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Abstract

This paper presents an adaptive robust fuzzy con-
trol architecture for robot manipulators motion. The
control objective is to adaptively compensate for the
unknown nonlinearity of robot manipulators, which is
represented as a fuzzy rule-base consisting of a collec-
tion of if-then rules. The algorithm embedded in the
proposed architecture can automatically update fuzzy
rules and, consequently, it is guaranteed to be globally
stable and to drive the iracking errors to a neighbor-
hood of zero. Focused on realization, hardware limi-
tations such as traditional long computation time and
ezcessive memory-space usage are also relazed by in-
corporaling heuristic concepts, which reveals the flez-
tble feature of this archilecture. The present work is
applied to the control of o five degree-of-freedom (D-
OF) articulated robot manipulator. Simulation results
show that the proposed control architecture is featured
in fast convergence.

1 Introduction

During the past decade, intelligent control method-
ologies have gradually been recommended to solve a
number of complicated problems, in particular, to the
control problem of robot manipulators which conven-
tional control methodologies are hard to handle or at
the price of complex implementation. Those method-
ologies often use biologically motivated techniques and
processes, and are referred to as neural networks, or
some learning schemes [6]-[9). Unlike general con-
ventional schemes based on a complete theory and
algorithmic structure, they are in general hardly e-
valuated. Therefore, it is imperative to make efforts
on bridging the gap between the conventional control
schemes and the intelligent ones [1]. Recently, analy-
sis based intelligent control has attracted enormous re-
search interests [2]-[4]. Ideas behind those schemes are
to strengthen their theoretic basis but at the price of
expensive implementation by using massive networks
and extensive rule-tables or complex functions, which
lead to difficulties in real implementation due to hard-
ware limitations such as long computation time and
excessive memory-space usage. On the other hand, the
heuristic nature of intelligent control often has much
benefits for a controlled system. Hence, an integrated
consideration is suggested in this paper.

In this paper, we present a new fuzzy control ar-
chitecture for the control of a robot manipulator. It
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is known that fuzzy logic controllers (FLC) have been
widely applied in industry. An important advantage
of using FLC is that fuzzy theories can capture the
approximate, qualitative aspects of human knowledge
and reasoning. Apparently, such control provides a
rather feasible alternative for a plant like a robot ma-
nipulator which is extremely complex. On the other
hand, adaptive control schemes had been successfully
applied to robot manipulators with good performance
{10],[11]. Hence, an adaptive fuzzy control scheme for
robot manipulators is proposed in this paper. Fur-
thermore, robust control concepts have to be adopted
to ensure that the controlled system is stable. Thus, a
synthesis is proposed by combining the adaptive fuzzy
control approach with a robust control approach to
con)stitute the final adaptive robust fuzzy control (AR-
FC).

This paper is organized as follows: Section 2 formu-
lates the general control problem for robot manipula-
tors. In section 3, the control algorithm is given under
some assumptions and stability is analyzed. Section 4
shows the simulation results on controlling a five DOF
robot manipulator. Finally, some concluding remarks
are made in section 5.

Problem Formulation
In this section, we consider a class of articulated
robot arms wit n links, whose dynamic model is de-

scribed by
M(q)§+ C(q,9)d + G(q) + f(g.d) =T (1)

where ¢ is the n x 1 vector of the link relative displace-
ments, and 7 is the n x 1 vector of torques applied to
joints, M(q) is the inertial matrix, C(q, ¢)q is the vec-
tor representing the Coriolis, centrifugal torques and
G(q) is the vector of gravity torques, f(g,q) is the
vector of joint friction torques. To emphasis on the
flexibility of applying robot manipulators, the manip-
ulator payload may not be necessarily known in ad-
vance and a variety of tasks need to be handled. Be-
sides, the friction in the process of robot motion is
hardly modeled precisely. This results in uncertain-
ties of modeling robot manipulators. Generally, un-
certainties are often denoted as a deviation between
the nominal plant and the actual plant and are ex-

pressed as follows: M = M + AM, C = &+ AC,
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G = G + AG, f= f+ Af. Our aim is to track
a desired trajectory, i.e., to force the joint vector

q(t) = [91,92, ", qn]7 to follow a specified desired
trajectory qa(t) = [g1d»92d:° "+ gnd)7 (t). Hence, the
tracking error vector e = gq — ¢ = [e1,€2, -, €y]

is defined. At the beginning, a nominal controller
i based on the computed torque methodology is de-
signed as :

