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Abstract 
In this paper, we tackle the problem of nonlinear adaptive 

hybrid control of constrained robots with flexible links. Ac- 
cording t o  the physical properties of a flexible manipulator, 
a two time-scale approach, namely, singular perturbation a p  
proach, is further utilized for thorough analysis and general 
controller design. It is shown tha t  asymptotic motional track- 
ing can be effectively achieved, whereas the force regulation 
errors can be made arbitrarily small. For demonstration of 
the controller performance, experiments of a two-link flexible 
manipulator are performed for the proposed controller and 
satisfactory results are observed. 

1 INTRODUCTION 
Constrained robotic systems, by definition, require the 
manipulation tasks involve robot arms which are intersected 
with the environment. In the early development of con- 
strained robotic systems, both robot and environment are as- 
sumed to  be rigid. From theoretical point of view, this kind of 
problems can be relatively more tractable. However, it might 
be unrealistic, from application point of view, to apply such 
kind of machinery. If both are rigid as assumed, then one of 
them can very likely incur damage to  the other due to  the 
inevitable uncertainties. However, in many industrial appli- 
cations such as grinding, deburring, etc., the  environments 
are quite stiff in general, and hence it may be more feasible 
to  adopt flexible manipulators in such a constrained environ- 
ment. T h a t  therefore calls for development of a proper con- 
trol for constrained robotic systems employing flexible- 
link manipulator. 

In  the literatures, many fundamental issues on this re- 
gard have been extensively studied, such as impact analysis 
and contact force regulation, compliant force regulation, and 
force/position control during constrained motion. In [ll], a 
standard approach for constrained manipulation have been de- 
veloped, in which a systematic way is employed to  reduce the 
system dynamics into lower-order ones and then a nonlinear 
feedback controller is designed to  deal with the constrained 
system. Other controller designs based on the theory of vari- 
able structure systems [15], learning algorithm [5 ] ,  and paral- 
lel approach [3] haev also been developed in the past. Jean 

and Fu [4] proposed an adaptive hybrid control scheme for the 
constrained robots based on both Lagrange and Newton-Euler 
dynamics formulations, and Stepanenko and Su [14] developed 
a controller which can adaptively tune the gains of the variable 
structure scheme. 

For industrial applications, many extensive studies of flex- 
ible manipulators have been carried out. Dynamic models 
of multilink flexible manipulators are completely derived by 
Book [I] and Luca and Siciliano [9]. Many nonlinear con- 
trol schemes such as those using computed torque, inverse 
dynamics, and feedback linearization, [ 8 ] ,  [13], [16], have all 
been thoroughly developed for multilink flexible manipulators 
in the past decades. Extensive experimental studies of two- 
link flexible manipulators have been demonstrated in [2] and 

However, for the constrained flexible manipulators, there 
are relatively fewer results tha t  have been presented. So far, 
Matsuno and Asano [lo] and Lew and Book [7] have pro- 
posed hybrid controllers based on the quasi-static condition 
respectively dealing with single contact and multiple contacts. 
Matsuno and Yamamoto [lo] dealt with the dynamic hybrid 
control on the basis of the singular perturbation method. The 
nonlinear inversion of the 1/0 map along with a linear feed- 
back stabilization is studied in [17]. 

In this paper, a reduced model in Cartesian space is derived 
due to the constraints imposed on the end-effector. Based 
on singular perturbation theory, an adaptive controller is de- 
signed from the set of reduced dynamical equations. In the 
Advanced Control Laboratory (ACL) at National Taiwan Uni- 
versity (NTU), a 2-link planar flexible robot has been built up 
t o  demonstrate the performance of the proposed controller, 
and experimental results have validated the effectiveness of 
the proposed controller. 

