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Abstract 

This paper presents a multi-strategy learning tech- 
nique fo r  automatic generation of fuzzy control rules. 
In  order to eliminate irrelevant input variables and to 
prioritize relevant ones according to their influences 
on the output value(s), the ID3 algorithm is a d o p t e d  to 
classify the given set of training 1/0 d a t a .  The result- 
ing decision tree can be easily converted into IF-THEN 
rules, which are then fuzzified. The fuzzy rules are 
further improved b y  tuning the parameters that define 
their membership functions using the gradient-descent 
approach. Experimental results of applying the pro- 
posed technique to nonlinear system identification have 
shown improvements over previous work in the area. 
In  addition, it has been successfully applied t o  mobile 
robot control in unknown environments. 

1 Introduct ion 

In recent years, fuzzy control has been applied to a 
wide range of applications, for example, heater tem- 
perature control [12], cement kiln control [a], auto- 
matic train control [13], vehicle speed control [lo], 
and autonomous mobile robot control [5]. It has been 
shown that fuzzy control is an effective approach to 
solving complex ill-defined problems. To emulate the 
behavior of domain experts, their knowledge and expe- 
riences need to be extracted into a set of fuzzy control 
rules. 

Designing a good fuzzy controller is not a trivial 
task. Given a complex control problem, it is oftmen im- 
possible to completely articulate one’s knowledge in 
the form oflinguistic IF-THEN rules. It is also difficult 
to identify the relevant input to the given system [l]. 
Moreover, to  efficiently characterize the control oper- 
ations, one should focus on the more important input 
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variables. Machine learning methods can be used to 
generate automatically fuzzy control rules from input- 
output data, which are gathered from past successful 
control operations by skilled operators [3, 8, 11, 41. A 
detailed description of the proposed learning technique 
is presented in the following section. Experimental 
results in two different application domains are pre- 
sented in Section 3.  

2 Generating Fuzzy Rules 

This work combines ID3 [9] with gradient-descent 
methods. The procedure is outlined in Figure 1. In 

Initial 
Estimate 

Step 3 : Fuuify the 
crisp cantml rules 

I ...... .... .......... I... .....____... 

stage 

Figure 1: Generation of fuzzy rules 

what follows, the individual steps are described in de- 
tail. 

2.1 Preprocessing 

Given input state varialiles 2 1 ,  . . . , x,, and an out- 
put variable y, the i-th training data is represented 
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as : 
<xi, . . . , x;, Yi) 

where Xi,. . . , X i  and Ya are the values for the cor- 
responding variables. To classify such data  by the 
ID3 algorithm, the output space needs to be divided 
into distinct (crisp) regions. For simplicity, the output 
space is divided equally into l regions in our experi- 
ments, where 1 is determined empirically. Therefore, 
the data  is transformed into: 

(x; , . . . , x;, d) 
where Ci denotes the output class 

2.2 Generation of crisp control rules 

In a complex system with many input variables, the 
output value may depend only on some of the inputs 
with a varying degree of influence. A good controller 
should focus on the important parameters while ig- 
noring irrelevant ones. Therefore, the ID3 algorithm 
[9, 113, which has been widely used for classification 
problems, is chosen for its ability to prioritize input 
variables. The resulting decision tree is in turn trans- 
formed into an initial set of crisp control rules. The 
algorithm is summarized as follows: 

1. Attribute selection - Select the input, variable 
that best partitions the training data  into homo- 
geneous subsets. 

2. Apply step 1 recursively to every subset that  con- 
tains samples with different output classes. The 
process terminates when every subset is homoge- 
neous, i.e. the data  can be classified correctly. 

3 .  Pruning - Trim the decision tree. 

4. Generate one IF-THEN crisp control rule for each 
root-to-leaf path in the decision tree. 

Attribute selection A number of alternative in- 
formation measurements can be used in selecting the 
best attributes[6]. In order to handle multi-valued at- 
tributes, Quinlan's gain ratio is adopted in this work. 
Using the following notations, 

nt 
n,  
nb 

nbc 

the total number of samples in all branches; 
the number of samples of class c; 
the number of samples in branch b; 
the total of samples in branch b of class c. 

the procedure for selecting the best variable is to: 

1. Calculate the total expected information content: 

2. For each candidate variable x i ,  calculate its gain 
ratio 

where h f b  is the expected information content if 
x i  is selected to  partition the current subset; the 
scaling factor I V  measures the information value 
of x i  as defined below: 

IV = - ~ - l o g z -  nb nb 

nt nt 

In general, the gain ratio measurement favors 
variables with an uneven distribution of exam- 
ples. It discourages over-partitioning and tends 
to preserve larger clusters of samples. Our imple- 
mentation partitions the input space of x i  into 3 
to 20 uniform regions. The gain ratio for all differ- 
ent ways to partition the space is calculated, and 
the one that maximizes its value will be used. 