7T=Ks+C(g,9)¢+ G(g) + f(a,9) + M(q)d-, (2)
where s = €+ e is defined as a sliding mode vector and
A is a diagonal positive matrix with its diagonal ele-
ments denoted as {1, A2, -, A, }, and K is a diagonal
positive matrix, ¢, = ¢4 + Xe is an aditional available
vector. Further, let the real controller v = T + Au.
Then, a dynamic equation with sliding modes is given

(3)

where h(g,q) = AC¢+ AG + Af is denoted as an un-
known nonlinear vector. Hence, in addition to nomi-
nal controller mentioned above, it still needs an extra
nonlinear controller to compensate for uncertainties
of a robot manipulator. From a practical standpoint,

h and AM4, will be approximated by h and AM as
closely as possible. Hence, general nonlinear compen-
sation function with sliding mode is given as follows:

(4)

Ms=—-Ks+ h(q,q) + AMq, — AT,

AT =1h+ 77 + 74,

~

where 74, Ta, T, are given as T, = h, Tn
=AM, and 7,=U(q,q,4.)sgn(s). Assume that
= B| < lenla, )l |ror — AMG:| < lenr(,did0)]

and U(‘bd» qf) |fh(QaQ)|) + IeM(Q)‘Zt qf)lv then the
trackmg errors will asymtotically converge to zero. S-
ince h and AM are hard to be approximated by using
conventional control schemes. Thus, some intelligen-
t control concepts may be adopted. Moreover, since
T, is not continuous, serious chattering will occur ow-
ing to excessive 7, design. Hence, a suitable 7, will
ensure both robustness and performance of the con-
trolled robot manipulators. In this paper, we will re-
gard ARFC as this intelligent nonlinear controller.

3 ARFC for Robot Manipulators

In this section, the ARFC for a robot manipulator
is analyzed. First, a fuzzy knowledge representation of
the uncertainties of a robot manipulator is described in
subsection 3.1, which provides the main architecture of
ARFC. In subsection 3.1, ARFC is analyzed by using
adaptive robust control theory. At last, an enhanced
fuzzy rule-base is designed, and the whole algorithm
is shown in subsection 3.3.

3.1 Fuzzy Knowledge Representation for
Uncertainties

In this subsection, the main architecture of ARFC

for a robot manipulator is described. As a general

description of fuzzy knowledge representation [4], a

fuzzy rule-base consists of a collection of fuzzy If-then
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rules. Referring to section 2, control objective is to
compensate for the unknown 'nonlinear vector h(q,q)
and AMg,. First, we will consider a simpler case in
which only h(q,¢ ) is approximated by fuzzy knowl-
edge representation. Let ¢ be denoted as a fuzzy in-
put vector and Q; = {Q},Q?, --,Q;q’} be denoted
as a support of fuzzy set with respect to the fuzzy
input variable g;, where Q; is an element of the sup-

port satisfying Q1 < Q2 - < Q'c - < Qy A
and rq] is the number of supportmg pomts of the set

Q;, 7 =1,2,---,n. Similarly, ¢ is also denoted as an-
other fuzzy input vector with supports of the fuzzy

set DQ = {DQ_,I,DQ2 vy DQ”"’}, where rgg;
is the number of supportmg points of corresponding

fuzzy set j = 1,2,---,n. Then, the ith rule is repre-
sented as follows:

R[4 : If ¢ is Q) andg is DQW)
then y=Y) (5)
where y is denoted as a fuzzy output vector, and

= {le,sz,---,Y,:"} is denoted as the support
of the fuzzy set with respect to the fuzzy output

yj. The index 7 represents the label of rules, hence
Q@) DQP4) | Y (%) represent points of supports of the
relevant fuzzy sets on the ith rule. Furthermore, every
rule is fired with a weighting function p;(g, ¢), which
is determined by membership functions and compo-
sitional operators. More in detail for clarity expres-
sion, let z = [g7¢7T]T and supports of the fuzzy set
Z =Qx DQ =T[; Q; x [1, DQj, then p;(z) can be

expressed as follows :

(2112, 9) 00 p(zan | 237™Y),
if sup- product opera.tor, (

min{p(z1 | 2,*7), - p(z2n | Z52")},
if sup-min operator

pi(z) =

where the membership function p(z | Z;j(‘)) is de-
fined as a positive monotone decreasing function as
fuzzy variable z; is apart from Z;-x"") and p(z; |
Z;"(") < 1, where j = 1,---,2n. In expression(6),
the composional operator is selected to be either sup-

product or sup-min operator. Finally, the output y is
expressed as follows:

g = S @YY

Z?:tl wi(z)

where R; is the total number of rules and generally
equals 74, X -+ XTy X T4q, X - X714, We normalize
ui(z) by summation of the total weighting functions,
i.e.,