This paper is organized as follow: Section 2 presents the 
dynamical model of a constrained flexible manipulator. In 
this section, we reformulate the dynamical model into Carte- 
sian space and further reduce the original system into two 
subsystems, namely, fast subsystem and slow subsystem. In 
Section 3, an adaptive composite controller is developed based 
on the formulation of these the two subsystems. Experimental 
results are shown in Section 4 t o  demonstrate the controlled 
performance. Finally, some conclusions are given in Section 
5 .  
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roblem Formulation 
In this section, we consider the flexible manipulator whose 
end-effector is in contact with the environment modeled as 
a rigid frictionless surface. In the following derivation, we 
will use the subscripts r and f t o  denote the rigid-mode part 
and flexible-mode par t ,  respectively. T h e  dynamics of the 
constrained flexible manipulator can be derived by using the 
Lagrangian formulation via the assumed mode method which 
appear in the following form: 

As a matter  of fact, when a manipulator is constrained by 
its environment, i t  is more convenient and realistic to use 
the coordinates in Cartesian space (i.e. task space ) rather 
than the joint configuration space. Thus, in the following 
derivation, we will derive the equations of motion in Cartesian 
coordinates. Therefore, let the position of the end-effector be 
described as 1: = X ( q ) ,  where X : RN -+ R", qT = [q:, q,']'. 
If we take the first- and the second- time derivative of 2, we 
will then have the relations of velocities and accelerations in 
joint space and in Cartesian space as follows: 

where Jr  = E, J j  = e. Without loss of generality, we 
have assumed tha t  the flexible manipulator is non-redundant 
with respect t o  the rigid par t ,  which implies J ,  is invertible 
for almost all q E R N ,  except maybe when qr is a t  certain 
configurations. For simplicity, in the rest of this paper, we 

Now, we are ready to  formulate the above dynamic model 
into a singular perturbation form via the definitions z = Kqj 
and k = KE' where E' is a common factor extracted from 
each entry of the matrix h', assumed to  be small enough. 
Further, we define the variables z1 and z2 as z1 = z and 
22 = ~ i ,  and similarly y1 and y2 as y1 = 1: and y2 = x .  Given 
these definitions, the s ta te  space of the slow subsystem and 
of the fast subsystem can thus be derived from (8) and (9), 
respectively, as follows: 

Y1 = Y2  (10) 

E i 1  = z2 (11) 

y'2 = Diyz + ~ D z k - ~ 2 2  + D3 + 0 4 2 1  + D5r + DsX 

E &  = k ( E 1 ~ 2  + ~ E ~ k - l z z  + E3 + + E S T  + 
which amounts to  the singular perturbation model of the flex- 
ible manipulator system. One should note that  the matrix 
K plays the role of a constant stiffness matrix and, hence, 
the overall system becomes stiffer if A' is uniformly larger or, 
equivalently, E is made smaller. According t o  the singular 
perturbation theory, the model obtained above will tend to  a 
rigid model provided the system rigidity gradually diminishes. 
I t  can be shown tha t  as c -+ 0, (10) becomes the model of a 
rigid manipulator, i.e., as E -+ 0, one can obtain 

z2 = 0 

21 = -Z,1[E1g2 + E3 + EST + E& (12) 

and, hence, the rigid manipulator model can be readily derived 
as : 

81 = Y2 
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6, = [Jr - JrMi1Crr]J:182 - JrM;'G1 + J,.ML1i 
+ JrMG1A?X (13) 

where we have used the relation Mrr = (H11 - 
HlzH;'Hzl)-l, and all the variables with overbar are sim- 
ply t o  denote those in the situation where 

For deriving the fast subsystem, we let the fast time-scale 
be ,U = 4 and redefine the fast variables = z1 - 21 and 
712 = 22 .  Thus, the fast subsystem can be derived as : 

= 0. 

(14) 
or equivalently, 

Note tha t  rf is the control input to  the fast subsystem. As 
opposed to  the objective of designing the slow mode control, 
the fast mode control rj is devised t o  make the set point q = 0 
uniformly exponentially stable. Hereafter, we will separately 
design the control inputs i and rf corresponding t o  the slow 
and the fast subsystems, respectively. 

