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Abstract 
T h i s  paper presents  a n  adaptive robust fuzzy  con- 

trol architecture f o r  robot manipulators  mot ion .  T h e  
control objective i s  t o  adaptively compensate  f o r  the 
u n k n o w n  nonl ineari ty  of  robot manipulators ,  which i s  
represented as 4 f u z z y  rule-base consisting of 4 collec- 
t i o n  of if-then rules. T h e  algorithm embedded in the 
proposed architecture can automatically update fuzzy  
rules and,  consequently, it i s  guaranteed t o  be globally 
stable and to  drive the  tracking errors t o  4 neighbor- 
hood of zero. Focused o n  realization, hardware limi- 
ta t ions  such as traditional long computat ion t i m e  and 
ezcessive memory-space  usage are also relazed b y  in- 
corporating heuristic concepts, which reveals the j lez-  
ible feature of this  architecture. T h e  present  work i s  
applied t o  the  control of 4 jive degree-of-freedom (D- 
O F )  articulated robot manipulator .  Simulat ion results 
show that  the proposed control architecture i s  featured 
in fas t  convergence. 

1 Introduction 
During the past decade, intelligent control method- 

ologies have gradually been recommended to solve a 
number of complicated problems, in particular, to  the 
control problem of robot manipulators which conven- 
tional control methodologies are hard to  handle or a t  
the price of complex implementation. Those method- 
ologies often use biologically motivated techniques and 
processes, and are referred to as neural networks, or 
some learning schemes [6]-[9]. Unlike general con- 
ventional schemes based on a complete theory and 
algorithmic structure,  they are in general hardly e- 
valuated. Therefore, it is imperative to make efforts 
on bridging the gap between the conventional control 
schemes and the intelligent ones [I]. Recently, analy- 
sis based intelligent control has attracted enormous re- 
search interests [2]-[4]. Ideas behind those schemes are 
to  strengthen their theoretic basis but  a t  the price of 
expensive implementation by using massive networks 
and extensive rule-tables or complex functions, which 
lead to  difficulties in real implementation due to hard- 
ware limitations such as long computation time and 
excessive memory-space usage. On  the other hand, the 
heuristic nature of intelligent control often has much 
benefits for a controlled system. Hence, an  integrated 
consideration is suggested in this paper. 

In this paper, we present a new fuzzy control ar- 
chitecture for the control of a robot manipulator. It 

is known that  fuzzy logic controllers (FLC) have been 
widely applied in industry. An important advantage 
of using FLC is that  fuzzy theories can capture the 
approximate, qualitative aspects of human knowledge 
and reasoning. Apparently, such control provides a 
rather feasible alternative for a plant like a robot ma- 
nipulator which is extremely complex. On the  other 
hand, adaptive control schemes had been successfully 
applied t o  robot manipulators with good performance 
[ l O ] , [ l l ] .  Hence, an  adaptive fuzzy control scheme for 
robot manipulators is proposed in this paper. Fur- 
thermore, robust control concepts have to  be adopted 
to ensure that  the controlled system is stable. Thus,  a 
synthesis is proposed by combining the adaptive fuzzy 
control approach with a robust control approach to  
constitute the final adaptive robust fuzzy control (AR- 
FC). 

This paper is organized as follows: Section 2 formu- 
lates the general control problem for robot manipula- 
tors. In section 3, the control algorithm is given under 
some assumptions and stability is analyzed. Section 4 
shows the simulation results on controlling a five DOF 
robot manipulator. Finally, some concluding remarks 
are made in section 5. 

2 Problem Formulation 
In this section, we consider a class of articulated 

robot arms wit n links, whose dynamic model is de- 
scribed by 

M ( q ) i  + C(q14)4 + G(q) + f (q14)  = 7 (1) 

where q is the n x 1 vector of the link relative displace- 
ments, and T is the n x 1 vector of torques applied t o  
joints, M ( q )  is the inertial matrix, C(q,q)q is the vec- 
tor representing the Coriolis, centrifugal torques and 
G(q) is the vector of gravity torques, f ( q , q )  is the 
vector of joint friction torques. To emphasis on the 
flexibility of applying robot manipulators, the manip- 
ulator payload may not be necessarily known in ad- 
vance and a variety of tasks need to  be handled. Be- 
sides, the friction in the process of robot motion is 
hardly modeled precisely. This results in uncertain- 
ties of modeling robot manipulators. Generally, un- 
certainties are often denoted as a deviation between 
the nominal plant and the actual plant and are ex- 
pressed as follows: 114 = M^ + AM, C = e + AC, 
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G = e + AG,  f = ?+ A f .  Our aim is to  track 
a desired trajectory, i.e., to  force the joint vector 
q ( t )  = [ q l ,  q 2 ,  . . . , qnIT to  follow a specified desired 
trajectory Q d ( t )  = [ q l d ,  q 2 d r .  . ., q n d I T ( t ) .  Hence, the 
tracking error vector e = qd - q = [el ,  e 2 , .  - - ,  en]T 
is defined. At the beginning, a nominal controller 
B based on the computed torque methodology is de- 
signed as  : 