3. Select the input variable x i  with the largest gain 
ratio, and partition the current set into subsets 
accordingly. 

Decision tree pruning As a decision tree grows 
deeper, the marginal information gain usually de- 
creases. Besides, the training data  may contain noise 
or uncertainty resulting in unnecessarily large decision 
trees. For more efficient control, decision trees can be 
pruned to remove the least reliable branches. A num- 
ber of alternative pruning methods have been studied 
[7 ] .  Quinlan's pessimistic pruning is adopted because 
it is easy to compute and does not require a separate 
test data set. 

Starting at the root of the tree, each node is eval- 
uated to  determine if dividing i t  into a subtree can 
meaningfully improve the classification. Suppose that 

N ( t )  = number of training examples at node t 
e ( t )  = number of examples mis-classified a t  node t 

1. The mis-classification rate wit3h continuity correc- 
tion is estimated to be 

2. For the sub-tree rooted a t  t ,  the corrected mis- 
classification rate is 
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where i ranges over the leaves of the '11, and NT is 
the total number of leaves in the subtree. We also 
have N ( t )  = N ( i )  as they refer to the same set 
of examples. Therefore, the rates can be replaced 
by i i ( t)  = e(t) + 1/2 and ii(Tt) = Ce(i) + q, 
i.e. the number of mis-classifications. 

3. A subtree is pruned unless ii(T,) < b( t )  - 
c(ii(Tt)), where 

is the standard error for i i(Z). 

Rule generation 
the root to the i-th leaf node in the decision tree. 

IF lbil 5 21 < U b i l A . .  . Ibi ,  5 X, < ubi,, THEN y is Ci 

The i-th rule is generated from 

where lbij is the lower bound and ubij is the upper 
bound of xj at the i-th leaf node; Ci is the desired 
output class. 

2.3 Fuzzification 

To obtain an initial estimate, each crisp IF-THEN 
rule is fuzzified by assigning a linguistic variable X i  
to each input variable zi and Y to the output y. The 
resulting fuzzy rule is of the form: 

IF X1 is Ail A . . . A X ,  is Ai, THEN Y is Oi 

where Aij is a fuzzy set of Xj and Oi is a fuzzy sin- 
gleton denoting the average output value of the cor- 
responding data. Each Aij is defined by a triangle- 
shaped fuzzy membership function p ~ , ~ ( X j )  = 1 - 
21xJ-c'3',  where cij = $(ubij + I b i j )  denotes its center 
and w;j = 2(ub;j - l b i j )  denotes its width as shown in 
Figure 2. 

w : 3  

C i j ( t  + 1) = C i j ( t )  - yc * ac a p  

W i j ( t  + 1) = W i j ( t )  - yw ' $-- 
a;" Oi(t + 1) = Oi(t)  - 70 . 

where yc, y,,, and yo are the learning rates for param- 
eters cij , wij and 0;. The performance measurement 
is defined by P = 1/2(y - Y ' ) ~ ,  with y' being the 
desired output and y being the actual output. The 
process terminates when P falls below a threshold. 

3 Simulation 

To demonstrate the utility of the proposed ap- 
proach, it was applied to the problems of nonlinear 
system identification and constructing a mobile robot 
controller to follow walls in unknown environments. 

3.1 Nonlinear System Identification 

Given a nonlinear system, the objective is to con- 
struct a fuzzy rule base that approximates its behav- 
ior. We selected the static nonlinear system described 
by Sugeno [ll]: 

y = (1 + x T 2  + 2;1.5)2 where XI, 2 2  E [1,5] (1) 

In [ll], a total of 50 input-output data tuples were 

U ' f  x 

Figure 2: Fuzzify a crisp region 

2.4 Parameter tuning 

In dynamic environments, the performance of a 
fuzzy controller can be improved by fine tuning it,s 
parameters [3, 41. The last step of our learning pro- 
cedure applies the gradient-descent algorithm to the 
initial set of fuzzy control rules as follows: 

Figure 3: A nonlinear system with two inputs 

generated from equation (1) and variables 23 and 2 4  

were intentionally added as dummy inputs to check the 
effectiveness of the system. The performance index 
was defined as the cumulative mean square error of 
the output: 

m 

P I  = C ( Y i  - y p / m  
i=l 

where i ranges over a total number of m data tuples. 
First, the output space was partitioned into five 

equal regions between 1.30 and 5.05, and the training 
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data  were classified by ID3. The resulting tree has 22 
as the root and each branch is further divided by 21. 
The algorithm successfully eliminated 2 3  and 24 from 
consideration, and produced rules of the form: 

Sugeno (11 I 0.318 

Rulei : IF Xz  is A;z and X I  is Ail THEN Y is Oi 

0.079 

The gradient-descent algorithm was then used to fine 
tune the parameters of all the membership functions. 
In Figure 4, the dotted and solid curves indicate the 
changes in the PI values during the tuning phase with 
a learning rate of 0.004 and 0.002 respectively. 

L v \ ,  

Sugeno (11) 
IDS+GD I11 

* .., 

0.318 0.010 
0.058 0.016 

,.... 

Figure 4: The learning curve 

Table 1 summarizes the PI values after struc- 
ture identification and parameter identification using 
Sugeno's position-type model (I), Sugeno's position- 
gradient, type model (II) ,  our hybrid approach (I) with 
yc = yw = yo = 0.004 and 0.002 (11). The final values 
for the fuzzy parameters are in Table 2.  

