an objective function
into the Jacobian null space. Real-time redundancy optimization control is
achieved for an eight-joint redundant manipulator having a three-axis spher-
ical shoulder, a single elbow joint, and a four-axis spherical wrist. Symbolic
solutions are used for both full-Jacobian and wrist-partitioned pseudo-
inverses, partitioned null-space projection matrices, and all objective func-
tion gradients. A kinematic limitation of this class of manipulators and the
limitation's effect on redundancy resolution are discussed. Results obtained
with graphical simulation are presented to demonstrate the effectiveness of
local redundant manipulator performance optimization. Actual hardware ez-
periments performed to verify the simulated results are also discussed. A
major result is that the partitioned solution is desirable because of low com-
putation requirements. The partitioned solution is suboptimal compared with
the full solution because translational and rotational terms are optimized
separately; however, the results show that the difference is not significant.
Singularity analysis reveals that no algorithmic singularities ezist for the par-
titioned solution. The partitioned and full solutions share the same physical
manipulator singular conditions. When compared with the full solution, the
partitioned solution is shown to be ill-conditioned in smaller neighborhoods

of the shared singularities.

1. Introduction

Kinematically redundant manipulators, those
with more degrees of freedom than task constraints,
can have a sccondary task of performance optimiza-
tion in addition to the primary task of providing
a Cartesian trajectory. Whitney (ref. 1) derived
the pscudoinverse solution for the primary task in
the framework of the resolved motion rate algo-
rithm. Liegeois (ref. 2) suggested the local redun-
dancy resolution method that is now commonly used.
This method uses the Moore-Penrose pseudoinverse
(ref. 3) to solve the primary task and projects the
gradient of an objective function into the null space
of the Jacobian matrix to solve the secondary task. A
good review of pscudoinverse-based local redundancy
resolution is given in references 4 and 5.

Many authors who claim that the Liegeois method
is too slow for real-time application to threc-
dimensional redundant manipulators have developed
alternate methods that focus on reducing the compu-
tational requirements (c.g., refs. 6-8). The approach
described in this paper applies the Liegeois method
in real time by using symbolical pseudoinverses for
both full and partitioned Jacobian matrices.

Other authors have investigated the use of par-
titioned or symbolic methods in redundancy resolu-

tion. Kiréanski and Petrovi¢ (ref. 9) decompose a
manipulator into redundant and nonredundant sub-
assemblies; the redundant joints are solved by singu-
lar value decomposition or equivalent methods, and
the nonredundant joints are solved analytically. Holt
(ref. 10) presents numerical computation of the ap-
proximate pseudoinverse for a six-axis manipulator
near singularities by taking advantage of the wrist
partitioning of the Jacobian matrix. Chevallereau
and Khalil (ref. 11) present symbolic pseudoinverse
calculations for nonredundant manipulators at sin-
gularities and for a six-degree-of-freedom manipula-
tor on a linear track. In reference 12, Podhorodeski,
Goldenberg, and Fenton use screw theory in an or-
thogonal decomposition of a Jacobian matrix for a re-
dundant manipulator to determine analytical expres-
sions for the particular solution and the null-space
basis.

The references in the previous paragraph are lim-
ited in scope in that they deal either with non-
redundant manipulators at singularities or with re-
dundant manipulators having only one degree of
redundancy. In the partitioned solution of refer-
ence 9, only three joints are treated as redundant;
this treatment is limiting because the remaining four
joints do not participate in optimization. This paper
develops both full and wrist-partitioned solutions for



a manipulator with two redundant degrees of free-
dom. Here the partitioned solution is more useful
because cach subassembly has a redundant degree of
freedom; thus, performance optimization is accom-
plished for each. To the author’s knowledge, this
work has not been published before. The motiva-
tion for this work is real-time redundancy resolu-
tion of manipulators for remote space applications;
Earth-based applications can benefit also. This work
was performed with graphical simulation and actual
hardware.

This paper describes real-time local performance
optimization efforts for an eight-joint redundant ma-
nipulator having a three-axis spherical shoulder S,
a single elbow joint F, and a four-axis spherical
wrist W. (Sec fig. 1.) The Advanced Rescarch Ma-
nipulator II (ARMII) is an eight-axis manipulator in
this class. NASA Langley Research Center has two
of these arms. This paper has four objectives: (1) To
apply the Liegeois method for local performance op-
timization (joint limit avoidance and manipulability
maximization) of the eight-axis manipulator in fig-
ure 1 and implement the method on actual hardware
in real time. (2) To investigate a kinematic limitation
of this class of manipulators and report its effect on
redundancy resolution. (3) To present closed-form
symbolic solutions for reduced computation. (4) To
develop a wrist-partitioned solution for reduced com-
putation and show that it is as valid, robust, and
effective as the full solution.

Figure 1. Class of eight-axis manipulators.

This paper is organized as follows. Local per-
formance optimization of redundant manipulators is

2

presented for general applications and for the con-
figuration of figure 1. A partitioned solution is de-
veloped where optimization is accomplished for each
subassembly. Singularity analysis is presented for
both full and partitioned solutions. Results are pre-
sented to show the effectiveness of local performance
optimization. Results are also given to compare the
effectiveness of the partitioned and full solutions. A
kinematic limitation of this manipulator is investi-
gated, the limitation’s effect on redundancy resolu-
tion is described, and proposed design alternatives
arc presented to alleviate the problems. Finally, the
accomplishments of this paper are summarized.

2. Symbols

ai_1 Denavit-Hartenberg parameter

¢ cos 8;

d; Denavit-Hartenberg parameter

dy, ds Decnavit-Hartenberg parameters, fixed
manipulator lengths

H objective function for optimization

VH gradient of H

VH,; 44 VH excluding the fourth term

Hy objective function for arm
subassembly optimization

VH 4 ;44 gradient of H 4 excluding the fourth
term

H; objective function for joint limit
avoidance

Hyy objective function for
manipulability maximization

Hy objective function for wrist
subassembly optimization

VHy gradient of Hyy

I, identity matrix of order p

J manipulator Jacobian matrix

J* Moore-Penrose pseudoinverse of
Jacobian matrix

Jy column 4 of J with row 1 removed

J5x7 reduced Jacobian matrix with row 1
and column 4 removed, dimension
5x7

5x7 Moore-Penrose pseudoinverse of

reduced Jacobian matrix, dimension
7T%xD

Jur upper left partition of J, order 3 x 4



JrL
Jir
Jurg

*
1U L4

*

LR

SRix_j

Sy

Vi

lower left partition of J, order 3 x 4
lower right partition of J, order 3 x 4
column 4 of Jy;;, with row 1 removed