where s = d+Ae is defined as a sliding mode vector and 
A is a diagonal positive matrix with its diagonal ele- 
ments denoted as { A I ,  A 2 , .  . ., An}, and K is a diagonal 
positive matrix, qr = q d  + Xe is an aditional available 
vector. Further, let the real controller U = B + Au.  
Then, a dynamic equation with sliding modes is given 

Mi = - K s  + h(q,q) + AII44, - AT, (3)  

where h(q, q )  = ACq+ AG + Af is denoted as an un- 
known nonlinear vector. Hence, in addition to  nomi- 
nal controller mentioned above, it still needs an extra 
nonlinear controller t o  compensate for uncertainties 
of a robot manipulator. From a practical standpoint, 
h and  AMqr will be approximated by ^h and A X  as 
closely as  possible. Hence, general nonlinear compen- 
sation function with sliding mode is given as follows: 

AT = Th + TM + Ts, (4)  
h 

where Th,  T M ,  rS are given as T), = h, TM 

= A M &  and r ,=U(q ,  q ,  qr)sgn(s). Assume that 
h 

1Th - XI 5 /Eh(‘?, q)1 9 ITM - G I q r  1 5 I c M ( q ,  414r ) I  

and v(P,i,q+) 2. k h ( q , d ) l , . +  l cM(q ,q t4 r ) l i  then the 
tracking errors will asymtotically converge to  zero. S- 
ince ĥ and A X  are hard to  be approximated by using 
conventional control schemes. Thus,  some intelligen- 
t control concepts may be adopted. Moreover, since 
T, is not continuous, serious chattering will occur ow- 
ing to  excessive r, design. Hence, a suitable rS will 
ensure both robustness and performance of the con- 
trolled robot manipulators. In this paper, we will re- 
gard ARFC as this intelligent non1inea.r controller. 

3 ARFC for Robot Manipulators 
In this section, the ARFC for a robot manipulator 

is analyzed. First, a fuzzy knowledge representation of 
the uncertainties of a robot manipulator is described in 
subsection 3.1, which provides the main architecture of 
ARFC. In subsection 3.1, ARFC is analyzed by using 
adaptive robust control theory. At last, an enhanced 
fuzzy rule-base is designed, and the whole algorithm 
is shown in subsection 3.3. 
3.1 Fuzzy Knowledge Representation for 

In this subsection, the main architecture of ARFC 
for a robot manipulator is described. As a general 
description of fuzzy knowledge representation [4], a 
fuzzy rule-base consists of a collection of fuzzy If-then 

Uncertainties 

rules. Referring to  section 2, control objective is to  
compensate for the unknown nonlinear vector h(q, 4) 
and AMq, .  First, we will consider a simpler case in 
which only h(q ,q )  is approximated by fuzzy knowl- 
edge representation. Let q be denoted as a fuzzy in- 
put vector and QJ = {Q:,Q;,.-.,QS”} be denoted 
as  a support of fuzzy set with respect t o  the fuzzy 
input variable q J ,  where Qj  is a n  element of the sup- 
port satisfying Q: < Q; < ... < Q: < . - .  < Q ~ ~ J  
and rqJ is the number of supporting points of the set 
Q3 , j = 1 , 2 , .  . ., n. Similarly, 4 is also denoted as an- 
other fuzzy input vector with supports of the fuzzy 
set DQ = {DQ:,DQf,...,...,DQ,Id‘’}, where rdq3 
is the number of supporting points of corresponding 
fuzzy set j = 1 , 2 , . . . , n  . Then,  the i th  rule is repre- 
sented as  follows: 

R[i] : If q is Q(“.) and q is DQ(P*) 

then y = Y(7.) (5) 

where y is denoted as a fuzzy output vector, and 
5 = {y1,q2,.-.,Y;y} is denoted as the support 
of the fuzzy set with respect t o  the fuzzy output 
yJ. The  index i represents the label of rules, hence 