(7)

#i(2)

Gle) = oi(2)’

(8)



where £;(2) is denoted as a fuzzy basis function so that
equation(7) is rewritten as

Ry

Rt
y=3 YO(z) =) 0T&(:) = 0T¢(2),  (9)

1=1

where © = [0, 07, ..., OE']T is denoted as a param-

eter matrix with dimension R, x n and ©; = Y&
denoted as its raw vetcor, and £ = [£1,&y, -+, ER]T is
denoted as a regressor vector.

When the number of points supports of fuzzy sets,
namely, Tgj» Tdgj and link dimensions n is large, the
rule number will become very large. Hence, computa-
tion time and memory-space have to be considered in
those cases. Focusing our attentions on computation
time, the domain set of the fired rules and the do-
main set of total rules must be made clear. This leads
that the control law has to be simplified by suitable
assumptions.

To simplify the control law, we set £;(2*) = 1 for
the i-th rule, and 2* € Z. This results in the following
membership function:

(>3
1, asz :ZJ-’;

~1 (10
0, aszj>Z;"Hoer-<Z;’ l,( )

p(ZJ'!Zf’):{

where Z;" is the element of Z;, which implies that

rules are fired when
oz | 27) >0 if ZP 7 <z <z (1)

Then, defining a compact domain set of fuzzy input
vector in fired rules is:

2°={2]2 <z < z2t j=1,2,.,2n), (12)

where
. -1
o fmn T e
aj, if 2] < z; < 207

Therefore, eqation(8)is replaced by :

fi(z) - { E :Clu;(z)’ 2€2¢; (14)

0, otherwise,

where C' is denoted as the set of fired rules so that the
total number of fired rules is 227,

Based on this result, the total number of fired rules
is reduced from 74, X+ X7y XTgg, X+ XTg, to 2?7
and only depends on the dimension of the fuzzy input
vector. For example, consider a robot manipulator
with one link and numbers of support are given as
rq, = 10, rgy, = 10, then this leads to total number
of rules Ry = rg; X r4q; = 10 x 10 = 100, but only
22 = 4 fuzzy rules are fired. Hence, computation time
is extensively reduced, especially, as R; is very large.
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3.2 Adaptive Robust Fuzzy Control for
Robot Manipulators

In this subsection, the fuzzy theory is combined
with adaptive robust control architecture. In contrast
to general conventional control schemes, we use fuzzy
representation to approximate the unknown function-
s in section 2. Based on mild assumptions, adaptive
robust fuzzy control(ARFC) is not only proved to be
globally stable but also exhibits the nature of intelli-
gent control.

Referring to section 2 and only considering much
simpler case, i.e. AM = 0, then the control law is
given as follows

Tty =T+ + 7. (15)

where K is a diagonal positive matrix, ¥ = Ks+Cq, +
G+ f+ Mg, 7o = ACs +U(q,q)sgn(s), 7o = AC¢+
AG + Af, and an ARFC is designed to approximate
Th, Ts as shown in Figure 1. To analyze the control
in subsection 3.1, at first, a fuzzy environment has to
be built. Hence, let z, = [¢T¢T])T be denoted as a
fuzzy input vector with respect to h, z, = [¢T¢T sT]T
be denoted as another fuzzy input vector with respect
to 7,. Corresponding to those fuzzy input vectors,
supports of fuzzy sets are given as follows:

Zn; = {Z)I.J,Zrz,,,,"',z;:"}, where
Zy <2} << 2 and j=1,2,--,2m;
Zs, = {Zslk’le;.l"'!Z:;"}’ where

ZL <27} <---<Zi* and k=12 3n

Let control law be expressed as follows:

Ry
o= =) O én(a) = 0F6  (16)

=1
R,

T, = 6, = Ze’f‘ﬁs,(zs) = e’.{fh (17)
i=1

where 5, 8, are denoted as fuzzy output vectors, ©;,
©, are denoted as parameter matrices, and &, £, are
denoted as regressor vectors as eq(9). Ry, R, are de-
noted as the total number of rule for 7, and 7,. Our
goal is to design optimal parameter matrices and re-
gressor vectors such that the controlled system has
minimal tracking errors and robust features. In this
subsection, we will only consider parameter vectors.
In next subsection, the whole case is discussed. At
the beginning, we must prove that bounds on approx-
imation errors depend on ARFC design.
Optimal parameter vectors are defined as follows:

O} =arg min[supzhezf ’@{fh(zh) -nll  (18)

®; = arg min[sup,,cz507£(z,)



—(|ACs|+ U)sgn(s)]
arg min[sup,,ez_a —0T¢,(z2,)
+(|ACs|{+ U)sgn(s)] if s<0 (19)

if s>0

where ZF, Z2 are compact domain sets of fuzzy
input vector in all rules and are expressed as follows:

1 r .
Zf = {Zh‘Zh;SZhJSzh:z,_]:l,z,"',2n}
2} = {zlz}h <z, <ak=1,2,,30}
Based on the analysis of subsection 3.1, not all rules

of ARFC are simultaneously fired. The fired rules are
located on a specified domain set of fuzzy input vector.
Those sets are denoted as follows:

: +1
th = {Zh I Z::’ S z}\, S Z::, = 1121”')2"})
Zsc = {Z, |Z:;k < zg, SZ::h+l1k: 112""1371}1

where indices c,; and c,, are defined as in eq(13) and
C}), and C, are denoted as sets of fired rules.

To simplify the problem, mild assumptions are giv-
en as follows:
Assumptions:

® ACs € ¢! (continuously differentiable)
o h(zh) € ¢! (continuously differentiable)
o A< hU(zh)

Based on those assumptions, Proposition 1 is given.

Proposition 1 If z, € ZFP, then |en(2n)]
cn(zn)An(zn), where ex(zz) = h — Ziec.. @;xﬁh‘(zh

<
)
cn(zn) 18 an n X 2n matriz, and its element is defined

8h,(z
as Chy; = S“Pz;.€Zf[ a“: ]:
1 1 T
Ah(lh) = [Z;‘+ - Z;‘,~--,Z;::+ - Zfl::] .

Proof: Defining Z; as supports of fuzzy set in fired
rules. Then, let

0%, Ten(zn) = hlzs) as 2 €2, (20)

Since, 3¢, €ni(2n) = 1, it results in the following:

min({0}, as i € Cr}) < Z @;‘T{i(zh)
1€Ch
< maz({0F, as i € Ci})

which implies

h(zn) = Y 0.7 €i(2n))| < cnlzn)Ba(2n)

i€Cy
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Hence,
lea(z)l = |h— > 0. t(2n)
1€Ch
< b= o5 ()
1€Cy
< cu(zn)An(za)

Based on Proposition 1, approximation errors will be
reduced by adjusting A,. Hence, robust controller
with high gain is not necessary to ARFC. Let the con-
trol law renewedly be changed to the following:

T =dt)(mh + 75) + (1 = d(t))Us(25) + T, (21)

where
_J1, asz, € ZB;
d(t) = {O: otherwise. (22)
Uy(ze) = BY (zn) + |AC(21)s] - (23)
Update laws are given as follows :
On = rsnlf(zs) as z, € ZF (24)
O, = rsatl(z,)asz, € Z? (25)
where 7 > 0 and
s——S("“’), as s < 5("“);
sa = s — Slaotl) = ag 5 > Slaotl),
0, othewise.
éA = $

where S(20) < 0 < S(aotl) glao) apd Slac+l) ape
subsets of S and ap is its label. Hence, a deadzone is
expressed as ¢ = (S Slaot1)]

Proposition 2 If the control law and the update law
are given as in eq(21) and in eq(24)-(25) then tracking
errors will asymptotically converge to a neighborhood
of zero.

Proof:
Defining Z: as supports of fuzzy set in fired rules, let

0:T¢,(z) = (|ACs|+ U(zn))sgn(s) as z, € Z;
As sp #0:
07 6(2) = 163176 (2)s9n(s)
@,‘Tf,(z,) |e:‘TEs(zs)39n(s)

Referring to Proposition 1, let ¢, is denoted as an
n X 3n matrix, and its element is defined as ¢,,, =

sup;,, eze| Q_g%(i'_lh, where ¢ = ACs + €5, and
E o
A’(z’) = [Z:1+1—Zf‘,---,z;::+1—Z:::]T,



then

|®;| < |®:I+ AP (26)
Define

®, = O -0,

®, = 0O -0,

dynamical equation with sliding mode form :