Next, due t o  the existing constraints, we will reduce the 
set of original equations of motion into a more realistic form. 
First, we divide the s ta te  f ,  or equivalently 81, in the slow 
subsystem into two parts, namely, f1 and 2 2 ,  where fi E R" 
and f 2  E R"-", and assume the constraint ( 2 )  can be re- 
expressed as: 

where fi is a nonlinear map form R"-" t o  R". Furthermore, 
we can obtain the velocity and acceleration relations between 
51 and 2 2  as: 

6(f) = 51 - O(z2) = 0, (16) 

where FZ = Then, we 
rewrite the state-space equations (13) into the differential 
equations in terms of the Cartesian state, %, by premultiply- 
ing the equations by lYTMrrjT1 and then using the following 
relation 

is assumed t o  be of full rank. 
8% 

so that  the resulting equations become: 

For convenience of analysis, we can further partition the ma- 
trices and rewrite the above equations into the following form: 

Ml1 Ml2 ] [ 4 1  ] + [ Bll 

C l 2  ] [ ;; ] [ MZl M 2 2  2 2  B2l B 2 2  

+[:::]=[;]+[ - F a  ] ' (19) 

Clearly, JFTMrrjyl is symmetric and positive definite. Now, 
if (17) is used t o  replace f l , i l , &  in (19), and then premul- 
tiply the upper par t  of (19) by FT and add the results to its 
lower par t ,  then the following equations are obtained. 

a 1 x 2  + ClX2 + Gll = fl + x, (20) 
M Z X Z  + C2X2 + F2G11 + G l 2  = FTfl+ f2. (21) 

where 

Ml = 
M Z  = 

c1 = 

c 2  = 

(MllFZ + MlZ), 

E(Ml lF2  + Ml2) + (M2lF2 +a,,), 
MllF2 + BllFZ + 8 1 2 ,  

F:(j@llh2 + BllF2 + B12) 
+ ( h 3 2 1 i 2  + BZlFZ + B 2 2 ) .  

Thus, we can refer t o  the equations (20) and (21) as force 
part and motion par t ,  respectively. In the next section, we 
will design the controller based on the reduced slow-subsystem 
(20), (21) and fast-subsystem (15). 

3 Controller Design 
Our objective is to design a hybrid controller to achieve 
asymptotic tracking of both unconstrained coordinates x 2  and 
constrained forces A, i.e., to  yield 

Z z ( t )  + Z 2 d ( t )  and x ( t )  + A d ( t )  aS t -). CO. 

Before we proceed to  present the controller design, we will 
summarize some useful dynamical properties of the flexible 
manipulators in the following proposition. 
Proposition 3.1: For the constrained flexible manipulator 
described in the previous section, the following properties [4] 
will hold. 

1) 
2) By a proper choice of C(q, q )  to define C 2 ,  the matrix 

3) There exist some constant vectors 0; and 0; such tha t  

is symmetric and positive definite. 

- 2C; is skew-symmetric. 

M l i  + ClU + Gll = w:e: 

(h32lF2 + M22)ti + (M21h + B2lF2 + &)U 
(22) 

+Giz = WzTO;, (23) 

where t i~ l  and w 2  are known functions of their arguments. 
Now, we are ready to  introduce process of designing a con- 

troller for the manipulator system in the  following. 

3.1 Slow Subsystem Controller 
We first define the auxiliary signal s as 

3 = Z2 + h",Zz, (24) 

where E 2  = Z2 - X 2 d  is the tracking error and K ,  is some 
positive constant. Let the control laws be  designed as: 

(25) fl = - - T -  w1 el + 6, 
f2 = -w$& - F ~ K  - hrpj, ( 2 6 )  
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for (20) and (21), respectively, where K = Kf(i - A d )  - i, 
hTf > 0, Kp > 0 ,  and 6 , ,  X denote the estimates of system 
parameters B i ,  a = 1,2,  and the measurement of contact force 
A. Let the parameter adaptation law be devised as: 

