
,,+,++_++++.-. AIIM

+ ,.-.+..,.o.,o,.-,,a,,-,.o,.++:,,:.o,.....-+-.,ZS ++_,:_.:+ ._.Y// '+,°°,.So,,,.,+,,,,r.,,+,n<,.+09,0

+ + '

|

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

1 2 3 4 5

Inches !1111_ _'_ItUi_,_m_ IIII1_

- ,+,llm+
lltit&....Illllg
IIII!Nlllllgll+li+

.,"++ 4
++.+. ,',;,+ ++<_%-

_c, _ ////7 MPlNUFPlCTUREDTO PlIIM STPlNDI:::IRDS + "_ +
BY QPPLIED IHQGE, INC. _ _'_ _

+,.+,.,, +++

Adaptive Path Planning: Algorithm and Analysis*
(Extended Abstract)

• <d,_ ,', _t _

Pang C. Chen
Sandia National Laboratories [: " q .'i-)r,' ,-Gt, oJ

Albuquerque, NM 87185 .,,

Abstract

Pathplanninghastobe fasttosupportreM-timerobotprogramming.Unfortunately,currentplan-
ningtechniquesarestilltooslowtobeeffective,astheyoftenrequireseveralminutes,ifnothoursof
computation.To alleviatethisproblem,we presenta learningalgorithmthatusespastexperienceto
enhancefutureperformance.The algorithmrelieson an existingpathplannertoprovidesolutionsto
difficulttasks.Fromthesesolutions,anevolvingsparsenetworkofusefulsubgoalsislearnedtosupport

fasterplanning.The algorithmissuitableforbothstationaryand incrementally-changingenvironments.
To analyzeour algorithm,we use a previouslydevelopedstochasticmodel tha,tquantifiesexperience
utility.Usingthismodel,we characterizethesituationsin whichthe_laptiveplannerisuseful,and
providequantitativeboundstopredictitsbehavior.The resultsaredemonstratedwithproblemsin
manipulatorplanning.Our algorithmandanalysisaresufficientlygeneralthattheymay alsobe applied
totaskplanningorotherplanningdomainsinwhichexperienceisuseful.

1 Introduction

In robotics,pathplanningreferstofindinga short,collision-freepath froman initialrobotconfigurationto

a desiredconfiguration,lthas to be fasttosupportreal-timetask-level;robotprogramming. Accordingly,

ithas receivedmuch attention[8,I,2,7,9,11],and therearenow a number ofimplementedpath planners
basedon a varietyofapproaches.Unfortunately,currentplanningtechniquesarestilltooslowtobe effective,

astheyoftenrequireseveralminutes,ifnothoursofcomputation.

To remedy thissituation,we developa learningalgorithmthatusespastexperiencetoincreasefuture
performance.More generally,thealgorithmisactuallyaframeworkinwhichaslowbuteffectiveplannermay

beimprovedbothcost-wiseand capability-wiseby a fasterbut lesseffectiveplannercoupledwithexperience.

The algorithmhazbeenpreviouslypresentedforstationaryenvironments[4],and hasbeenrecentlyextended

withan on-demand experiencerepairstrategytocopewithincrementallychangingenvironments[5].
In thispaper,we presentthefulladaptivealgorithmand providea deeperanalysisforthc fundamental

stationarycase.The analysisisbasedon astochasticmodel,whichhas alsobeenusedtoprovetheoptimality

oftheon-demand experiencerepairstrategy[5].We usethemodel inthiswork tocharacterizethesituations

inwhich the learningalgorithmisuseful,and towhat degree.We formalizethe conceptof improvability,

and derivethe conditionsunder which a plannercan be improved withintheframework.We alsoderive

quantitativerelationshipsbetween trainingeffort,learningrate,planningcost,and planningcapability.

Finally,we use theseanalyticperformanceestimationtoolstoexplainsome experimentalresults.Although

our presentationisinthecontextofmotionplanning,thealgorithmand theanalysisareextensiblcto more

generallearning.Inparticular,theymay be appliedtohigher-leveltaskplanningorotherdomainsinwhich

experienceisuseful.

*This work has been performed at Sandia National Laboratoriesand supported by the U.S. Department of Energy under
Contract DE-AC04-76DP00789.

