nd image Management

Association for Information a

Centimeter

9 10 11 12 13 14 15 mm

8

2

1

25
22
18

]
0

L
Bas
Eon
.4

e

Il

=
——
e
==

I
i

x [l20

32
==

“
H2s

=
£

5as 28

l

=== i g,
.l

10

n—————
e e——
m————
———————
mane——
——e———

125

—
——

|
I
I

Inches

%, -
A P |
& ¥ ke
Y ¥ °
A\ PR A
A
\

MANUFACTURED TO AIIM STANDARDS
BY RPPLIED IMARGE. INC.

Adaptive Path Planning: Algorithm and Analysis*
(Extended Abstract)

Pang C. Chen = RPN
Sandia National Laboratories 26 i35
Albuquerque, NM 87185 e
v d i'l

Abstract

Path planning has to be fast to support real-time robot programming. Unfortunately, current plan-
ning techniques are still too slow to be effective, as they often require several minutes, if not hours of
computation. To alleviate this problem, we present a learning algorithm that uses past experience to
enhance future performance. The algorithm relies on an existing path planner to provide solutions to
difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support
faster planning. The algorithm is suitable for both stationary and incrementally-changing environments.
To analyze our algorithm, we use a previously developed stochastic model that quantifies experience
utility. Using this model, we characterize the situations in which the adaptive planner is useful, and
provide quantitative bounds to predict its behavior. The results are demonstrated with problems in
manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied
to task planning or other planning domains in which experience is useful.

1 Introduction

In robotics, path planning refers to finding a short, collision-free path from an initial robot configuration to
a desired configuration. It has to be fast to support real-time task-level robot programming. Accordingly,
it has received much attention (8, 1, 2, 7, 9, 11], and there are now a number of implemented path planners
based on a variety of approaches. Unfortunately, current planning techniques are still too slow to be effective,
as they often require several minutes, if not hours of computation.

To remedy this situation, we develop a learning algorithm that uses past experience to increase future
performance. More generally, the algorithm is actually a framework in which a slow but effective planner may
be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience.
The algorithm has been previously presented for stationary environments [4], and has been recently extended
with an on-demand experience repair strategy to cope with incrementally changing environments [5].

In this paper, we present the full adaptive algorithm and provide a deeper analysis for the fundamental
stationary case. The analysis is based on a stochastic model, which has also been used to prove the optimality
of the on-demand experience repair strategy [5]. We use the model in this work to characterize the situations
in which the learning algorithm is useful, and to what degree. We formalize the concept of improvability,
and derive the conditions under which a planner can be improved within the framework. We also derive
quantitative relationships between training effort, learning rate, planning cost, and planning capability.
Finally, we use these analytic performance estimation tools to explain some experimental results. Although
our presentation is in the context of motion planning, the algorithm and the analysis are extensible to more
general learning. In particular, they may be applied to higher-level task planning or other domains in which
experience is useful.

*This work has been performed at Sandia National Laboratories and supported by the U.S. Department of Energy under
Contract DE-AC04-76DP00789.

1 MASTER

So/

MISTRIBUTION OF THIS DOCUNMENT 1S UNLIMITED

2 Algorithm

Given an arbitrary work environment and an arbitrary task (u,w) of moving the robot from configuration
point u to w, we assume that there are initially two path planners available: Reach and Solve. The Reach
planner is required to be fast, symmetric, and only locally effective, i.e., it should have a good chance of
success if u and w are close to each other. The Solve planner, on the other hand, is required to be much
more globally effective than Reach, and hence can be very slow. It is the performance of this planner that
we wish to improve.

In our learning scheme, we rctain the global effectiveness of Solve by calling it whenever necessary, while
reducing the overall time cost by calling Reach whenever possible. To utilize Reach fruitfully, we maintain a
history of robot movements in the form of a connected graph, called the experience graph G = (V, F) with
vertices V' and edges £. Set V is a sparse collection of subgoals that the robot can attain and use. Set FE
indicates the subgoal connections that the robot can follow through the application of Reach. Ideally, G is
to be used by Reach to achicve most tasks without the help of Solve. We update G incrementally whenever
Reach is incapable of achirving a task through G. In this situation, Solve is called. If Solve is also incapable
of finding a solution, then we simply skip to the next task. Otherwise, the solution provided by Solve is
abstracted (or compressed) into a chain consisting of a short sequence of subgoals that Reach can use later to
achieve the same task. To learn from this experience, we simply generalize the use of the abstracted subgoals
by augmenting G with the chain.