Moore-Penrose pseudoinverse of Jy;p
with row 1 and column 4 removed

Moore-Penrose pseudoinverse of J; p
scalar gain for homogeneous solution

scalar gain for arm subasscmbly
homogencous solution

scalar gain for joint limit avoidance
homogeneous solution

scalar gain for manipulability
maximization homogenecous solution

scalar gain for wrist subassembly
homogencous solution

dimension of task space

dimension of joint space

rotation matrix representing oricn-
tation of frame {8} in frame {4}

array of real numbers, dimension i x j
sin 8;
translational terms of X, {4 ¢ 2 }T

v with first term removed

Cartesian translational and rota-
tional end-effector velocity

X with first term removed
Denavit-Hartenberg parameter
center of travel for joint ¢

Denavit-Hartenberg parameter,
joint angle 1

half range of travel for joint i
vector of eight joint angles

joint rate vector

arm subassembly joint rates,

{6 6 65 65}

homogeneous solution for arm sub-

assembly joint rates excluding joint 4

particular solution for arm sub-
assembly joint rates excluding joint 4

0 AT total solution for arm subassembly
joint rates

6 AT.i#4 total solution for arm subassembly
joint rates excluding joint 4

0 H.i#4 homogenecous solution for joint rates
excluding joint 4

0, tth joint rate

91{{#4 particular solution for joint rates
excluding joint 4

9T.1‘;£4 total solution for joint rates excluding
joint 4

Qu' wrist. subassembly joint rates,

. . . . 'I'

{6 65 67 6y}

éll'H homogencous solution for wrist
subassembly joint rates

9“’[7 particular solution for wrist
subassembly joint rates

911'7‘ total solution for wrist subassembly
joint rates

w rotational terms of X,

{WJ' Wy Wz }7

Mathematical notation:
{} Cartesian coordinate frame
{., ......}T vector components

| determinant of a matrix

Arm reference points:

E clbow

EE end effector
S shoulder

W wrist

Coordinate frames:

4 clbow

8 wrist

Abbreviations:

ARMII Advanced Research Manipulator 11
JLA joint limit avoidance

MM manipulability maximization



3. Local Performance Optimization
Using Redundancy

3.1. General Redundant Solution

The resolved motion rate algorithm (ref. 1) is
a common method for Cartesian control of redun-
dant manipulators. Joint rates € are mapped to
end-effector Cartesian velocities X by the Jacobian
matrix J as follows:

X =J6 (1)

In equation (1), X e®R™*l  JeR™" and
0 € R"*! where m is the dimension of the task space
(m = 6 for spatial Cartesian control) and n is the di-
mension of the joint space (n = 8 in this paper). To
command a trajectory X to a manipulator, # must
be solved.

A kinematically redundant manipulator has more
degrees of freedom than required to perform the
task; that is, m < n. In this case, equation (1) is
underconstrained, and an infinite number of solutions
for @ generally exist. A resolved motion rate solution
(ref. 2) is expressed as follows:

0=JX+k(I1,-J"J)VH (2)

The first term of equation (2) is the particular solu-
tion. The matrix J* is the Moore-Penrose pseudo-
inverse (ref. 3) of the Jacobian matrix, which pro-
vides the least-squares solution of equation (1) to
achieve the Cartesian velocity command (called the
primary task). The second term, the homogeneous
solution, causes zero motion of the end effector. The
linear operator (I,, — J*J) projects an arbitrary vec-
tor into the null space of the Jacobian matrix. This
null-space projection matrix provides the self-motion
of the redundant manipulator. To optimize perfor-
marnce criteria, the gradient of an objective function
of joint angles VH is used (ref. 2). The gain k is
positive to maximize H and negative to minimize H.

Figure 2 shows a geometric interpretation of the
Jacobian matrix null space for the manipulator in
figure 1. The self-motion of this manipulator is the
orbit of the elbow joint about the line SW. That
is, by a reconfiguration of joints, the position and
orientation of the end effector can be held fixed while
the elbow joint assumes any position along the circle
of figure 2.

3.2. Eight-Axis Redundant Solution

This section presents the adaptation of the gen-
eral solution in equation (2) to the eight-axis manip-
ulator shown in figure 1. To the author’s knowledge,
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Figure 2. Geometric interpretation of eight-axis arm self-

motion.

the solutions in this section have not been published
before. This manipulator can be viewed as two sub-
assemblies: an arm portion (6, 62, 63, 64) respon-
sible primarily for positioning and a spherical wrist
(05, 8¢, 07, ) centered at W responsible primarily
for orienting the end effector. The arm subassembly
consists of a three-axis spherical shoulder centered
at S, and a single elbow joint at E. The four-axis
wrist mechanism is a roll-yaw-pitch-roll mechanism.

The ARMII is an eight-axis manipulator of the
class shown in figure 1. The theory of this paper
has been implemented in real-time (33 Hz update)
on the ARMII. Appendix A presents the following
information for the ARMII: a photograph, the de-
sign attributes, the kinematic diagram, the Denavit-
Hartenberg parameters, the joint limits, the Jacobian
matrix referred to frame {4} (which is symbolically
the least complex among all possibilities), and a ve-
locity coordinate transformation for use with this
Jacobian matrix. In addition, reference 13 presents
ARMII forward and inverse position and velocity
kinematics equations, where the inverse solutions arc
limited to six degrees of freedom.

3.2.1. Independent solution for elbow joint
rate. For manipulators with a spherical wrist, a
spherical shoulder, and a single elbow joint, the
length of reach from S to W is a function of only
the elbow joint angle. The SEW manipulator sub-
assembly is shown in figure 3. To simplify the re-
solved rate solution, the elbow joint rate is calculated
independently of the remaining unknown joint rates.
For the eight-axis arm, this solution (ref. 13) is given
as follows:

. -1 /. dscq + d |
8, = (x + %y) (3)
354



In equation (3), d3 and d5 are kinematic parame-
ters {fig. 3), # and § are wrist Cartesian velocity
commands expressed in frame {4}, and sy and ¢4
are the sine and cosine of the elbow joint angle ;.
Equation (3) is the general form of the particu-
lar solution for the elbow rate becausc the required
wrist velocities can be calculated from commanded
velocities in frames different from the wrist (but
rigidly attached to frame {8}) via rigid-body velocity
transformations. (See ref. 14.)