Mi = —Ks—Cs+d(t)(en+ ACs®,TEx(2)
+@,7¢(2) — ©7)€(2) + (1 = d(1))

(h+ ACs — Uy(zn)sgn(s))

Define a Lyapunov function

1 1
V= ES£MSA + ;(T"'(q)hq‘q)h) +T7'(4)JT¢'S)) (27)

%sg(M —2C)sa + saMsn
1 . .
+=(Tr(® &1) + Tr(373,))

< —shKsp +d(t)sh(en + ACs — 0:7¢,(2,))
+(1 — d(2))sA (U, (25)sgn(s) + h + ACs)
< —saTKsp (28)

Using Barbala eq Lemma, it is straight forward to
show that sp — 0 as ¢t — oo. This result implies that
tracking errors are bounded [5].

3.3 Two-Stage Design

In this subsection, considerations of hardware limi-
tations are combined with previous algorithm in sub-
section 3.2. From the analysis of subsection 3.2 , it
is very clear that the last tracking errors depend on
ranges of the deadzone, and our objective is either to
raise higher precision or to reduce the total number
of rules. Hence, in addition to the optimal parame-
ters matrices, optimal regressive vectors also need to
be considered. Therefore, an efficient arrangement for
elements of supports of fuzzy set is main work in this
subsection.

In general, a point support set of the relevant fuzzy
sets is formed through two ways: way(1) is a data ta-
ble; way(2) is a function form. For the former, the
data set has to be memorized. This leads to extra
memory-space needed. It even costs more computa-
tion time to find irregular address of rules. Opposite-
ly, the latter did not face the previous difficulties, but
it seems to be very hard for finding a suitable func-
tion form. An alternative is to combine way(1) with
way(2). Hence, we add a fuzzy rule-base before pre-
vious control algorithm. This architecture is shown in
Figure 2, where a ramp function is used to determine
the original supports of fuzzy sets. Apparently, it is
very intuitive that s is large, then A, 1s large ; s is
small, then A, is small. This concept lays down rule
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space in efficiency and raises the higher precision be-
cause of the smaller deadzone range. Hence, the fuzzy
rule-base is designed as follows:

R[] : If s; is S then y,,:Y(j)

s

or If $2 is Sz(i) then ys;:Ys(j)

(29)

or If s, 1is S,,(") then y,ﬂ:Y(:)

where y, = [Ys,,+*,¥s. |7 is denoted as a fuzzy output
vector and Y, = {Y,}, Y2, -,Y,‘Z, .- -,Y,’J’} is denot-
ed as a support of the fuzzy set, where Y,‘j is an ele-
ment of the support set Y;,. When fuzzy rule base is
designed completely, furthermore, we let y, be a fuzzy

input vector, another support of fuzzy set with ramp
function form is given as follows:

y{rew) = (1,2, R, }. (30)

Therefore, memory-space of the data set may be con-
densed as Iy + ;- -+ In, K R,, x Ry, --- X R, .

4 Simulation Results

A five degree-of-freedom (DOF) articulated robot
arm is set up in the Intelligent Robot Laboratory of
CS&IE in NTU as shown Figure 3. A simulation is
run in assumption that gravity vector of the arm is
unknown. To show the effectiveness of adaptive ro-
bust law, 75, we will neglect the compensation function
7. The same desired trajectory 45sin(nt) is given for
five different joints. A simplified strategy for reduc-
ing memory-space usage is to decentralize the previ-
ous architecture and ignore ¢, i.e. 75,(2,) = 74(gi, $i).
The triangular form and sup-min operator are selected
as membership functions and compositional operators.
The total rule number is 5 x ry X, = 5 x 41 x41. Sim-
ulation is run by 4-order Runge-Kutta method and re-
sults are listed in Figure 4. At the beginning, we only
use PD controller to compensate for the uncertainties
in the first two periods of sine wave, then incorporated
the ARFC, right after the application of ARFC , the
tracking errors are quickly driven toward zero. This
shows that ARFC has a fast converging feature.

5 Conclusions

In this paper, though the efforts had been made in
reducing memory-space, the number of rules is stil-
1 very large, especially, as n is large. Hence, robust
controller design plays an important role in the case
in which fuzzy rule-base is not sufficient to approxi-
mate the uncertainty of the controlled system. Fur-
ther investigation on how to reduce memory-space us-
age, such as decentralized design or other intelligent
methods will be considered in the future work.
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