!

2 Algorithm

Given an arbitrary work environment and an arbitrary task (u, w) of moving the robot from configuration
point u to w, we assume that there are initially two path planners available: Reach and Solve. The Reach
planner is required to be fast, sytnmetric, and only locally effective, i.e., it should have a good chance of
success if u and u, are close to each other. The Solve planner, oil tile other hand, is required to be much
more globally effective than Reach, and hence call be very slow. lt is tile performance of this planner that
we wish to improve.

In our learning scheme, we retain the global effectiveness of Solve by calling it whenever nece_ary, while
reducing tile overall time cost by calling Reach whenever possible. To utilize Reach fruitfully, we maintain a
history of robot movements in the form of a connected graph, called the ezperience graph G = (V, E) with
vertices V and edges E. Set V is a sparse collection of subgoals that the robot can attain and use. Set E
indicates the subgoai connections that the robot can follow through the application of Reach. Ideally, G is
to be used by Reach to achieve most tasks without the help of Solve. We update G incrementally whenever
Reach is incapable of achieving a task through G. In this situation, Solve is called. If Solve is also incapable
of finding a solution, then we simply skip to the next task. Otherwise, the solution provided by Solve is
abstracted (or compressed) into a chain consisting of a short sequence of subgoals that Reach can use later to
achieve the same task. To learn from this experience, we simply generalize the use of the abstracted subgoals
by augmenting G with the chain.

2.1 Environmental Assumptions

To allow fruitful learning, we require that the environmental change be incremental, i.e., occasional and
localized. By occasional, we mean that the interval between workcell changes is large compared to the
amount of time spent on each task. By localized, we mean that the workcell change involves only a few
objects in a relatively small area of the workspace, and hence is not extensive. Both conditions are prevalent
in applications and have their intuitive implications: Occasional implies that old experience may be useful
for significant amount of time, and localized implies that old experience may have salvage value.

2.2 Formal Specification

Formally, the learning algorithm Adapt is shown in Figure 1. In the algorithm, u is the current robot
configuration, and w is the next goal configuration. To access G, we maintain two pointers: fi and rb, each of
which points to a vertex of G that is known to be reachable with one call of Reach from u and w, respectively.
The algorithm is based on two planners: _ and S, which are in turn based on Reach and Solve, respectively.

Both _ and S have task (u, w) as arguments, and graph G and a heuristic vertex ordering function h as
parameters. For planner 7_, we use 7_(.) to denote the predicate that 7_ is successful, and 7_[.] to denote the
path planned when 7_.succeeds, and similarly for S.

Planner "R. searches for ways to achieve task (u, w) using only Reach and G as guideline. The algorithm
for 7_(.) is:

1. Search the vertices of G in order according to heuristic h, and find a vertex v satisfying Reach(v, w).
2. If v exists, then set tb ,--- v, and return success.
3. Else return failure.

To generate "R[-], we require the success of 7"(.), which guarantees that there is a connected sequence of
vertices F in G from F_ = fi to F_ = _b for some k > 1. Once 7-(.) succeeds, a simple solution for _[-] would
be the concatenation of Reach[Fj, Fj+I] for j going from 0 t_ k. l{owever, we can also improve the quality
of this solution locally as we shall see in Subsection 2.5.

Planner S sets 6) for the future augmentation of G. The algorithm for S(.) is:

1. Set tb to be the best vertex in G according to h.
2. Return(Solve(d), w)).

Algorithm Adapt(R, S; T)
u _-- current position; v *-- u; G *-- ({v}, 0);
do forever

w .-- goal();
if (not R(u, w; G, h)) then

if (not S(u, w; G, h)) then continue;
p ,--- Abstract(S[u, w; G, h]);
G *- Augment(G, p);
@ ,--- last, vertex of p;

endif

if g(u, w;G,h) then Execute(R[u, w;G,h]); u ,---w;
enddo

end.

Figure 1: A speedup learning algorithm for path planning in incrementally-
changing environment

'Ib generate S[.] once S(.) returns success, simply output Solve[@, w].