Figure 3. Elbow joint geometry.

3.2.2. Reduced Jacobian solution. Given the
solution in equation (3), the fourth column of the
Jacobian matrix multiplied by 64 is moved to the
left side of equation (1). The result is a 6 x7
Jacobian matrix that has a maximum rank of 5
because the elbow relationship uses one degree of
freedom. Therefore, either row 1 or 2 must be
removed from both sides of equation (1); row 1 is
removed because it has more symbolic terms. (See
appendix A.) With this reduced Jacobian matrix, the
particular solution for the remaining joint rates is

Opiss = J§x7(X1 - J494) (4a)

The vector X, is the Cartesian velocity command
and J4 is the fourth column of the Jacobian matrix;
both have row 1 removed. The pseudoinverse of the
reduced Jacobian matrix (J; ;) was derived with a
computer symbolic manipulation program (ref. 15)
with J* =J7JIT)~1. When JIT is singular, a
numerical singular value decomposition can be used
to calculate J: -: the exact Cartesian trajectory
cannot be achieved, but this alternate solution is the
best available given the singular condition.

No loss of generality occurs when equations (3)
and (4a) are used for the particular solution to equa-
tion (1). If the geometric relationship of equation (3)
is not exploited for the solution of 64, the pseudo-
inverse of the 6 x 8 Jacobian matrix and equation (3)
always yield the same value.

The homogencous solution of equation (1) for
local redundancy optimization is

Op.ix1 = k(I7 — J3,735x7) VH 24 (4b)

The null-space projection operator is a square ma-
trix of order 7 that was obtained from the reduced
Jacobian matrix. The homogencous term for 84 is
zcro because of the geometric elbow constraint. Any
addition to the particular solution (eq. (3)) would
cause a deviation from the commanded trajectory.
The fourth term of the constraint function gradient
is excluded, as explained in the next paragraph.

Again, no loss of gencrality is incurred when
equation (4b) is used as the homogeneous solution
to cquation (1). In general, JJ* =1, but J*J # L,,.
However, because of the geometric elbow constraint
of the eight-axis arm, the fourth row and column
of J*J are the same as the fourth row and column of
the identity matrix, when J is the full 6 x 8 Jacobian
matrix. The null-space projection matrix thus has
zeros for the fourth row and column. This condition
has two consequences. (1) Because the fourth row
1s zero, a homogencous term for 04 does not cxist.
(2) Because the fourth column is zero, the partial
derivative of a constraint function with respect to 64
never adds to the homogeneous terms for the other
joint rates.

The total solution to equation (1) is as follows.
The particular solution for the clbow joint rate is
given in equation (3), and the total solution for the
remaining joints is the sum of the particular and
homogencous solutions:

Or.i21=0pis1+0niz1 (4c)

3.2.3. Partitioned reduced Jacobian solu-
tion. To greatly reduce the computation require-
ment, a partitioned approach for the particular solu-
tion of equation (1) was implemented. The particular
solution for the full Jacobian matrix requires 25 times
more computation time than the partitioned particu-
lar solution (ref. 15). This section discusses the par-
titioned solution and extends the theory to include
the partitioned homogeneous solution.

Wrist partitioning is a common method for solv-
ing the inverse position and velocity problems of
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nonredundant industrial manipulators with spherical
wrists. For nonredundant manipulators, the full and
partitioned solutions yield the same results. How-
ever, for redundant manipulators, the partitioned so-
lution yields a suboptimal result because the con-
straints are optimized separately for translation and
orientation. For instance, the full particular solu-
tion for joint rates is the least-squares solution. The
magnitude of the partitioned solution joint rates is
higher, but the difference is not significant. (See
section 4.2.1.)

For a manipulator with a spherical wrist, equa-
tion (1) can be written in the following partitioned

form: .
v ‘]U L 0 0,4
w Jo Jr] 0w

The vectors v and w are the translational and rota-
tional Cartesian velocity commands. The Jacobian
matrix is partitioned into upper-left, lower-left, and
lower-right 3 x 4 submatrices. The vector 84 repre-
sents the translational (arm) joint rates 1 through 4,
and By the rotational (wrist) joint rates 5 through 8.
The upper-right submatrix in equation (5) is the
3 x 4 zero matrix because of the spherical wrist: The
wrist joint rates do not affect the translational veloc-
ities of the wrist center. In the translational equa-
tions, 8 is first determined from equation (3). The
particular solution for the remaining arm joint rates
is as follows:

Bapiz1 =L (Vl - JUL494) (6a)

The joint rate vector 9‘413‘,'754 contains the transla-

tional joint rates excluding 8. Jluy i the 3 x 2
pseudoinverse of Jy;; with column 4 and row 1 re-
moved, vy is v with row 1 removed, and Jy 4 is
column 4 of Jy;; with row 1 removed.

The homogeneous solution for the arm joint rates
excluding 64 is given in the following equation,
where H 4 is a function of the arm joint angles:

Oapizs =ka(ls — FiypdivLa) VHA g (6b)

The total arm joint rate solution is as follows. The
particular solution for the elbow joint rate is given in
equation (3). Again, the homogeneous solution for 84
is zero. The total solution for the remaining arm
joints is the sum of the particular and homogeneous
solutions:

Oarizs = 0apizs+8aniz4 (6¢c)

For the same reasons stated for the non-
partitioned solution, no loss of generality is incurred
by using equation (3) and reducing J;7 to Jia
for both particular and homogencous translational
solutions.

The particular and homogenecous wrist joint rate
solutions are given in equations (7a) and (7b). The
total wrist joint rate solution is the sum of the
particular and homogencous solutions:

bwp=Tp (w - JLLéAT) (7a)
Owr = ky (Iy — 35 g3 g) VHy (7h)
Owr =Owp + 0wy (7c)

The full J; p is used for the rotational equations so
the order of the pseudoinverse J7, is 4 x 3. The
effect of the total arm joint solution must be sub-
tracted for the wrist particular solution. The ob-
jective function Hyy is a function of the wrist joint
angles.

J HPN cOQQ) o * P * ' L o1V
‘ bymhol.lc expressions for J7;;; 4 dl.ld J7j pp are given
in appendix B. Also, the symbolic forms of the
partitioned null-space projection matrices are given
in appendix C.