DQ(pB) ,  Y(7.1 represent points of supports of the 
relevant fuzzy sets on the i th  rule. Furthermore, every 
rule is fired with a weighting function pl (q ,q ) ,  which 
is determined by membership functions and compo- 
sitional operators. More in detail for clarity expres- 
sion, let z = [qTqTJT and supports of the fuzzy set 
Z = Q x DQ = nJ Q3 x nJ D Q J ,  then p,(z)  can be 
expressed as  follows : 

where the membership function p(zj I ZJa””) is de- 
fined as a positive monotone decreasing function as 
fuzzy variable zJ is apart  from ZJa’(’) and p ( z J  I 
ZJa’(’)) 5 1, where j = 1 , . . . , 2 n  . In expression(6), 
the composional operator is selected to  be either sup- 
product or sup-min operator. Finally, the output y is 
expressed as follows: 

(7) 

where R, is the total number of rules and generally 
equals rql x . . . x r q n  x r d q  x . . x T d g ,  We normalize 
+ ( z )  by summation of the total  weighting functions, 
t .e . ,  
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where & ( z )  is denoted as  a fuzzy basis function so that  
equation(7) is rewritten as 

R1 Rt 

y = CY(’)(i(t) OF(,(,) = eT((z), (9) 
i = l  i=l  

where 0 = [OT, a:, .. ., is denoted as a param- 

eter matrix with dimension Rt x n and 0i = Y ( i )  is 
denoted as  its raw vetcor, and ( = [[I, (1, . . . , is 
denoted as  a regressor vector. 

When the number of points supports of fuzzy sets, 
namely, T ~ ~ ,  Tdpj ,  and link dimensions n is large, the 
rule number will become very large. Hence, computa- 
tion time and memory-space have to  be considered in 
those cases. Focusing our attentions on computation 
time, the domain set of the fired rules and the do- 
main set of total rules must be made clear. This leads 
that  the control law has to  be simplified by suitable 
assumptions. 

To simplify the control law, we set (;(z‘) = 1 for 
the i-th rule, and t’ E Z.  This results in the following 
membership function: 

T 

where Zla’ is the element of Z,, which implies that  
rules are fired when 

p(zl I Z;J) > o if z,*J-~ < z, < z,~J+’. (11) 

Then, defining a compact domain set of fuzzy input 
vector in fired rules is: 

zc = ( 2  I z3” 5 z3, 5 z;J+l j = 1 , 2 ,  ...) 2n}, (12) 

where 

a, - 1, ifZlaJ-l  < zl < Z;J; 
ifz;’ < z, < zIa,+l. (13) 

C l  = { a,, 
Therefore, eqation(8)is replaced by : 

(14) 
otherwise, 

where C is denoted as the set of fired rules so that the 
total number of fired rules is 22”. 

Based on this result, the total number of fired rules 
is reduced from rql  x . . . x rqn x rdp x . . . x Tdq, to  2’” 
and only depends on the dimension of the fuzzy input 
vector. For example, consider a robot manipulator 
with one link and numbers of support  are given as 
rq1 - - 10, Tdgl  = 10, then this leads to  total number 
of rules Rt = r q l  x Tdpl  = 10 x 10 = 100 , but only 
2’ = 4 fuzzy rules are fired. Hence, computation time 
is extensively reduced, especially, as  Rt is very large. 

3.2 Adaptive Robust Fuzzy Control for 

In this subsection, the fuzzy theory is combined 
with adaptive robust control architecture. In contrast 
t o  general conventional control schemes, we use fuzzy 
representation to  approximate the unknown function- 
s in section 2. Based on mild assumptions, adaptive 
robust fuzzy control(ARFC) is not only proved to  be 
globally stable but also exhibits the nature of intelli- 
gent control. 