2 = 2 2  + Kriz = M11(-C2s + wTe - Kpi). (32) 

We then (32) to (29) to Obtain 

M1M;y-Czs + wTe" - KpJ) + e13 
= wTI, + h'fi + (1 - Kf)(X - A), (33) 

Assume tha t  IIx - 5 p for some constant p which denotes 
(27) 

the possible bound on the force measurements error, then from 
equation (29), (33) we can obtain where r > 0, wT = [pFt$,&], and U is some positive con- 

stant. 
Accordingly, the error dynamics can be obtained by the 

following derivation with the help of Proposition 3.1 and (20), 
(21), i.e., 

M z $  + c z s  = M Z X Z  + czi, + F T G 1 1  + G 1 2  

+Mz(-Zzci + Kr(i2 - i 2 , ) )  

FTfl+ fz + FTWTB,' + w;e; 
[F, w1 , w2 167 - Kp3 

MI;+ C I S  = Mlf, + CliZ + GI1 

+ c Z ( - i Z d  + Kt-(zZ - Z Z d ) )  - FTG11 - G12 

= 

(28) 
- T - T  - T  = 

+ M l ( - E Z d  + K v ( i 2  - i Z d ) )  

+ C l ( - i Z d  + Kr(z2 - Z 2 d ) )  - G11 

= f l + ~ T s , ' + x  
= wTB, + hf(i - A,) + (X - 3 )  
= wTe'1 + h'f(x - A d )  + (1 - Kf)(X - i), (29) 

where 8 = 8* - 8 is the parameter estimation error and X = 
- A, is the force tracking error. If we choose the Lyapunov 

function candidate as: 

vl = Q M 2 s +  2 Wr i ,  2 ( 3 0 )  

and take i ts  time derivative along the trajectories of (28) and 
(291, then, by virtue of Proposition 1, we have 

-& d -  = STMZM2$ + I f & s  + jTre 
dt  2 

:T I 

= sTMz$+ sTCz8 - 0  ro 
= Q _ ~ ( M ~ $ + C ~ ; ~ ) - B  re 
= sT(wTe"- K ~ S )  - B re" 

.T 

:T 

Remark : In (35), we have theoretically derived the rela- 
tions between the force tracking and the force measurement 
error. I t  is therefore obvious tha t  the force tracking error 
can be made arbitrarily small by enlarging K f  if precise force 
measurement can be obtained. 

3.2 Fast -Su bsyst em Controller 
We first rewrite (15) in the fast time scale p as follows: 

Since our control objective is t o  regulate the fast state q, here 
we design a robust regulator. For the full-order system being 
dominated by the slow subsystem, a state regulator must be 
devised to  force Q + 0 as fast as  possible. Within the bound- 
ary layer, the system matrices A and B can be substituted 
by A 0  + AA0 and BO + A&, respectively, where A 0  and Bo 
are nominal matrices with known elements plus the known 
bounds on IlAifolI and IlA&II. And, we further design a 
dynamic feedback controller as follows: 

(37) 

where the matrices F and G will be determined later, whereby 
the closed-loop system consisting of (36) and (37) becomes 

= 

= 

5 -cy11c12(t) + c y o ( a , B )  

-sTKPs - BTuB + BuO' 
1 1 

-gTXp3 - - ~ l l s " 1 1 ~  + - ~ ~ ~ $ * ~ \ z  
2 2 

where C = [qT,  .FIT, A = [ F  ' 0  B RI , and a = 

[ *f0 ] . The  following theorem provides a condition 

under which the above design of the fast-subsystem controller 
may give the desirable result. 
Theorem 3.2: If F and G are chosen such that A i s  Hurwitz 
and  if there exist matrices P, Q > 0 satisfying 

where 6 = [ sT ,  PIT, a1 is some positive constant, cyo(u, 0.1 = 
$(~ l l8*11~,  and $(E) is a continuous function of 6 which van- 
ishes only at = 0. Therefore, we can guarantee tha t  S and 
e" will converge to a residual set with size O(cyo), and so are 