3.2.4. FEight-azis arm singularity analysis.
Singularity conditions for redundant manipulators
arisc when |JJ7| =0. This matrix is symmetric
and positive semidefinite (|JJJ7| > 0). For the par-
titioned solution. singularity analysis is presented as
follows. The calculation of 84 in equation (3) fails
when d3 = 0 or ds = 0 (neither is possible) or when
A4 = 0°,180°. The joint angles follow Craig’s con-
vention (ref. 14), and the zero position for all joint
angles is given in figure A2 of appendix A. The singu-
larity condition for the remaining translational joints
is independent of #;. (In appendix B, Dy, is given.)

Jll,vlﬁi']’lrl'[ll - (I%S%DLFL =0 (8)

Of the three terms in equation (8), only the last two
can become zero. When 64 = 0°,180°, the transla-
tional joints are in the elbow work space limit singu-
larity. At 64 = 0°, the elbow is fully extended and
the freedom to translate along EW has been instan-
tancously lost. Similarly at 84 = 180°, the elbow is
folded upon itself. The term Dy;; can become zero
in two ways.

1. B2 =0°,180° and 03 = £90°. (Sec fig. 4(a).)
In this case, joint 4 can instantancously move
W tangentially to the link EW, and joint 1, 2,



Singular directions

/
A I::l E Singular direction 4 <> E ’::I

s L]

Front view Side view Front view Side view
(a) Internal singularity for arm subassembly. (b) Doubly degenerate singularity for arm subassembly.
6
E L]
] 7
5 -
— 8
Yaw EE
YEE EE
Roll Singular direction
(no pitch)
ZEE

{(c) Internal singularity for wrist subassembly.

Figure 4. Singularity configurations.

or 3 can move W perpendicular to the plane of The singularity condition for the wrist joints is
the side view. However, the freedom to trans- independent of 85 and fg and is given as follows:
late radially along link EW is gone (singular
direction). 1.]“?.]{”‘ = 2(1 - aée%) =0 (9)
2. 6y =64 =0°180°. This case is doubly de- The wrist singularity occurs only when g = £90°
gencrate with respect to translation. (See and f7 = +90° simultancously. As shown in fig-
fig. 4(b).) The zeros of Dy; were obtained ure 4(c), joints 5 and 7 provide yaw, joints 6 and 8
numerically because of its complexity. provide roll, but the freedom to pitch has been lost.
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The symbol EE in figure 4(c) represents the end
effector.

Table 1 summarizes the four singularity condi-
tions for the general eight-axis arm. For the ARMII,
as shown in table A2, the cases where 6y or 6,
equal 180° and 87 = +90° are out of joint motion
ranges, and the case g = +90° coincides with the
joint limits.

Table 1. Singularity Conditions

Number Condition
1 6y = 0°,180°
2 8y = 0°,180°; 83 = £90°
3 8y = 04 = 0°,180°
4 O = £90°; 67 = £90°

Entries 1 and 3 (3 is a subset of 1) are work space
limit singularities, and entries 2 and 4 are work space
interior singularities. These singularity conditions
were derived from the partitioned solution. The sym-
bolic analysis for IJ5X7JéX7| is too complicated for
analytical treatment. With the exception of the el-
bow joint work space limit singularity, 84 = 0°,180°.
However, an intensive numerical computer search in-
dicated that the full Jacobian matrix shares all four
singularity conditions from table 1. The computer
search also indicated that no additional singularities
exist for the full solution. This result is expected
because of the spherical wrist. Reference 16 shows
that for a nonredundant manipulator with a spherical
wrist, the partitioned arm and wrist singularities cor-
respond one-to-one with the singularities of the full
Jacobian matrix. This condition is not true for ma-
nipulators with a nouspherical wrist. The computer
scarch involved all possible combinations of joint an-
gles in steps of 5° over a full 360° rotation. At cach
step, }ngTJé;(Ti was computed and the cases near
zero were printed.

In the neighborhood of manipulator singularities,
both full and partitioned symbolic solutions be-
come ill-conditioned. A numerical singular value de-
composition solution can be used, where the trajec-
tory cannot be satisfied, but the alternate solution is
the best available given the singular condition.

3.3. Objective Functions

This section presents three objective functions for
use in the homogeneous solutions to optimize the
performance of a redundant manipulator. Two ob-
jective functions have been implemented for the full
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and partitioned solutions: joint limit avoidance and
manipulability maximization (singularity avoidance).
A third objective function for obstacle avoidance is
discussed but has not been used.

The following function was proposed by Liegeois
(ref. 2} to allow the manipulator to avoid joint limits:

o =y (M) (10)

=1

where #; is the current value for joint 7, 6,; is the
center of travel for joint i, and A@; is half the range
of travel for joint i. The function is normalized by
its denominator so that each joint has equal weight
regardless of its range of travel. This function is
minimized for joint limit avoidance. Equation (10)
is defined for the full solution. For the partitioned
solution, H 4 is defined for i =1 to 4, and Hy for
¢ = 5 to 8. Klein and Huang (ref. 5) state that equa-
tion (10) leads to a suboptimal joint limit avoidance
solution. The optimal norm to use is the maximum
norm; they use the p-norm to approach the maxi-
mum norm with a tractable gradient. Equation (10)
is used in this paper.

From reference 17 Yoshikawa's definition of
manipulability is as follows:

Hy(8) = /[337] (11)

This function is maximized to ensure that the
manipulator operates far from singular configura-
tions. The value of equation (11) is zero when
the manipulator is in a singular configuration. For
the full homogeneous solution, the function is

Hyp =/ 1.],5)(7.]%;7 and for the partitioned solution

the functions are H4 = |J1UL4J{U“! and Hy =

J;rIT ,|. The gradients of the two implemented
LRILR I

objective functions have been derived symbolically.

Yoshikawa (ref. 17) proposes minimization of the
following function for obstacle avoidance:

Ho(0)=5(0-6)'WO-6,) (12

where 6, is a single constant manipulator configu-
ration that is good for avoiding collisions with an
obstacle, and W is a diagonal matrix with posi-
tive gains. Except for normalization, equation (12)
is similar to equation (10). Equation (12) has not
been implemented for the eight-axis arm because pre-
determined information is required on the obstacles
in the work space. In unstructured environments



such as space, this method is too limiting because
it is not adaptive to unknown obstacles. Other
authors have proposed more robust and adaptive
methods for obstacle avoidance with redundant ma-
nipulators. For instance, Karlen et al. (ref. 18) dis-
cuss an algorithm for reflexive obstacle avoidance
using proximity scnsors along the redundant manip-
ulator. In reference 4, Nenchev presents 21 references
dealing in part with obstacle avoidance.