2.3 Object-Attached Experience Abstraction

To abstract a solution path from v to w with v E G, we assume that there is an efficient Abstract(.) function
available that returns a short chain from v to v' = w, traversable by Reach. We assume that the size of
the chains abstracted from solutions of S are ali boundable by a constant. In practice, this is a reasonable

assumption, since a typical task consists of only 3 smooth motions: departure, traversal, and approach,
To increase the flexibility of the subgoals, we require the vertices returned by Abstract(.) to be relative

robot positions associated with nearby objects. That is, we remember each of them as an offset from some
nearby object serving as a landmark. Under this object-attached experience abstraction scheme, we can
adjust to any minor environmental change without expensive experience repair.

2.4 On-Demand Experience Repair

Of course, if the environment changes significantly, the validity of G will deteriorate. How much deterioration
will G suffer depends on how drastically the environment changes. If the change is major and extensive,
then it may be better to start over with no experience (G reinitialized), rather than to work with the old

impaired experience. In the more interesting case where the change may be major (e.g., introducing a new
object) but not extensive (e.g., the rest of the workcell is undisturbed), the right choice is not as clear. Thus,
we introduce an on-demand repair scheme to retain those experiences _;hat remain valid and useful.

In this scheme, we plan as if G is connected, until "R.(.) succeeds and we actually need to produce a path.

Then, to generate R[.], we require the success of T(.) to provide a connected sequence from ft to rb. As 7"(.)
searches for and verifies such a sequence, it may come across invalid edges, which it simply deletes. If ft is

already connected to tb in G, then no repair need take piace. If, however, ft and tb do not belong to the same

(connected) component due to the deterioration of G, then Solve is called to reestablish their connectivity.
It is of course possible that connectivity cannot be reestablished due to the environmental change. In this
case, the portion of G connected to @ is deemed useless, and hence discarded. The procedure for 7-(.) is:

1. While there exists a sequence F of vertices in G connecting ft = F1 to tb = Fk for some k > 1 do

(a) If Reach(P/, Pi+l) for ali 1 < i < k then return success;
(b) Else remove edge (Pi, Fi+x) with smallest i such that -_Reach(Fi, Pi.: 1).

= 2. If Solve(ft, @) then augment G with Abstract(Solve[ft, _b]); return success;

3

............................. _ _ lli_ |lit iIlltll f¢iillililllll]II II Ii11||iN I i|it[_Y

3. Else remove the (connected) component of _b from G, and return failure.

2.5 Solution Quality and Redundancy

So far we have focused on task solvability but not solution quality. If solution quality is not important, then

in 7_[-], we can simply produce the solution of going through F with Reach. In this situation, the experience
graph will always be a tree. However, if solution quality is important, then it may be worthwhile to locally
optimize F by "cutting corners" whenever possible.

3 Analysis

To analyze our algorithm in more detail, we have developed an analytic model that is simple enough for
probabilistic treatment, yet general enough to capture the key aspects of tile learning process. This model
has been used to analyze the algorithm under incrementally-changing environments, and in particular, the
optimality of the on-demand experience repair strategy [5]. The development of the model is in the same
spirit as that in developing search tree models for analyzing heuristics [12]. Using this model, we now further
the analysis of our algorithm under stationary environments. (For this extended abstract, the proofs are in
the Appendix.)

As in the framework of PAC-learning [10], we assume that the goals are drawn randomly and indepen-
dently from a distribution. We do not require Solve to be complete; we do require that it have a success
probability (r in solving a random task. We make the simplistic assumption that only Solve, Reach, and
Abstract have costs, each being a constant. To normalize, let 1, r, and c be the respective costs of Solve,

Reach, and Abstract. (Both r and c are typically << 1.) Let Gn be the experience graph G after Adapt has
been trained with n tasks. We are interested in both the speedup that Adapt has over the plain iterations of
Solve, and the capability of Adapt as it increases with training. Thus, we analyze the relationship between
the following random variables:

lAnl Thepr_babi_itythatAdaptwi_needt_a_S_veins_vingtaskn+_i.e._thepr_babi_itythattask n + 1 will not be A-reachable via Ga.

Ko The number of times that Solve has been called after Adapt has been trained with n tasks.
Lo The probability that a random task not R-reachable via Gn will now be R-reachable

via Go+I.