2.1 Environmental Assumptions

To allow fruitful learning, we require that the environmental change be incremental, i.e., occasional and
localized. By occasional, we mean that the interval between workcell changes is large compared to the
amount of time spent on each task. By localized, we mean that the workcell change involves only a few
objects in a relatively small area of the workspace, and hence is not extensive. Both conditions are prevalent
in applications and have their intuitive implications: Occasional implies that old experience may be useful
for significant am~unt of time, and localized implies that old experience may have salvage value.

2.2 Formal Specification

Formally, the learning algorithm Adapt is shown in Figure 1. In the algorithm, u is the current robot
configuration, and w is the next goal configuration. To access G, we maintain two pointers: @ and w, each of
which points to a vertex of G that is known to be reachable with one call of Reach from u and w, respectively.
The algorithm is based on two planners: R and &, which are in turn based on Reach and Solve, respectively.
Both R and S have task (u,w) as arguments, and graph G and a heuristic vertex ordering function A as
parameters. For planner R, we use R(-) to denote the predicate that R is successful, and R[] to denote the
path planned when R succeeds, and similarly for S.

Planner R searches for ways to achieve task (u, w) using only Reach and G as guideline. The algorithm
for R(-) is:

1. Search the vertices of G in order according to heuristic h, and find a vertex v satisfying Reach(v, w).
2. If v exists, then set @ — v, and return success.
3. Else return failure.

To generate R[:], we require the success of 7(-), which guarantees that there is a connected sequence of
vertices I' in G from 'y = & to 'y = w for some k > 1. Once 7 (-) succeeds, a simple solution for R[-] would
be the concatenation of Reach[I';,T;,] for j going from 0 tc k. However, we can also improve the quality
of this solution locally as we shall see in Subsection 2.5.

Planner S sets w for the future augmentation of G. The algorithm for §(-) is:

1. Set w to be the best vertex in G according to h.
2. Return(Solve(d, w)).

Algorithm Adapt(R,S;7T)
u — current position; v «— u; G — ({v},0);
do forever
w «— goal();
if (not R(u,w;G, h)) then
if (not S(u,w; G, h)) then continue;
p — Abstract(S[u, w; G, h]);
G — Augment(G, p);
w « last vertex of p;
endif
if T (u,w; G, h) then Execute(R[u, w; G, h]); u — w;
enddo
end.

Figure 1: A speedup learning algorithm for path planning in incrementally-
changing environment

To generate S[-] once S(-) returns success, simply output Solve[tw, w].

2.3 Object-Attached Experience Abstraction

To abstract a solution path from v to w with v € G, we assume that there is an efficient Abstract(-) function
available that returns a short chain from v to v = w, traversable by Reach. We assume that the size of
the chains abstracted from solutions of S are all boundable by a constant. In practice, this is a reasonable
assumption, since a typical task consists of only 3 smooth motions: departure, traversal, and approach.

To increase the flexibility of the subgoals, we require the vertices returned by Abstract(-) to be relaiive
robot positions associated with nearby objects. That is, we remember each of them as an offset from some
nearby object serving as a landmark. Under this object-attached experience abstraction scheme, we can
adjust to any minor environmental change without expensive experience repair.

2.4 On-Demand Experience Repair

Of course, if the environment changes significantly, the validity of G will deteriorate. How much deterioration
will ¢ suffer depends on how drastically the environment changes. If the change is major and extensive,
then it may be better to start over with no experience (G reinitialized), rather than to work with the old
impaired experience. In the more interesting case where the change may be major (e.g., introducing a new
object) but not extensive (e.g., the rest of the workcell is undisturbed), the right choice is not as clear. Thus,
we introduce an on-demand repair scheme to retain those experiences that remain valid and useful.

In this scheme, we plan as if G is connected, until R(-) succeeds and we actually need to produce a path.
Then, to generate R[-], we require the success of T(-) to provide a connected sequence from @ tow. As T(:)
searches for and verifies such a sequence, it may come across invalid edges, which it simply deletes. If & is
already connected to ¥ in G, then no repair need take place. If, however, @ and ¥ do not belong to the same
(connected) component due to the deterioration of G, then Solve is called to reestablish their connectivity.
It is of course possible that connectivity cannot be reestablished due to the environmental change. In this
case, the portion of G connected to w is deemed useless, and hence discarded. The procedure for T(-) is:

1. While there exists a sequence [of vertices in G connecting @ = I'y to = T for some k > 1 do

(a) If Reach(Iy, Tiy1) forall 1 <2 < k then return success;
(b) Else remove edge (T, Tig1) with smallest i such that —~Reach(T;, T'i.i1).