4. Results

The data reported in this section were obtained
via graphical simulation. The ARMII manipulator
was used for the examples in this section to verify
the simulated results on actual hardware.

4.1. Local Optimization Results

This section presents local redundancy optimiza-
tion results for the full solution. Results are given for
joint limit avoidance, manipulability maximization,
and a combination of the two. The units are me-
ters per second and radians per second for Cartesian
translational and rotational velocities, respectively,
and degrees for joint angle. The joint limit con-
straint function H; is dimensionless, and the units
for manipulability Hj; are square meters.

Figure 5. Initial configuration for joint limit avoidance.

4.1.1. Joint limit avoidance. The constraint
function used is equation (10) with n = 8. The tra-
jectory is an end-effector roll, X = {0,0,0,0,0,0.4}7.
As shown in figure 5, 8 = {0, -30,0, —-70,0,0, -50,0}7 is
the starting configuration. Table A2 gives the joint
limits for the ARMII. Joint 8 was designed to provide
continuous bidirectional roll, but the limits were set
to £300°. The trajectory for this example is satisfied

I’-:
| I 1 { 1 | | i
0 5 10 15 20
Time, sec
(a) Constraint function.
5 _
[ -
© e
< Phe k=0
---k=-0.5
| ] | J
5
0 5 10 15 20
Time, sec
(b) 6.
= 250
g
£ — k=0
o 200 k=05
=
5 150
g
-é 100~
S S0
TS Y N7/ N (R ey S
0 5 10 15 20
Time, sec

{¢) Cartesian error.

Figure 6. Joint limit avoidance.

by a combination of all joints. Figure 6{a) shows the
constraint function value for the particular solution
only (k=0 in eq. (4b)) and the particular solution
with joint limit avoidance (minimization, & = —0.5).
With no optimization (k = 0), the objective function
is greater, which means the joints are generally far-
ther from their center of travel and thus nearer to
limits. Optimization (k = —0.5) improves this situ-
ation and forces the joints to be farther from their
limits.

A compelling demonstration of the benefit of joint
limmit avoidance optimization shows when a joint limit
is encountered. For the same trajectory, figure 6(b)
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shows 6y hitting a limit at 9.5 sec, but avoiding the
limit when the function is minimized. The associated
Cartesian error due to the joint limit is shown in
figure 6(c). With joint limit avoidance, the resulting
Cartesian trajectory is useful for a larger time span.

4.1.2. Manipulability mazximization (sin-
gularity avoidance). The constraint function Hyy
is defined following equation (11). The commanded
Cartesian trajectory is X={0.01,0.01,0.01,0,0,0}7,
and the initial manipulator configuration 6=
{0, -10,75.—70.0, -80, —90,0}7 (fig. 7) is near both arm
and wrist singularities. Figure 8 shows Hj; for the
particular solution only (k = 0) and with manipula-
bility maximization (k = 1). Both curves start with
manipulability near zero because the initial config-
uration is nearly singular. As the curve for £ =0
shows, the chosen trajectory tends to increasc the
manipulability gradually even when no maximiza-
tion is applied. However, the optimized solution in-
creases the manipulability rapidly and then main-
tains it at a high level during the move. Both curves
fall off rapidly as the trajectory drives the manip-
ulator into the work space limit singularity where
#4 = 0°. Optimization does nothing to improve this
situation because no homogeneous term exists for 6y,
as explained in section 3.2.2.

Figure 7. Manipulability maximization for initial

configuration.
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Figure 8 Manipulability maximization for Hy;.
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Figure 9. Manipulability maximization for Hyy.

Figurc 9 dramatically demonstrates the bene-
fits of manipulability maximization. For this fig-
ure, the initial manipulator configuration is the same
as the one in figure 7, but the Cartesian trajec-
tory is X = {0, -0.01,0,0,0,0}”. Without optimization
(k = 0), the trajectory drives the manipulator into
the neighborhood of the g = —90°, 6; = —90° in-
ternal wrist singularity, and the manipulability meca-
sure remains near zero for the entire time. With ma-
nipulability maximization (k = 1), the manipulator
avoids the singularity and achieves the commanded
trajectory with high manipulability.

4.1.3. Combined optimization. Experiments
with manipulability maximization with the full solu-
tion revealed that regions exist where the local maxi-
mum for Hy; lies outside the joint limits of table A2.
The algorithm attempts to increase Hyys, but it is
not physically realizable because of the physical joint
limits. Such cases indicate that combining optimiza-
tion criteria is sometimes necessary. For the example
in this section, the Cartesian command and initial
configuration are the same as those for the manipu-
lability example in figure 9. The objective function is
constructed to maximize manipulability while avoid-
ing joint limits:

H() =kypHpy + kyH, (13)



where the manipulability and joint limit functions
are defined in equations (11) and (10); kp; must be
positive to maximize Hjyy, and k7 must be negative
to avoid joint limits.

An example of a case where manipulability maxi-
mization and joint limit avoidance must be combined
is given in this section. The Cartesian trajectory
is X = {0.01,0.01.0.01,0,0.0}7. The initial manipula-
tor configuration is @ = {0, —10,85. —70,0, 80, -90.0}7;
this configuration is the same as the one in figure 7,
with one change: 64 starts at 85°, which is 10° closer
to the internal arm singularity. In this cxample, joint
litnits are reached for 07 and 84 during the trajectory
with manipulability maximization only.