Referring to section 2 and only considering much 
simpler case, i.e. A M  = 0, then the control law is 
given as follows 

Robot Manipulators 

r(t)  ?+ r h  + 7 8 .  (15)  

where K is a diagonal positive matrix, 7 = Ks+C^q, + 
G + f + A d & ,  T, = A c s + . U ( q , q ) s g n ( s ) ,  r h  = 4Cq-k 
AG + A f ,  and an ARFC is designed to  approximate 
T),, r, as shown in Figure 1. To analyze the coiitrol 
in subsection 3.1, a t  first, a fuzzy environment has to  
be built. Hence, let zh = [qTqTIT be denoted as a 
fuzzy input vector with respect t o  h, z, = [qTqTsTIT 
be denoted as  another fuzzy input vector with respect 
to  rs .  Corresponding to those fuzzy input vectors, 
supports of fuzzy sets are given as follows: 

- - A  

zh, = { z ~ , , z ~ h , , . . . , Z ~ : J } ,  where 

2;’ < Z:, < ...  < Zi;’ and j = 1 , 2 , . . . , 2 n ;  

Z,, = (Zjk,Z,2*,...,Z:;*}, where 

Z:, < Z:, < ...  < Z::h and k = 1 , 2 , . . . , 3 n  . 

Let control law be expressed as follows: 

Rh 

r h  = oh = @T,(h , ( zh)  = O;f(h;  (16) 
r = l  

R. 

r, = 6, = OT,tJ,(zs) = O’ft , ,  (17) 

where oh ,  os, are denoted as fuzzy output vectors, ah, 
0, are denoted as parameter matrices, and ( h ,  (, are 
denoted as regressor vectors as  eq(9). &, R, are de- 
noted as the total number of rule for r), and T,. Our 
goal is to design optimal parameter matrices and re- 
gressor vectors such that  the controlled system has 
minimal tracking errors and robust features. In this 
subsection, we will only consider parameter vectors. 
In next subsection, the whole case is discussed. At 
the beginning, we must prove that bounds on approx- 
imation errors depend on ARFC design. 

r = l  

Optimal parameter vectors are defined as follows: 

0’ h - - arg min[suPzhcZf’ I @ ; f ( h ( Z h )  - %I] (18) 
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-(lACsl+ U ) s g n ( s ) ]  if s > O 

= arg m z n [ s u ~ ~ , ~ Z :  - @Tts(zS) 
+(lACsl+ U)sgn(s)]  if s < O (19)  

where Zf, 2: are compact domain sets of fuzzy 
input vector in all rules and are expressed as follows: 

z,B = 

2; 

{ z h  12; 5 zh ,  5 z;: ', j = 1,2,...,2n) 

(2, I 2;; 5 z,, 5 z ; ;h ,  IC = 1,2,. . . ,3n} = 

Based on the analysis of subsection 3.1, not all rules 
of ARFC are simultaneously fired. The fired rules are 
located on a specified domain set of fuzzy input vector. 
Those sets are denoted as follows: 

C h J + l  . 
= {Zh IZf:' 5 Zh, 5 Zh,  31 = 1,2,* ' . ,2n},  

Zs {z, I ZSLh 5 z,, 5 Z,';"+',k = 1,2,**-,3n}, 

where indices ch, and c , ,  are defined as in eq( 13)  and 
c h  and C, are denoted as sets of fired rules. 

To simplify the problem, mild assumptions are giv- 
en as follows: 
Assumpt ions:  

= 

0 ACs E c' (continuously differentiable) 

0 h ( Z h )  E c' (continuously differentiable) 

I h I< h'(zh) 

Based on those assumptions, Proposition 1 is given. 

Hence, 

Based on Proposition 1, approximation errors will be 
reduced by adjusting Ah. Hence, robust contToller 
with high gain is not necessary to ARFC. Let the con- 
trol law renewedly be changed to the following: 

7 = d ( t ) ( r h  + 7s) + (1 - d ( t ) ) U s ( z , )  + 7, (21) 

P r o p o s i t i o n  2 If the  control law and the update law 
are given as an eq(21) and in eq(24)-(25) t h e n  tracking 
errors will asymptotically converge t o  a neighborhood 
o f  zero. 

Proof: 
Defining Zf as supports of fuzzy set in fired rules, let 

@ : T ~ , ( z s >  = (lacs1 + U ( Z h ) ) S g n ( S )  as z, E Z; 

AS SA # 0: 

(2s) = l@:lTL (z , )sgn(  s) 

@ s * T t S ( Z s )  = l o : l T C , ( ~ s ) s g n ( s )  

Referring to Proposition 1, let c ,  is denoted as an 
n x 371 matrix, and its element is defined as c,,, = 
s " p . , , ~ z ~ [ l ~ ) ] ,  where g = A c s +  Eh, and 

A,(z,) = [Z:1+' - Z:1,. . - ,  Zit:+' - Zf:=lT, 
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1 
2 

v - S z ( $ f  - 2 c ) s a  + S Z h f $ A  

1 
+ ; ( T r ( & f + h )  + Tr(iPT+,)) 

+(1 - d ( t ) ) s T a ( - U , ( L , ) S g n ( S )  + h + ACs) 

5 - s a T ~ s A  (28) 

5 -SXKSA + d ( t ) S z ( E h  + A c S  - @ : T < , ( Z ~ ) )  

Using Barbala eq Lemma, it is straight forward to  
show tha t  SA --f 0 as t -+ 00. This result implies that  
tracking errors are bounded [5]. 