As pointed out in [4], the learning rate Ln arid the expected learning rate E(Ln I An) are key quantities
in determining the success of Adapt. To continue the analysis, we model the experience graph Gn by the
following random tree Tn with the notion of utility/_ defined.

Definition 1 Let IIXIIfor any graph X be the number of edges in X. Let To be a one.vertex tree consisting

of only the root vo (home position). For n > O, To is a random tree obtained from Ta-1 by extending from
a uniformly chosen vertex of T,_-I a branch Po consisting of an alternating sequence of edges and vertices.
The length (number of edges) of po is random variable Ilpll>_1 that is independent of n.

Under model .Ali, the experience graph of Adapt is Gn = Ta. The utility of any subgraph of Tn is the
probability that the particular subgraph can be used to solve the next random task. For each non-root vertex v
of Ta, utility t_(v) is an independent, identically distributed, nonnegative random variable with mean f_.

Thus, each branch p in Tn corresponds to the abstracted solution of a call to Solve. Ad is designed to
model Adapt without local optimization (Subsection 2.5), since the experience graph is always a tree.

We begin our analysis with the following results that express the planning costs of Adapt in terms of its
failure probability Ao.

Lemma 1 Suppose that Adapt has accrued N vertices during its training. Then on average under A4 and
without calling Solve again, the probability that Adapt will succeed in solving the next random task is 1 - QN

where
def

ON = (1- p)N, (1)
and the cost of Adapt in solving this task is (1 -QN)r/p.

Theorem 2 Suppose that Adapt has been trained with n tasks. Then under j_, if Solve is not called, the
average cost E,, of Adapt to solve the next task is

E, = r(1- EAn). (2)
P

Theorem 3 Under.A4, the average cumulative cost F, of Adapt after training with n tasks is

r,, = r,,/p + (1 + ac- r/p)F_,K,, (3)

or equivalently,

AFr, d..eer /_nq-I -- En "-" r/p + (1 + _rc- r/p)EA,_. (4)

The relationship between training effort n, experience utility p, and failure probability An is derived in
the following via the learning rate Lh.

Lemma 4 Suppose that Adapt has an expected learning rate of E(L,_ I An) = o_A,_ for some positive a < 1.
Then the average :R-failure probability of Adapt after n > 0 tasks of training has an upper bound of

1

EAn < t_(n + 1) (5)

for all n > O.

With the lemma above, we can show that the reliance of Adapt on Solve is at most inversely proportional
: to the number of training tasks.

Theorem 5 Under ./t4,
1

(n + 1)EA, < aE#(p)' (6)

where

Ep(p) der E(1- p)llpll (7)

denotes the average utility of a branch.

Using the following definition of improvability, we determine the conditions under which Solve is improv-
able and the amount of training required.

Definition 2 Let ..4 be a learning algorithm designed to improve A'. We say that .,4 can improve ,4' with
failure probability A ifr.,4 can solve the same task as .,4' with failure probability at most A, while costing
less on average. In particular, we say that A can effectively improve A' ifr A can improve A' with failure
probability O.

Theorem 6 Under]vi, Adapt can effectively improve Solve with sufficient training ifr r < p. An upper
bound on nmin, the minimum number of training tasks required, is

1(cfc)nmin _< aEp(p) 1 I- r/p " (8)

If r > p, then Adapt can still improve Solve with some failure probability EAn > 1 - p/r, provided that
Adapt is not overtrained. An upper bound on nmax, the maximum number of training tasks that Adapt
should receive, is

< - 1. (9/

5

Figure 2: A planar 2-1ink robot environment

Corollary 7 Suppose that Solve is not a complete planner, i.e., tr < 1. Then under.M, Adapt can improve
Solve both cost-wise and capability-wise ifr there is an n such that #/r >_ 1 - EAn > tr. In this case, both
improvements can be achieved with the number of training tasks being

"= - tr)E.(p) "
Finally, we have the following asymptotic bound on the performance of Adapt during training.