Figure 10(a) compares Hy; for manipulability
maximization only (ky; =1, ky =0) and for ma-
nipulability maximization with joint limit avoid-
ance (JLA) (kyy = 1,k5 = —1). A third plot shows
the manipulability for the trajectory without any
optimization, k =0 (actually, kyy = 0.k; =0) for
comparison. Without any optimization (k = 0), the
manipulability remains low for the entire trajectory.
With manipulability maximization and without joint
limit avoidance (MM in fig. 10(a)), the manipulabil-
ity 1s highest, but this condition is not physically
realizable because of the joint limits encountered. A
joint limit for #7 is reached at 9 sec, which causes
the Cartesian error to increase rapidly (fig. 10(b)) as
the actual trajectory deviates from the commanded.
Becanse of this error, figure 10(a) shows that with-
out joint limit avoidance, the manipulator reaches
the 84 = 0° work space limit singularity (where Hyy
goes to zero) sooner than it does with joint limit
avoidance. With both manipulability maximization
and joint limit avoidance (MM + JLA in fig. 10(a)),
the manipulability assumes intermediate values that
are realizable because no joint limits are encoun-
tered. Joint limits were not cncountered for the no
optimization (k = 0) case, and the plot is so simi-
lar to MM + JLA in figure 10(b) that it is not in-
cluded. The instability reflected around 28 sec in
figures 10(a) and 10(b) for the MM casc is due to the
work space limitation singularity; these data were ob-
tained through the use of simulation not the actual

ARMII hardware.

4.2. Comparison of Partitioned and Full
Solutions

The results presented previously are for the full
solution. The partitioned solution is suboptimal
because the particular and homogeneous solutions
are optimized scparately for the translational and
rotational parts. However, as shown in the results
of this section, the difference is not significant.

—— MM
- -~ MM+ILA
—— k=0

0 5 10 15 20 25 30
Time, sec
(a) Har.
E 140 -
E: 120
g 100+
=
2 80 -
= 60 —
£ 4o m JLA
5 -
S 2t *
A HE N W SR Ny JR [y S
0 5 10 15 20 25 30
Time, sec
(b) Cartesian error,
Figure 10. Combined optimization.
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Figure 11. Full vs partitioned joint rate magnitude.

4.2.1. Comparison of particular solutions.
The full particular solution (cq. 4(a)) yields the
least-squares solution for joint rates.  The parti-
tioned particular solutions (eqs. 6(a) and 7(a)) re-
sult in a higher Euclidean norm joint rate magnitude.
Figure 11 shows a typical result. This simulation
moves the manipulator toward the singularity where
f4 = 0°. The maximum percent difference between
the full and partitioned joint rate magnitudes is 2.5,
which decreases as the manipulator approaches the
singularity.
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4.2.2. Joint limit avoidance. The Cartesian
trajectory and initial manipulator configuration
in this example are X ={0,0,0,0,0,04}7 and
0 = {0, -30,0, —=70,0,0. —50.0}%, the same as the exam-
ple of section 4.1.1. Figure 12 shows joint limit
avoidance for the full (k= —0.5, repeated from
fig. 6(a)) and the partitioned (k4 = ky = —0.5) so-
lutions. The results are nearly identical. The full
objective function is only slightly less than the par-
titioned objective function. Theoretically, the full
solution avoids joint limits better than the parti-
tioned because the objective function is minimized to
smaller values, but practically there is no difference.

0 5 10 15 20
Time, sec

Figure 12. Full vs partitioned joint limit avoidance.

4.2.3. Manipulability maximization. The
Cartesian trajectory and initial manipulator configu-
ration in this section are X = {0.01,0.01,0.01,0,0,0}"
and @ = {0,-10,75,-70,0, -80, =90.0}7, the same as
the first example of section 4.1.2. Figure 13 com-
pares manipulabilities for the full (k = 1, repeated
from fig. 8 with a different vertical scale) and the
partitioned (k4 = ky = 1) solutions. The constraint
functions for the partitioned case are the arm and
wrist manipulabilities, H 4 and Hyy, defined follow-
ing equation (11). The units for H 4 are m? and Hy
is dimensionless.

Vp e Dk

—~
<
W

10 15 20 25 30
Time, sec

Figure 13. Full vs partitioned manipulability maximization.
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Figure 13 shows that the wrist manipulabil-
ity for the partitioned case increases rapidly to
v2 and is held there for the remaining trajectory.
The partitioned arm manipulability increases to a
lower value and falls off as the elbow work space
limit singularity is approached. The full manipula-
bility increases to a value in between the arm and
wrist curves. It also falls off as the clbow work space
limit singularity is approached. Therefore, the wrist
manipulability appears to be superior to the full so-
lution, and the arm manipulability tends to be lower
than the full solution.

4.2.4. Accuracy of partitioned solution. In
the eight-axis singularity analysis of section 3.2.4,
the singularities of the partitioned solution were con-
cluded to be identical to those of the full solu-
tion; these are the physical manipulator singulari-
tics. Therefore, the partitioned solution does not
add algorithmic singularitics to those found in the
full case.

When a determinant is zero, the solution is sin-
gular; when it is near zero, the solution is ill-
conditioned.  The following question arises: Is
the partitioned solution ill-conditioned in a larger
neighborhood around the singularities than the full
solution? To answer this question, joint trajectories
were designed to drive the graphical simulation of the
manipulator through two work space interior singu-
larities (#3 = 0°, 83 = 90° and 6 = 90°, ; = —90°)
simultancously, and the full and partitioned {JJT\
were studied. Figure 14 shows the manipulator in
these singular conditions, where the full configura-
tion is @ = {0,0,90, —70,0,90, -90,0}7. This configura-
tion is a combination of those shown in figures 4(a)
and 4(c).

Figure 15 presents the results of this study. Start-
ing from 6 = {0, -10,80, -70,0,80, —100,0}7, joints 2,
3, 6, and 7 were updated by 1°/scc, so both sin-
gularities were reached at 10 sec. Figure 15 is a
plot of lJ5x7ng7| (5 x17), ]J]U“JP{(’,“| (arm) and
IJLRJ}CR| (wrist). The arm curve is symmetric; the
5 x 7 and wrist curves are not because joint 6 hits
a limit at the wrist singularity and does not move
through.

Figure 15 provides a clear answer to the question
of ill-conditioning: The full solution (5 x 7) is ill-
conditioned in a much greater neighborhood around
the singularities than the partitioned solutions (arm
and wrist). Therefore, the robustness of the parti-
tioned solution is an advantage when compared with
the full solution.



Figure 14. Internal arm and wrist singular configurations.
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Figure 15. Full vs partitioned solutions near singularities.

5. Eight-Axis Arm Design Limitation

This section discusses a limitation in the eight-
axis arm design regarding redundancy optimization.
Design alternatives are presented in appendix D to
alleviate the problem.