3.3 Two-Stage Design 
U ..- 

In this subsection, considerations of hardware limi- 
tations are  combined with previous algorithm in sub- 
section 3.2. From the analysis of subsection 3.2 , it 
is very clear that  the last tracking errors depend on 
ranges of the deadzone, and our objective is either t o  
raise higher precision or to  reduce the total number 
of rules. Hence, in addition t o  the optimal parame- 
ters matrices, optimal regressive vectors also need to  
be considered. Therefore, an  efficient arrangement for 
elements of supports of fuzzy set is main work in this 
subsection. 

In general, a point support set of the relevant fuzzy 
sets is formed through two ways: way( 1) is a da ta  ta- 
ble; way(2) is a function form. For the former, the 
d a t a  set has t o  be memorized. This leads to  extra 
memory-space needed. It even costs more computa- 
tion time t o  find irregular address of rules. Opposite- 
ly, the latter did not face the previous difficulties, but 
i t  seems t o  be very hard for finding a suitable func- 
tion form. An alternative is t o  combine way( 1) with 
way(2). Hence, we add a fuzzy rule-base before pre- 
vious control algorithm. This architecture is shown in 
Figure 2, where a ramp function is used to  determine 
the original supports of fuzzy sets. Apparently, it is 
very intuitive tha t  s is large, then A, is large ; s is 
small, then A,  is small. This  concept lays down rule 

space in efficiency and raises the higher precision be- 
cause of the smaller deadzone range. Hence, the  fuzzy 
rule-base is designed as  follows: 

R[i] : If SI is then yS1 = Ys‘,;) 

or If 8 2  is Sz(’) then ys2 = Ys’,i) 

or If s, is S,(’) then y,, = Y::) 

(29) 

where y, = [y,,, 9 . . , y,,lT is denoted as a fuzzy output 
vector and Y,, = { Y ~ , Y ~ , . . . , Y d r j , . . . , Y ~ : }  is denot- 
ed as  a support of the fuzzy set, where 5: is a n  ele- 
ment of the support set Y,,. When fuzzy rule base is 
designed completely, furthermore, we let y, be a fuzzy 
input vector, another support of fuzzy set with ramp 
function form is given as follows: 

YjInew) = { 1 , 2 , . . . ,  R,,}. (30) 

Therefore, memory-space of the d a t a  set may be con- 
d e n s e d a s l ~ + l ~ ~ - ~ + l , <  R,, x R,;..x R,,, 

4 Simulation Results 
A five degree-of-freedom (DOF) articulated robot 

a r m  is set up  in the Intelligent Robot Laboratory of 
CS&IE in NTU as shown Figure 3. A simulation is 
run in assumption tha t  gravity vector of the  a r m  is 
unknown. To show the effectiveness of adaptive ro- 
bust law, r,, we will neglect the compensation function 
r),. T h e  same desired trajectory 45 sin(.rrt) is given for 
five different joints. A simplified strategy for reduc- 
ing memory-space usage is to  decentralize the previ- 
ous architecture and ignore q ,  i.e. rs,(zs) = T,(q;, si). 
The triangular form and  sup-min operator are selected 
as membership functions and compositional operators. 
The  total rule number is 5 x rq x r ,  = 5 x 41 x 41. Sim- 
ulation is run by +order Runge-Kutta method and re- 
sults are listed in Figure 4. At the beginning, we only 
use P D  controller to  compensate for the uncertainties 
in the first two periods of sine wave, then incorporated 
the ARFC, right after the application of ARFC , the 
tracking errors are quickly driven toward zero. This 
shows that  ARFC has a fast converging feature. 

5 Conclusions 
In this paper, though the efforts had been made in 

reducing memory-space, the number of rules is stil- 
l very large, especially, as n is large. Hence, robust 
controller design plays an  important role in the case 
in which fuzzy rule-base is not sufficient t o  approxi- 
mate the uncertainty of the controlled system. Fur- 
ther investigation on how t o  reduce memory-space us- 
age, such as decentralized design or other intelligent 
methods will be considered in the future work. 
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