Theorem 8 Under .h/l, the ratio of the average cost of Adapt to that of Solve is bounded asymptotically by
r/f_ as the number of training tasks approaches infinity. More globally, the behavior is

__F"< r (n--'+ft l+trc-_)(ln(eAoom)/(crn) if Aoom > l'Aootherwise, ' (ii)

where a = trEl_(p). Accordingly, the maximum value that the ratio can attain at any n is at most

F./n < r//_ + (1 +trc-r/fJ)Ao. (12)

4 Discussion

To gain more insight into our algorithm, we explain some experimental results with the theory developed
in the previous section. Figure 2 shows a stationary 2-1ink planar robot environment in which Adapt is
applied. In this experiment, there are 5 polygonal obstacles in the fixed workcell, and a goal set consisting of
9 preselected goal positions. Starting at home position 0, the robot is to go through a sequence of 100 goals
randomly selected from the goal set. The result of this experiment is shown in Figure 3. In the left frame,
the ratio of the cumulative planning cost of Adapt to that of Solve only is plotted against the task number n.
The planning costs are averaged over 100 runs and are measured by the number of robot-to-obstacle distance
evaluations, which is the dominating factor in the computing cost of each planner. In the right frame, the
ratio is plotted against (ln(n + 1))/(n + 1) to show their asymptotic linear relationship, hinted by Theorem 8.

The experiment shows that Adapt is able to learn and speed up its performance relative Solve from
150% slower (ratio - 2.5) to (by extrapolation) 62% faster (ratio - 0.38). If we believe that the upper
bound provided by Theorem 8 is also an asymptotic lower bound, then the plot implies that r/f_ - 0.38.
From other empirical observation, we estimate that r - 0.1, c - 1, tr - 1, and Ao "-- 0.9. Hence, /_ -" 0.26.
Since the branches are of lengths - 2, we also estimate E/_(p) - 0.45. To see how consistent these numbers
are, we estimate the number of training tasks required by Adapt to have its cumulative cost first become less
than that of Solve. Using the formula in Theorem 8, we have (_ - 0.45 and

ln(eAo_n) _- 1 + ac- r/f_ -- 0.156. (13)
emoc,_ eAo(l - r/p)

o , s'o _ o'1 02 o'3
tasknumber In(tasknumbe='+l)/(tasknumber+ 1)

Figure 3: Time improvement of Adapt over Solve

==
L..o."....._...o...........°

0 0.3 O.-. " "" ""....

O=

_0.2 . r..

8
¢,.)

(}.1 -° "'°°°'"'""

I I -20 4o 8'o
tasknumber

Figure 4" Time improvement of Adapt on a 3-d cask problem.

giving us eAoan - 19, or n - 17.2, which is very close to the observed n = 17 in the plot.
We use our theory to explain another experiment performed previously to simulate a radiation survey

environment [4, 6]. In this experiment, Adapt is applied on a 6-dof gantry robot working in a world with=

4 obstacles: a (16 + 2)-sided polyhedral approximation of a cylindrical cask, two cask stands, and a floor. To
make the problem more difficult, the joint limits of the robot are restricted so that there is not much room
to maneuver. The goal positions are chosen randomly, and correspond to the robot end effector touching
the cask surface in a prescribed orientation. The problem is sufficiently difficult that the original path
planner, Solve, fails to accomplish 7 tasks out of a sequence of 100 random goals. In contrast, Adapt is able
to accomplish ali but 1 task during the exercise, thereby increasing the capability of the original planner.
Moreover, Adapt calls Solve only 5 times, and tile final graph "_arned by Adapt contains only 12 vertices.
Figure 4 shows the actual time improvement. The ratio of tne cumulative effort expended by Adapt to
that expeiided by Solve only is plotted. The effort is measured by the number of robot-to-obstacle distance
evaluations, which dominates the computational cost of each planner. The 5 large points indicate Adapt's
calling of Solve, and the single white point indicates the only failure of Adapt. Initially, Adapt is able to plan
without Solve because the tasks are relatively easy. Later, Adapt starts to learn as indicated by the jumps of
the cost ratio. When the task number reaches 50, Adapt has basically "learned" the environment as shown
by the gradual decline of the cost ratio.