As discussed in section 3.2.1, the length of reach
from shoulder to wrist for manipulators with a spher-

ical wrist, spherical shoulder, and a single elbow joint
is a function of only the elbow joint angle. Figure 3
shows this relationship. Regardless of the 63, 85 val-
ues, the length SW (fixed by the Cartesian trajec-
tory) is a function of only #4. This function is ob-
tained from the cosine law discussed in reference 15.
A derivative of this relationship yields the unique
solution for 8,4 in equation (3).

The limitation in this design is that the elbow
joint can only be used to satisfy the primary task, the
Cartesian trajectory. As discussed in section 3.2.2,
the elbow joint cannot be used in the secondary task
of manipulator performance optimization because it
does not influence the self-motion of the eight-axis
arm. As a trade-off, a benefit of this design is sim-
plified kinematics, and greatly reduced computation
requirement when exploiting the independent elbow
rate solution and the wrist-partitioned solution.

Although the eight-axis arm has two redundant
degrees of freedom, it has only one mode of self-
motion, the elbow orbit about the line SW. (See
fig. 2.) This self-motion is also achieved by scven-
degree-of-freedom manipulators with only one redun-
dant freedom. The question becomes, Is the ex-
tra overhead and reduced reliability with the extra
joint justified considering only one self-motion mode
is achieved and the elbow joint cannot be used for
optimization?

Appendix D discusses kinematic design modifica-
tions to address the existing eight-axis arm limita-
tions. The emphasis is to provide a second mode of
self-motion, in the plane SEW, and to ensure that
the elbow joint participates in optimization.

6. Conclusions

This paper presents local redundancy optimiza-
tion applied to a class of eight-axis redundant arms.
The theory has been implemented on a member
of the class, the Advanced Research Manipula-
tor II (ARMII). The performance constraints for the
secondary task optimization are joint limit avoid-
ance, manipulability maximization (hence singular-
ity avoidance), and a combination of the two. Re-
sults are presented to show the effectiveness of the
redundancy optimization.

The methods used in this paper are well-known
from the redundant manipulator literature. The
contributions of this paper are fourfold.

1. Real-time local redundancy optimization for
an experimental eight-axis manipulator is
demonstrated. Most experimental efforts in
the past have used seven-axis arms.
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2. A kinematic design limitation of this class

of eight-axis arms is explained. The length
of reach from the shoulder to the wrist is a
function of only the elbow joint angle, which
means that the elbow angle participates only
in the primary task, and cannot affect the sec-
ondary optimization task. Even though there
are two redundant degrees of freedom, there
is only one mode of self-motion. The ge-
ometry is suited for low computation redun-
dancy resolution, but the trade-off is reduced
versatility.

3. Symbolic pseudoinverses and objective func-

tion gradients are used for both full and par-
titioned solutions. In addition, for the parti-
tioned solution, the symbolic arm and wrist
null-space projection matrices are given.

results as the full solution, without the in-
troduction of algorithmic singularities. The
motivation for the partitioned solution is re-
duced computation. The partitioned solution
is suboptimal because translational and ro-
tational terms are optimized separately for
both primary and secondary tasks, but pre-
sented results show the difference is not sig-
nificant. Singularity analysis reveals that no
algorithmic singularities cxist for the parti-
tioned solution. The partitioned and full so-
lutions share the same physical manipulator
singular conditions. Also, the partitioned so-
lution is shown to be ill-conditioned in smaller
neighborhoods of the shared singularities than
the full solution.

NASA Langley Research Center
Hampton, VA 23681-0001
January 10, 1994

4. This paper shows that a partitioned solution
can be applied to obtain similar optimization



Appendix A

Advanced Research Manipulator 11

This appendix describes the Advanced Research
Manipulator I1 (ARMII), which is representative of
the class of redundant eight-axis manipulators in
figure 1. This appendix also gives the Denavit-
Hartenberg parameters and the Jacobian matrix for
this class of manipulators.

Figure Al is a photograph of the ARMII, and
figure A2 is a kinematic drawing of the ARMIL
The following features distinguish the ARMII from
existing industrial manipulators: two redundant
degrees of freedom; four-jointed spherical wrist;
continuous bidirectional end-effector roll; no kine-
matic offsets; a high payload-to-weight ratio (1:5);
high joint stiffness with 200:1 harmonic gearing
at cach joint; absolute position potentiometer, in-
put and output relative encoders, temperature sen-
sor, limit switches, and mechanical stops for each
joint; high torque direct current brush servomotors
with integral brakes and encoders; high link stiff-
ness with graphite or epoxy composite material; and
space-flight-qualifiable components.

Table Al. Eight-Axis Arin Denavit-Hartenberg Parameters

i STIN aj_y o; 0,
1 0 0 0 0
2 90° 0 0 02
3 —90° 0 dy By
1 90° 0 0 04
5 —-40° 0 dy, ty — 90°
6 —90° 0 0 O + 90°
7 90° 0 0 6; — 90°
8 90° 0 0 s

Table A2. ARMII Joint Limits

[Units are in degrees]

1 [ Oinin 0. Ab,
1 165 —-165 0 165
2 90 —90 0 90
3 165 —165 0 165
4 90 —90 0 90
) ™ —255 -390 165
6 90 -90 0 90
7 0 —120 -60 60
8 300 —300 0 300

1.-92-07518
Figure Al. ARMII photograph.

L]

Z
——[] 2z Xo Xy X2
Side view Front view

Figure A2. ARMII kinematic diagram.

The cight-axis arm Denavit-Hartenberg parame-
ters (Craig convention (ref. 14)) and ARMII joint
limits plus equation (10) terms are given in tables Al
and A2. In table Al, nominal values for the fixed
lengths are d3 = 695 mm and d5 = 545 mm.
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The Jacobian matrix for the eight-axis arm ex-
pressed in the elbow Cartesian coordinate frame, {4},
is presented in reference 13 as follows:

1] = Jvr 0

RUARR I

[ —Asgsg  —Acs 0 —ds
Jyr = | d3ysasysy  d3zcssy 0 0

L Kig —Bss dssg O

[ K5 —s3cq4 sq4 O
Jip=|—-K¢ 8384 ¢4 O

L 5983 c3 0 1

0 3 sscg KK3
Jir=|1 0 —s¢ cgcr

Lo —s 5 epeg KK

16

where
A =dseq +dy

B =ds+dscq
Ky = c954 + s2c304

K¢ = —cos4 + s9c384

=
I

= d3gsacg +ds K5
KK = s5s7 + c586C7
KKj = —c587 + $586C7

Cartesian velocities used with this Jacobian matrix
must be expressed in frame {4}. If velocities are com-
manded in a different frame (e.g., {8}), the following
coordinate transformation is required (ref. 13):