2. If Solve(i, w) then augment G with Abstract(Solve[i, 1]); return success;

3. Else remove the (connected) component of & from G, and return failure.

2.5 Solution Quality and Redundancy

So far we have focused on task solvability but not solution quality. If solution quality is not important, then
in R[], we can simply produce the solution of going through I" with Reach. In this situation, the experience
graph will always be a tree. However, if solution quality is important, then it may be worthwhile to locally
optimize I' by “cutting corners” whenever possible.

3 Analysis

To analyze our algorithm in more detail, we have developed an analytic model that is simple enough for
probabilistic treatment, yet general enough to capture the key aspects of the learning process. This model
has been used to analyze the algorithm under incrementally-changing environments, and in particular, the
optimality of the on-demand experience repair strategy [5]. The development of the model is in the same
spirit as that in developing search tree models for analyzing heuristics [12]. Using this model, we now further
the analysis of our algorithm under stationary environments. (For this extended abstract, the proofs are in
the Appendix.)

As in the framework of PAC-learning [10], we assume that the goals are drawn randomly and indepen-
dently from a distribution. We do not require Solve to be complete; we do require that it have a success
probability o in solving a random task. We make the simplistic assumption that only Solve, Reach, and
Abstract have costs, each being a constant. To normalize, let 1, r, and ¢ be the respective costs of Solve,
Reach, and Abstract. (Both r and ¢ are typically <« 1.) Let G, be the experience graph G after Adapt has
been trained with n tasks. We are interested in both the speedup that Adapt has over the plain iterations of
Solve, and the capability of Adapt as it increases with training. Thus, we analyze the relationship between
the following random variables:

Ap | The probability that Adapt will need to call Solve in solving task n + 1, i.e., the probability
that task n + 1 will not be R-reachable via G,,.

K. | The number of times that Solve has been called after Adapt has been trained with n tasks.
L, | The probability that a random task not R-reachable via G, will now be R-reachable
via Gp41-

As pointed out in (4], the learning rate L, and the expected learning rate E(L, | A,) are key quantities
in determining the success of Adapt. To continue the analysis, we model the experience graph G, by the
following random tree T, with the notion of utility u defined.

Definition 1 Let || X|| for any graph X be the number of edges in X. Let Ty be a one-vertex tree consisting
of only the root vo (home position). For n > 0, T, is a random iree obtained from T, _, by extending from
a uniformly chosen vertex of Ty a branch p, consisting of an alternating sequence of edges and vertices.
The length (number of edges) of pn is random variable ||p|| > 1 that is independent of n.

Under model M, the ezperience graph of Adapt is G, = T,,. The utility of any subgraph of T,, is the
probability that the particular subgraph can be used lo solve the nezt random task. For each non-root vertez v
of T, utility u(v) is an independent, identically distribuled, nonnegative random variable with mean ji.

Thus, each branch p in T, corresponds to the abstracted solution of a call to Solve. M is designed to
model Adapt without local optimization (Subsection 2.5), since the experience graph is always a tree.

We begin our analysis with the following results that express the planning costs of Adapt in terms of its
failure probability A,,.

Lemma 1 Suppose that Adapt has accrued N vertices during its training. Then on average under M and
withoul calling Solve again, the probabilily that Adapt will succeed in solving the next random task is 1 — Qn

Ik

where gt
QN = (1 - ﬁ)Nv (1)
and the cost of Adapt in solving this task is (1 — Qn)r/f.

Theorem 2 Suppose that Adapt has been trained with n tasks. Then under M, if Solve is not called, the
average cost E,, of Adapt (o solve the nezt task is

En= %(1 — EAn). (2)
Theorem 3 Under M, the average cumulative cost F,, of Adapt after training with n tasks ts
Fo=rm/i+ (1 +0c—r/p)EK,, (3)
or equivalently,
AFy & Fopr = Fo=r/i+(1+0c—r/BEA,. (4)

The relationship between training effort n, experience utility 4, and failure probability A, is derived in
the following via the learning rate L.

Lemma 4 Suppose that Adapt has an czpected learning rate of E(Ly, | An) = aApn for some positive a < 1.
Then the average R-failure probability of Adapt after n > 0 tasks of training has an upper bound of

Ed, < Ef?{lIT) (5)

foeralln > 0.