Using the data, we estimate tr - 93% because of the 7 failures;/_ - 1 - 0.011/11 - 34% because the 11
non-root vertices are able to cover 100 random tasks; E/a(p) --' 1 - 0.011/s - 80% because only 5 branches
are involved. Using Corollary 7, we then estimate n - 1/(0.93.0.07.0.8) - 19.2 to be the number of training
tasks n reqv",ed for Adapt to succeed in improving both the speed and the capability of Solve. This estimate
means that teach is already very powerful, and that roughly only 2 calls (#17 and #18 in the plot) to Solve
are necessary for Adapt to catch up with Solve in task solviag capability.

=

_'1 ,J

With "Ftmorem 8, we can also estimate the limiting cost ratio. We estimate Ao _- 1/17 - 6% because
Adapt first failed at task #17. We also estimate c -" 0.I from empirical observation. Again, if we believe
that tile upper bound provided in tile theorem is also a lower bound, then the maximum cost ratio is

r/_ + (1 + 0.1 - r/p)0.06 :- 0.32 (14)

from the plot, which implies that r//_ - 0.27, which is incidentally very close to the cost ratio at the end of
task #100. Consequently, wc do not anticipate Adapt to do much better with more training.

5 Conclusion

We have presented a learning algorithm that can improve path planning. The algorithm adapts to its working
environment by maintaining an experience graph with vertices corresponding to useful robot configurations.
The algorithm is suitable for both stationary and incrementally-changing environments, lt can both reduce
time cost and incrca.sc task solving capability of existing plaancrs, qb gain insight into this algorithm for the
stationary c_e, wc have prescntcd some theoretical analysis based on a simple, yet general stochastic model
that quantifies experience utility. Using this model, we characterize the situations in which the adaptive
planner is useful, and provide quantitative bounds to predict its behavior. The results arc used to explain
some experimental re.suits in manipulator planning. Our algorithm and analysis arc sufficiently general that
they may also bc applied to other planning domains where experience is useful.

References

[1] Barraquand, J. and Latombc, J., "A Monte-Carlo algorithm for path planning with many degrees of
freedom," Proc. of IEEE Int. Conf. on Robotics and Automation, 1990, pp. 1712-1717.

[2] Chen, P.C., and ltwang, Y.K., "SAN DROS: A Motion Planner with Performance Proportional to Task
Difficulty," Plvc. of IEEE Int. Conf. on Robotics and Automation, 1992.

[3] Chen, P.C., "Effective Path Planning through Task Restriction," Sandia Report SAND91-1964, 1992.

[4] Chen, P.C., "Improving Path Planning with Learning," MachirLe Learning: Proc. of the Ninth Int. Conf.,
1992.

[5] Chen, P.C., "Adaptive Path Planning for Incrementally-Changing Environments," submitted to Tenth
Int. Conf. oa Machine Learning, 1993.

[6] ttarrigan, R.W., Sanders, T.L., "A Robotic System to Conduct Radiation and Contamination Surveys
on Nuclear Waste Transport Casks," Sandia Report SAND89-0017, 1990.

[7] Kondo, K., "Motion Planning with Six Degrees of Freedom by Muitistrategic Bidirectional Heuristic
Free-Space Enumeration", IEEE 7¥an. on Robotics and Automation, vol. 7, no. 3, pp. 267-277, June
1991.

[8] Latombe, J., Robot Motion Planning, Kiuwer Academic Publishers, 1991.

[9] Lozano-Pdrez, T., "A Simple Motion-Planning Algorithm for General Robot Manipulators," IEEE J. of
Robotics and Automation, vol. RA-3, no. 3, pp. 224-238, June 1987.

[10] Natarajan, B.K., Machine Learning: A Theoretical Approach, Morgan Kaufmann, 1991.

[11] Paden, B., Mees, A. and Fisher, M., "Path Planning Using a Jacobian-Based Frcespace Generation
Algorithm," Proc. of IEEE Int. Conf. on Robotics aad Automation, pp. 1732-1737, 1989.

[12] Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.