(M
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Appendix B Kig = dgse + ds Ky

1l

Symbolic Partitioned Pseudoinverse K13 = sgcq + c3Ko

The symbolic form for the pseudoinverse of the K14 = 954 + 3Ky
partitioned reduced Jacobian matrix is given in this
appendix (ref. 15). Because 84 is solved indepen-
dently with equation (3), column 4 and row 1 are
removed from Jg;;.  Thus, the following transla-

The 4 x 3 rotational pseudoinverse used in equa-
tion (7h) is as follows:

2 _ .2
tional pseudoinverse, used in equation (7a), is of ni (2e5—1)s7+1 mi3
order 3 x 2: . 1| nog c657CT nos
Iir=p— o
m 3Kyt LR| n31 —56C7 nsa
* - 1 m9) —s983K11 Ti41 €ilen 43
LA D
UL 9 9
m3p  dssy (1 - (7233) where
where Dpp = 2(1 _ sgs%)

Dyrp = (d2 + d?)s3 + 2d5 K7(dysy + dscacys
vL = (dy +di)s3 sR7(dysy + dseacssy) nyy = cgsr(cser + 2855657)

s3lds K19 + d2(sg + coc3eqsy
My = alds Kz §( 2+ Cacacasy) niy = cgs7(—s5c7 + 2¢55657)
d3sy

h o i n9y = e K K7 + 255 KKy
_ dssaldysacs + do K 11) + d2(s3e3 + e254K13) ’ ’

dssy ngy = —ss K K7 + 2c5 K Kg

moy

dsegsy(dyegey — ds Ry) n31 = cg(2s5 + cs K Kg)
ds

ms3y =
ng3y = (',‘6(2(75 _ 35}(}\’8)
K7 = sycq + e384 2
n41 = 285867 — 50687

[\'8 = 8§84 — (90304

2
. g3 = 20586C7 + 55C6S
Kq = 2s89¢c4 + cac384 13 55607 55657
s {2 2
Kig = 20984 + s34 K I‘7 = (C(j - 2)37 +2

K = dysa+ dy Ky KKy = sgs7cr

17



Appendix C

Symbolic Partitioned Null-Space
Projection Matrices

The symbolic null-space projection matrix for
Jiv 14, which is used in equation (6b), is given as
follows. This matrix is symmetric; Dy and K1y are
given in appendix B.

| Juu Jiz2 13

(I3 = Jypadiwes) = I = 5— Je2 Ja23
UL _

733

where
Jin = dg [1\11 — (28% — l)cgsﬂ + N

: 2 2
J12 = dis283¢38]

J13 = d5sKq1¢384

18

Jo2 = dg{]\ll + [2(3% — ((‘% + l>8%}83} + Ny
J23 = —ds K11525334
s = B (1 - B:3) 3
My = s9(82 + 2cac384¢4)
Ny = dgsa(d3sy + 2d5K7)
The symbolic null-space projection matrix for Jy g,
which is used in cquation (7b), is given as follows.
This matrix is symmetric; Dyp is given in appen-

dix B. The subtraction from the identity matrix is
included in the following equation:

2 iy o g s 2 v o

7 —CgSTCT 86¢7 —ce7
2.2 . . 2
1 C6S7 —86C6S8TCT CeST
(I.j —J* J]R): _—

LS Dip s2c2 —86CECT
’ 67 SGCGCT

2

Ce



Appendix D

Kinematic Design Alternatives to the
Existing Eight-Axis Manipulator

Kinematic limitations regarding the existing eight-
axis arm of figure 1 and their effect on performance
optimization using redundancy are discussed in sec-
tion 5. To provide two modes of self-motion with two
redundant joints and to allow the elbow joint to in-
fluence performance optimization, kinematic design
modifications to the arm of figure 1 are considered
in this appendix. Only one change is required: re-
configure joint 5 so that it is parallel to joint 4, as
shown in figure D1. With this modification, the sub-
assembly connecting the shoulder to the wrist no
longer assembles in only two configurations in plane
SEW (clbow up and down) but is a four-bar linkage
with one degree of freedom in plane SE{E;W. This
design has two modes of self-motion: the original el-
bow orbit (fig. 2), and the new four-bar motion in
the plane of the links connecting S and W. These two
modes provide more flexibility for obstacle avoidance
and null-space optimization than the original design.
Since the relationship of equation (3) no longer holds,
null-space terms are associated with joint 4.

Figure D1. Eight-axis redesign with four-bar self-motion.

An analogous design alternative is to replace the
revolute joint 5 with a prismatic joint acting along
the line connecting joint 4 and W. (See fig. D2.) In
this case, the subassembly connecting S to W is a
one-degree-of-freedom slider-crank mechanism with
a similar second mode of self-motion in plane SEW.

4 Replace joint 5
with a prismatic joint

Add revolute joint
between original
jomts 4 and 5

Figure D3. Nine-joint redesign.

A drawback of the proposed design alternatives
of figures D1 and D2 is that the four-axis spherical
wrist subassembly of the original arm is reduced to
three joints. The partitioned solution applied to
the new designs would not be useful because the
wrist subassembly is no longer redundant, so no
wrist performance optimization using self-motion is
possible. Therefore, figure D3 proposes a nine-axis
redesign where a second elbow revolute joint (parallel
to joint 4) is added between joints 4 and 5 of figure 1.
(Alternatively, the prismatic joint can be used.) For
this concept, there are two sclf-motion modes, the
elbow joint is not excluded from optimization, and
a partitioned solution can be applied. However, a
similar problem from the original eight-axis arm in

19



figure 1 exists: there are three redundant degrees of
freedom but only two modes of self-motion.

There are trade-offs among the original design of
figure 1 and the proposed redesigns of figures D1, D2,
and D3. The original design has simpler kinematics,
joint 4 variables solved independently, and allows
an efficient partitioned solution. However, joint 4
has no null space and only one mode of self-motion.

20

The cight-axis redesign concepts provide two modes
of self-motion, a null-space term associated with 6,
but no four-axis spherical wrist to allow a general
partitioned solution with reduced computation. The
nine-axis redesign provides all desired attributes, at
the cost of an extra joint. For general tasks, the
nine-axis alternative is recommended by the author,
although more work must be done to validate this
recommendation.
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