With the lemma above, we can show that the reliance of Adapt on Solve is at most inversely proportional
to the number of training tasks.

Theorem 5 Under M,

1
(n+1)EA, < TEx)’ (6)
where
Eu(p) € EQ1 - p)le! (7)

denotes the average utility of a branch.

Using the following definition of improvability, we determine the conditions under which Solve is improv-
able and the amount of training required.

Definition 2 Let A be a learning algorithm designed to tmprove A'. We say that A can improve A’ with
failure probability A iff A can solve the same task as A’ with failure probability at most A, while costing
less on average. In particular, we say that A can effectively improve A’ iff A can improve A’ with failure
probability 0.

Theorem 6 Under M, Adapt can effectively improve Solve with sufficient training iff r < ji. An upper
bound on npyin, the minimum number of training tasks required, is

o < 537 (1= T07) @

If r > [, then Adapt can still improve Solve with some fatlure probability EA,, > 1 — ji/r, provided that
Adapt is not overtrained. An upper bound on npax, the mazimum number of training tasks that Adapt

should receive, ts
1 1
-1
e < o7 (727 ©)

Figure 2: A planar 2-link robot environment

Corollary 7 Suppose tha! Solve is not a complete planner, i.e., 0 < 1. Then under M, Adapt can improve
Solve both cost-wise and capability-wise iff there is an n such that ifr > 1 ~ EA, > o. In this case, both
improvemenlis can be achieved with the number of training tasks being

1
n= | ——————1. 10
r=n) 10
Finally, we have the following asymptotic bound on the performance of Adapt during training.

Theorem 8 Under M, the ratio of the average cost of Adapt to that of Solve is bounded asymptotically by
r/ji as the number of training tasks approaches infinity. More globally, the behavior is

Fo _r r In(eAoan)/(an) if Agan > 1;
n S 71 + (1 toe- ﬁ) { Ao otherwise, (1)
where a« = oEu(p). Accordingly, the mazimum value that the ratio can attain al any n is al most
Fo/n<r/i+ (14 0c—r/p)As. (12)

4 Discussion

To gain more insight into our algorithm, we explain some experimental results with the theory developed
in the pre/ious section. Figure 2 shows a stationary 2-link planar robot environment in which Adapt is
applied. In this experiment, there are 5 polygonal obstacles in the fixed workceell, and a goal set consisting of
9 preselected goal positions. Starting at home position 0, the robot is to go through a sequence of 100 goals
randomly selected from the goal set. The result of this experiment is shown in Figure 3. In the left frame,
the ratio of the cumulative planning cost of Adapt to that of Solve only is plotted against the task number n.
The planning costs are averaged over 100 runs and are measured by the number of robot-to-obstacle distance
evaluations, which is the dominating factor in the computing cost of each planner. In the right frame, the
ratio is plotted against (In(n+1))/(n+ 1) to show their asymptotic linear relationship, hinted by Theorem 8.

The experiment shows that Adapt is able to learn and speed up its performance relative Solve from
150% slower (ratio = 2.5) to (by extrapolation) 62% faster (ratio = 0.38). If we believe that the upper
bound provided by Theorem 8 is also an asymptotic lower bound, then the plot implies that r/a = 0.38.
From other empirical observation, we estimate that r = 0.1, ¢ =1, o = 1, and Ag = 0.9. Hence, i = 0.26.
Since the branches are of lengths = 2, we also estimate Eu(p) = 0.45. To see how consistent these numbers
are, we estimate the number of training tasks required by Adapt to have its cumulative cost first become less
than that of Solve. Using the formuia in Theorem 8, we have o = 0.45 and

In(edgan) . 1+oc—r/it
eApan eAo(l —r/p)

= 0.156. (13)

200" 201

-
i
. e
"
n
Y
.

cost ratio
4
cost ratio
.
.

0.5

I JPUE - R " 3 ¥ 53
task number In (task number+1)/(task number + 1)

Figure 3: Time improvement of Adapt over Solve

Beren ey rete pretannenteggen
‘80,3- . O e irereensone)
[N
= I A
:02_ L L
8 .
o .
G.1}
1 1 - L
20 40 60 80
task number

Figure 4: Time improvement of Adapt on a 3-d cask problem.

giving us eApan = 19, or n = 17.2, which is very close to the observed n = 17 in the plot.