Table 2: The parameters after tuning 

3.2 Mobile robot control 

The second experiment is t o  generate a fuzzy con- 
troller for a mobile robot to  move smoothly along ar- 
bitrarily shaped walls in unknown environments. A 
Nomad 200 mobile robot manufactured by Nomadic 
Technologies Inc. was used. I ts  drive mechanical sys- 
tem has a zero gyro-radius. A ring of 16 infrared sen- 
sors, whose readings range from 0 t o  30 inches, are 
arranged counter-clockwise as shown below. All sen- 

@!$; 
6 12 

7 / I  
U 7 / e  

Figure 5 :  The sensor system 

sor readings along with the position and orientation of 
the robot are transmitted back to  the host computer 
via radio modem. 

For simplicity, the robot is assumed to  move at  a 
constant forward speed. The controller takes the 16 
infrared sensor readings 21 , . . . , 216 as inputs and pro- 
duces the desired steering angle y, which is limited 
to -45' 5 y 5 45O, as the single output. Note that 
a negative value of y represents clockwise rotation of 
the steering wheel, while a positive value represents 
counterclockwise rotation. 

During the training process, 300 input-output data 
tuples were collected by recording a skilled expert in- 
structing the mobile robot to follow the wall(s) on 
its right-hand side. Figures 6 and 7 show the sam- 
ple training environments and trajectories. A portion 
of the training data  are listed in Table 3.  

Figure 6: Training environment and trajectory (l)(2) 

The output space is partitioned into 4 equal re- 
gions between -30.0 and 28.6. Some of the rules gen- 
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erated after the structure identification stage by ID3 
are shown in Table 4. 

Table 4: Control rules for wall following 

IF x i 6  < 15.33 
T H E N  Y is 27.1 

IF 15.33 5 Xi6 < 22.67 
T H E N  Y is 22.6 

IF 22.67 5 xi6 A xg < 25.5 
T H E N  Y is 21.5 
. .. 
IF 
T H E N  Y is 10.5 

22.67 5 xi6 A 28.5 5 xg A 21.0 5 xi < 24.0 

. . .  
IF 22.67 5 A 28.5 5 xy Figure 7: Training environment and trajectory (3)(4) 

A27.0 5 xi A 11.3 5 Xi3  < 20.67 
T H E N  Y is - 1.0 

IF 22.67 5 x i 6  A 28.5 5 xg 
A27.0 5 xi A 20.67 L: xi3 
A12.67 5 X15 < 21.33 

T H E N  Y is 8.7 

Table 3: A partial listing of the training data 

. . .  
22.67 5 xi6 A 28.5 5 xg 
A27.0 5 X i  A 20.67 5 Xi3 
A21.33 5 X i 5  A 20.67 5 Xi4 

A29.13 5 xi1 A 25.33 5 Xi2 

IF 

T H E N  Y is - 11.5 

For example, the first rule states that  “If sensor 
reading 16 is less than 15 inches, i.e. very close to the 
wall, then the steering angle should be increased by 
27.1°, i.e. turn left.” I t  should be pointed out that 
the resulting rules show that the front and right sen- 
sors 16, 9, 1, 13, 15, 14, 11, and 12 were chosen as 
the most important parameters while following walls 
on the right. If each input variable can be classified 
into 11 regions, the maximum number of rules may be 
as high as ni6. In comparison, the number of fuzzy 
rules produced by our method is only 21. The utility 
of prioritizing important input variables while discard- 
ing irrelevant ones is quite evident. In addition, such 
control rules are expressive and intuitive. 

Experiments were performed with the learning rate 
set to  be 0.004. Figure 8 shows the trajectory us- 
ing the generated fuzzy controller in the training envi- 
ronments. Simulation results showed that the mobile 
robot can successfully follow walls even though the en- 
vironment is different. Figure 9 shows the trajectory 
using fuzzy controller in an unknown maze. 
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Figure 8: The trajectory using fuzzy controller (3)(4) 

Figure 9: Using t,he fuzzy controller in a maze 

4 Conclusion 

This paper presented a hybrid learning approach 
for automatic generation of fuzzy control rules. In 
a complex environment, with many input variables, 
the output may depend only on some of the inputs. 
Moreover, each input may have a varying degree of 
influence on the output value. The ID3 algorithm is 
adopted to produce the initial estimate rules for its 
ability t o  select and prioritize the most important in- 
put variables. Computer simulation results showed 
such a method performed well in identifying irrelevant 
input variables. After fuzzifying the initial estimate 
rules, the gradient-descent algorithm is applied to  fine 
tune the parameters of membership functions. 

The advantages of the proposed approach can be 
summarized as: 1) It can select the most important 
input variables while eliminating irrelevant ones for 
solving problems in a complex environment; 2) I t  can 
prioritize input variables according to their influence 
on the output independent of domain knowledge; 3) 
The learned fuzzy controller is effective and it out- 
performed previous work in approximating nonlinear 
systems; 4) The hybrid approach is both adaptive and 
expressive. 
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