A Proofs

Proof (Lemma 1) The first part of the lemma is obvious since the average probability that ali of the
learned experience will not be applicable in solving the next task is

N

E l'I(1 - .(vi)) = QN, (1_)
i--1

where vi denotes the ith node of G. The second part of the lemma follows immediately from the fact that
N-1

the required cost is r _]i=0 Qi with Qi being the average probability that the applicability of node vi+l will
be queried through Reach. II

Proof (Theorem 2) Fix N, the number of vertices in G. By Lemma 1, the average cost of Adapt in solving
task n + 1 without calling Solve is r(1 - QN)/P. Averaging over ali possibilities for N yields the desired
result since

EA,, = EE(A,, IN)= EQN. (16)

I

Proof (Theorem 3) The two equations are equivalent since EKn = _j<n EAj [4, Theorem 1]. The second
equation follows from the fact tLat in addition to E,, a cost of (1 + ac)EA,_ will also be required to to call
Solve with probability EAn and Abstract with probability dEA,. |

Proof (Lemma 4) lt is known [4, Theorem 8] that for n > 0,

EA,_ < (a(n+ 1))-1 exp ((9.52- Ian))
(17)

2n '

which implies the desired upper bound for n >_ 2. For n = 0, EA0 < 1 < 1/a. For n = 1, EA1 =
EAo(1 - aAo) has maximum vaiue 1/(4a), which is less t k_a.uthe desired upper bound of 1/(2a). |

Proof (Theorem 5) In solvix_g task n + 1, Adapt will need to call Solve with probability An. In this case,

, a branch p will be acquired with probability a. Hence, with probability A,a, the failure probability An+l

will be An lqllpll tl li(vi)), where vi is the ith vertex of p. Thus, the expected learning rate isI 1i=1 _, --

Ilpll

E(L, lA,) = A,a(1-El'X(1-li(v,))) (18)
i=1

[[pll

= A,a(1- EE(I-I(1 - li(vi)) I IIPlI)) (19)
i=1

= And(1 - E(1 - D)]lall) (20)

= AnaEli(p). (21)

The theorem now follows from the previous lemma with a = dEll(p). |

Proof (Theorem 6) Fo'; Adapt to effectively improve Solve, we must have AFn < 1, which implies that

EA, < (1 - r/D)/(1 + ac - r/p) (22)
-

according to Theorem 3. To attain this bound, it suffices to have

(n + 1)aE#(p) > (1 + ac- tlD)/(1 - r/D), (23)

which yields the upper bound on nmin.
If r > #, then Adapt can still improve Solve by not calling Solve after a certain amount of training. For

there to be improvement, we must have E, < 1, which implies that

EA, > 1-/2/r. (24)

To violate this bound through overtraining, it suffices to have

(n + 1)(rn/_(p) > 1/(1 - p/r), (25)

which yields the upper bound on nmax. |

Proof (Corollary 7) For Adapt to become more capable than Solve, we must have 1 - EAn > a. On the
other hand, Adapt can only improve Solve with success probability 1 - EAn < /2/r. Hence, we must have

p/r > 1 - EA, > cr for some n. Conversely, if such n exists, then to achieve A, < 1 - _r, it suffices to have

I
< 1- _r, (26)+ I)

which implies the desired result. |

Proof (Theorem 8) From Theorem 3, it suffices to prove that

{ln(eAocn)/ if A0n > 1; (27)EK, < Aon otherwise.

Since Elfn = _j<n EAj, and EA,_ < min(Ao,(e(r, + 1))-1), we must have

r,I(,, < Aox.t-(Hn- H_)/o_, (28)

for ali positive integers x < n. Since Iin - H_, < lo(n/x.), we may extend the domain of z to the reals and
obtain

EK. < mox + In(n/x)/o_, (29)

which yields the theorem when minimized at x = min(n, 1/(o_A0)). |

DISCLAIMER

- This report waspreparedas an accountof worksponsoredby an agencyof the United States
Governmer't. Neither the United States Governmentnor any agencythereof, nor anyof their
employees,makesany warranty,expressor implied,or assumesany legal liabilityor responsi-
bility for the accuracy,completeness,or usefulnessof any information,apparatus, product,or
processdisclosed,or representsthat its use wouldnot infringeprivatelyownedrights. Refer-
ence herein to any specificcorr,merciaiproduct, process,or servicebytrade name, trademark,
manufacturer, or otherwisedoes not necessarilyconstituteor imply its endorsement,recom-
mendation,or favoring by the United States Governmentor any agencythereof. The views
and opinionsof authors expressed herein do not necessarilystate or reflect those of the
UnitedStates Governmentor anyagencythereof.

-- 10