A T P + P d = - Q  (39) ZZ, &. In the following, we will show that x is also a bounded 
signal. Consider the closed-loop dynamical equation (28) , 
where s can be represented as and Amin(Q) > 2cyllPIJ, where llBll 5 a, then it is guaranteed 

that llcll -+ 0 exponentially. 
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Proof: Let the Lyapunov function candidate V2 be 

v, = f P C  1 

and take the fast time derivative of V2 as follows: 

where cy2 is some positive constant and $(C) is a continuous 
function which vanishes only at 6 = 0. Thus, through a Lya- 
punov theorem, this theorem can thus be concluded. This 
property will be useful in our later derivation of a composite 
controller. 0 

3.3 Composite Controller 
Consider the original system (10)-(11) with the composite con- 
trol law T = ?+sf .  It can be shown tha t  with such composite 
control law the original system will be uniformly ultimately 
bounded. T h e  results are detailedly summarized in the fol- 
lowing theorem. 
Theorem 3.3 : Consider the system (10)-(11) with the 
composite control law T = ? + rf and the adaptation Jaw (27). 
Then, all sagnals inside the system remain bounded and both 
position tracking errors and link vibration will converge into 0 

residual set of a size which is an order of (YO and c, provided 
6 i s  sufficiently small. 
Proof: T h e  stability proof is omitted here due to limited 
space, One can see [18] €or details. Q.E.D. 

4 Experimental Verification 

4.1 Apparatus 

A 2-link flexible manipulator has been set up  and experi- 
mented in the Department of Electrical Engineering at Na- 
tional Taiwan University (NTU). T h e  2-link flexible manip- 
ulator is a planar-type manipulator with two revolute joints 
which are perpendicular to the motional plane, see Fig.(l). 
The  first link is driven by a D.C. motor with ratio 128:1, and 
the second link is driven by a D.C. Brushless motor with gear 
ratio 1 O O : l .  In addition, the hub of the second joint of the ma- 
nipuiator is air-jetted in order to counteract the gravity. A PC 
486-33 is used as the  processor to  implement the computation 
of the contrcl law and the adaptation law, in which the sam- 
pling rate  is set to be 400 Hz. T h e  mathematical model of this 
flexible manipulator is derived based on the so-called assumed 
mode method, apd the vibration modes (two for each link) are 
measured using strain gauges through some properly designed 
low-pass filter to account for the observation spillover. 

4.2 Experimental Results 
T h e  constrained surface, which is made of rigid material, a t  
the location 2: = 0.7. T h e  desired motion trajectory is taken 
t o  be the form of a fifth-order polynomial trajectory yd(t) = 
0.5r(t), where 

{ r(t) = 1 

and Tm = 3sec is the expected duration of the motion. T h e  
desired contact force is 1 N. One should note that ,  in this 
case (x=0.7), the contact force f is equal to the Lagrangian 
multiplier X since %‘A = f and @(z) = 2: - 0.7. The 
gain K,., K p ,  and K f  are 4, 10, and 20, respectively. The  
results are plotted in Fig.(2)-Fig.(5), in which Fig.(2) is the 
tracking error of motion in y-direction, and Fig.(3) plots the 
force tracking error in x-direction. T h e  deflections are demon- 
strated in Fig. (4)-Fig. (5). 

r(t) = 6 ( 2 ) 5  - 15($--)* + for 0 5 t 5 T, 
for T, 5 t 

5 Conclusions 
In this paper, an adaptive hybrid control law is task space 
is developed via singular perturbation approach. Under this 
formulation, the original full-order system is decomposed into 
a two time-scale system, namely, the slow subsystem and the 
fast subsystem. T h e  experiments of a two-link flexible m a n i p  
ulator has been set up  to  demonstrate the satisfactory perfor- 
mance of the proposed controller. 
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Fig.(l) Experimental Setup of the 2-link Flexible Arm 
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