We use our theory to explain another experiment performed previously to simulate a radiation survey
environment {4, 6]. In this experiment, Adapt is applied on a 6-dof gantry robot working in a world with
4 obstacles: a (16 + 2)-sided polyhedral approximation of a cylindrical cask, two cask stands, and a floor. To
make the problem more difficult, the joint limits of the robot are restricted so that there is not much room
to maneuver. ‘The goal positions are chosen randomly, and correspond to the robot end effector touching
the cask surface in a prescribed orientation. The problem is sufficiently difficult that the original path
planner, Solve, fails to accomplish 7 tasks out of a sequence of 100 random goals. In contrast, Adapt is able
to accomplish all but 1 task during the exercise, thereby increasing the capability of the original planner.
Moreover, Adapt calls Solve only 5 times, and the final graph ‘=arned by Adapt contains only 12 vertices.
Figure 4 shows the actual time improvement. The ratio of tne cumulative effort expended by Adapt to
that expended by Solve only is plotted. The effort is measured by the number of robot-to-obstacie distance
evaluations, which dominates the computational cost of each planner. The 5 large points indicate Adapt’s
calling of Solve, and the single white point indicates the only failure of Adapt. Initially, Adapt is able to plan
without Solve because the tasks are relatively easy. Later, Adapt starts to learn as indicated by the jumps of
the cost ratio. When the task number reaches 50, Adapt has basically “learned” the environment as shown
by the gradual decline of the cost ratio.

Using the data, we estimate o = 93% because of the 7 failures; & = 1 — 0.01'/1! = 34% because the 11
non-root vertices are able to cover 100 random tasks; Eu(p) = 1 — 0.01!/% = 80% because only 5 branches
are involved. Using Corollary 7, we then estimate n = 1/(0.93-0.07-0.8) = 19.2 to be the number of training
tasks n requ -ed for Adapt to succeed in improving both the speed and the capability of Solve. This estimate
means that <each is already very powerful, and that roughly only 2 calls (#17 and #18 in the plot) to Solve
are necessary for Adapt to catch up with Solve in task solviig capability.

A}

With Theorem 8, we can also estimate the limiting cost ratio. We estimate Ay = 1/17 = 6% because
Adapt first failed at task #17. We also estimate ¢ = 0.1 from empirical observation. Again, if we believe
that the upper bound provided in the theorem is also a lower bound, then the maximum cost ratio is

r/i+ (14 0.1 - r/A)0.06 = 0.32 (14)

from the plot, which implies that r/ji = 0.27, which is incidentally very close to the cost ratio at the end of
task #100. Consequently, we do not anticipate Adapt to do much better with more training.

5 Conclusion

We have presented a learning algorithm that can improve path planning. The algorithm adapts to its working
environment by maintaining an experience graph with vertices corresponding to useful robot configurations.
The algorithm is suitable for both stationary and incrementally-changing environments. It can both reduce
time cost and increase task solving capability of existing planners. To gain insight into this algorithm for the
stationary case, we have presented some theorctical analysis based on a simple, yet gencral stochastic model
that quantifies experience utility. Using this model, we characterize the situations in which the adaptive
planner is useful, and provide quantitative bounds to predict its behavior. The results are used to explain
somme experimental results in manipulator planning. Our algorithm and analysis arc sufficiently general that
they may also be applied to other planning domains where experience is useful.

References

[1] Barraquand, J. and Latombe, J., “A Monte-Carlo algorithm for path planning with many degrees of
freedom,” Proc. of IEEE Int. Conf. on Robotics and Automation, 1990, pp. 1712-1717.

[2] Chen, P.C., and Hwang, Y.K., “SANDROS: A Motion Planner with Performance Proportional to Task
Difficulty,” Proc. of [EEE Int. Conf. on Robolics and Automation, 1992.

[3] Chen, P.C., “Effective Path Planning through Task Restriction,” Sandia Report SAND91-1964, 1992.

[4] Chen, P.C., “Improving Path Planning with Learning,” Machine Learning: Proc. of the Ninth Int. Conf.,
1992.

[6] Chen, P.C., “Adaptive Path Planning for Incrementally-Changing Environments,” submitted to Tenth
Int. Conf. on Machine Learning, 1993.

[6] Harrigan, R.W., Sanders, T.L., “A Robotic System to Conduct Radiation and Contamination Surveys
on Nuclear Waste Transport Casks,” Sandia Report SANDg89-0017, 1990.

[7) Kondo, K., “Motion Planning with Six Degrees of Freedom by Multistrategic Bidirectional Heuristic
Free-Space Enumeration”, IEEE Tran. on Robotics and Automation, vol. 7, no. 3, pp. 267-277, June
1991.

[8] Latombe, J., Robot Motion Planning, Kluwer Academic Publishers, 1991.

[9] Lozano-Pérez, T., “A Simple Motion-Planning Algorithm for General Robot Manipulators,” IEEE J. of
Robotics and Automation, vol. RA-3, no. 3, pp. 224-238, June 1987.

[10] Natarajan, B.K., Machine Learning: A Theoretical Approach, Morgan Kaufmann, 1991.

[11] Paden, B., Mees, A. and Fisher, M., “Path Planning Using a Jacobian-Based Frcespace Generation
Algorithm,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1732-1737, 1989.

[12] Pearl, 3., Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.

A Proofs

Proof (Lemma 1) The first part of the lemma is obvious since the average probability that all of the
learned experience will not be applicable in solving the next task is

N
EH(l ~ p(vi)) = Qw, (15)

where v; denotes the i*® node of G. The second part of the lemma follows immediately from the fact that
the required cost is rz'.!i—ﬁl Q; with Q; being the average probability that the applicability of node v;;1 will
be queried through Reach. |

Proof (Theorem 2) Fix N, the number of vertices in G. By Lemma 1, the average cost of Adapt in solving
task n + 1 without calling Solve is r(1 — Qn)/iz. Averaging over all possibilities for N yields the desired
result since

EAn = EE(A, | N) = EQn. (16)
'

Proof (Theorem 3) The two equations are equivalent since EK,, = 3~ EA; (4, Theorem 1]. The second
equation follows from the fact that in addition to E,, a cost of (1 + oc)EA, will also be required to to call
Solve with probability EA,, and Abstract with probability cEA,,. |

Proof (Lemma 4) It is known [4, Theorem 8] that for n > 0,

EA, < (a(n+ 1)) !exp (_(l)_@?:n_l_n_rﬁ) , 17)

which implies the desired upper bound for n > 2. Forn = 0, EAg < 1 < 1/a. Forn = 1, EA; =
EAo(1 — aAp) has maximuin value 1/(4a), which is less tizan the desired upper bound of 1/(2a). 1

Proof (Theorem 5) In solviug task n + 1, Adapt will need to call Solve with probability A,. In this case,
a branch p will be acquired with probability o. Hence, with probability Ano, the failure probability A4

will be A, I_[!J___‘fll(l — u(v;)), where v; is the i*h vertex of p. Thus, the expected learning rate is

el

E(Ln | An) = Anc(1-EJ]1 - p(v)) (18)
i=1

Il
= Ano(1—EE(JJ(1 = u(v)) | lll)) (19)

i=1
= Ano(l - E(1 —)l (20)
= AndEu(p). (21)
The theorem now follows from the previous lemma with o = o Epu(p). 1

Proof (Theorem 6) For Adapt to effectively improve Solve, we must have AF,, < 1, which implies that
EAn < (1 =r/B)/(1 +0c —r/i2) (22)
according to Theorem 3. To attain this bound, it suffices to have

(n+ 1)oEu(p) > 1+ oc—r/p)/(1 —r/p), (23)

i

which yields the upper bound on ngyy.

. Ifr> i, then Adapt can still improve Solve by not calling Solve after a certain amount of training. For
there to be improvement, we must have E,, < 1, which implies that

EA, > 1— j/r. (24)

To violate this bound through overtraining, it suffices to have
(n+ 1)oEu(p) 2 1/(1 — a/r), (25)
which yields the upper bound on nyax. |
Proof (Corollary 7) For Adapt to become more capable than Solve, we must have 1 — EA, > 0. On the

cjther hand, Adapt can only improve Solve with success probability 1 — EA,, < ji/r. Hence, we must have
i/r > 1—-EA, > o for some n. Conversely, if such n exists, then to achieve 4, < 1 — o, it suffices to have

1
P ICES) A (26)

which implies the desired result. 1

Proof (Theorem 8) From Theorem 3, it suffices to prove that

In(eAgan)/a if Agan > 1;
EK, < 0 ’
= { Agn otherwise. (27)
Since EK, = 3, ¢, EAj, and EA, < min(4o, (a(n + 1))~!), we must have
EK, < Aoz -+ (Hn — H,)/a, (28)

f(i)rta.ll positive integers z < n. Since H, - H; < In(n/z), we may extend the domain of z to the reals and
obtain

EKn < Aoz + In(n/z)/a, (29)
which yields the theorem when minimized at = = min(n, 1/(aAp)). 1
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

10

