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Abstract. T h i s  paper introduces a i -d imens ional  ne t -  
work of curves  t e r m e d  the  Generalized Voronoi Graph ( G V G )  
and i t s  ex tens ion ,  the  Hierarchical Generalized Voronoi Graph 
( H G V G ) ,  which  can  be used as  a basis fo,r a roadmap or 
retract-like s t r u d u r e .  T h e  GVG and H G V G  provide a basis 
f o r  sensor  based p a t h  planming in a n  u n k n o w n  stat ic  environ,- 
merit .  I n  t h h  paper, t h e  GVG and H G V G  are defined and  
some of t h e i r  properties are exploited t o  show the ir  ut i l i ty  f o r  
m o t i o n  plann,ing. A companion  paper describes h o w  to  use the  
G V G  and H G V G  for the  purposes of sensor  based planning. 

1 Introduction 
S e n s o r  Based  Planning  incorporates sensor information, re- 

flecting the current state of the environment: into a robot’s 
plaiiiiing process, as opposed to Classical Planning ,  which as- 
sumes full knowledge of the world’s geometry prior to plan- 
ning. This paper and its companion [7] introduce a sensor 
based motion planning scheme that is useful for two closely 
related motion planning problems: (1) to determine the path 
which connects two points in a robot’s frce space, or deter- 
mine such a path does not exist; and (2) to build a concise 
“map” which encodes the important topological information 
about the robot’s free space. The method, which is based 
on “retract-like” structures termed the Generalized Vorono( 
Graph (GVG), and its extension, the Hierarchical General- 
ised Voronoi  Graph (HGVG), requires only local sensor in- 
formation to construct the motion plan. That is, no a priori 
knowledge of the robot’s environment, is assumed. This paper 
considers only point or spherical robots. However, we believe 
that these techniques can be extended to more general cases. 

The primary goal of this first paper is to  introduce the 
GVG and HGVG and their properties. While our intention 
is to use the GVG and HGVG as a basis for sensor based 
planning, they can also be used for classical motion planning 
when full knowledge of the world’s geometry is available. The 
conipanion paper describes an incremental technique for con- 
structing the GVG from local sensor data. Further, the com- 
panion paper provides experimental results which validate the 
method. 

2 Relation to  Prior Work 
Sensor based planning has received increased attention, as 

it is a requirement for realistic deployment of autonomous 
robots in unstructured environments. For a review of many 
sensor-based planning t,echniques, see [16]. Unfortunately, 
current sensor based planning methods are limited because: 
(1) many are based on heuristic algorithms. and it is therefore 
impossible to  prove if they will work in all possible environ- 
ments; or (2) proof of convergence is limited to the case of 
2-dimensional environments (for example, Lumelsky’s “bug” 
algorithm [lo]). The goal of this work is to develop provably 
correct, motion planning schemes for workspace dimensioris 
greater than two, and which can be robustly implemented 
with realistic sensors. 

Our approach is t,o adapt the structure of a rigorous inotion 

planning scheme to a sensor based implementation. There are 
t h e e  classes of complete motion planning schemes: cellular 
dmomposition methods, potential field approaches, and re- 
tract or roadmap methods [9]. Roadmaps or retract-like struc- 
tures capture the global topological properties of the robot’s 
frce space and have the following important properties: acces- 
sibility, departability and connect iv i ty .  These properties imply 
that the planner can construct a path between any two points 
in a connected component of the robot’s free space by first 
finding a path onto the roadmap (accessibility), traversing the 
roadmap to the vicinity of the goal (connectivity), and then 
constructing a path from the roadmap to the goal (departa- 
bility). 

The Generalized Voronoi Diagram (GVD) (i.e., a Voronoi 
Diagram for the case in which the sites are sets, and not 
points) was first used for motion planning in [14]. Active 
research in applying Voronoi Diagrams to motion planning 
began with [ll], which considered motion planning for a disk 
in the plane. However, the method in [11] requires full knowl- 
edge of the world’s geometry prior to the planning event; and 
its retract methodology may not extend to non-planar prob- 
lems. In 1121, an incremental approach to create a Voronoi 
Diagram-like structure, which is limited to the case of a plane, 
was introduced. In the companion paper, we investigate an 
incremental algorithin to construct the GVG aiid HGVG us- 
ing only local sensor data. Further, our method can be used 
for non-pla.nar problems. 

To our knowledge, the first complete sensor based adap- 
tion of a roadmap motion planning scheme for workspace di- 
mension greater than two, was introduced by Rimon [13]; it 
was Rimon’s method which has motivated our work. Rimon’s 
approach is a seiisor based extension of Canny and Lin’s Op- 
portunistic Path Planner (OPP) [4]. From a practical point of 
view, there are two detractions to Rimon’s method. First, to 
construct the roadmap, the robot must contain “interesting 
critical point” a.nd “iniriimum passage” sensors, whose imple- 
mentation is not well described. Second, a robust and detailed 
procedure for constructing the roadmap fragmenh from sen- 
sor data is not presented. We choose instead to base our 
sensor based planning scheme on a different structure, which 
we term the Generalized Voronoi Graph (GVG) and the Hier- 
archical Generalized Voronoi Graph (HGVG). We have found 
these structures to he easier to construct using realistic sen- 
sors. Second, we are able to give a rigoroils procedure for 
robustly constructing th.e graph components from Sensor data. 

The GVG introduced in this paper appears to  be new, 
though a GVG-like strncture for SE(3) is described in [3]. In 
prior work (e.g., [a ] )  the Voronoi Graph has only been defined 
for point sites, whereas this work extends the Voronoi Graph 
concept to the case of set sites. In dimensions greater than 
2 .  the GVG is not connected. The other contribution of this 
paper is a scheme for connecting the GVG in tht:sc cases. An- 
other important contribution of this work is thc definition of 
the GVD and GVG in terms of distance fiinctions. By using 
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this alternative definition, methods from differential topology 
and nonsmooth analysis can be applied to the analysis of the 
GVD and the GVG. Furthermore, it can be shown that sen- 
sors readily provide distance information, thus making our 
definition of the GVD, GVG and HGVG amenable to sensor 
based implementation. 

3 Distance Functions 
A function which encodes the distance between the robot 

and nearby obstacles is key to our definitions. This section 
defines two distance functions which are used in the sequel. A 
more complete discussion of these functions and their proper- 
ties can be found in [5]. We assume a point robot operating in 
a subset, W ,  of an m-dimensional Euclidean space. W is pop- 
ulated by obstacles C1,. . * , Cn which are convex sets. Non- 
convex obstacles are modeled as the union of convex shapes. 
It is assumed that the boundary of W is a collection of convex 
sets, which are members of the obstacle set {C;}. 
DEFINITION 3.1 Single Object Distance Funct ion.  
tance between a point, x and a convex set C; is 

The dis- 

where 1 1  * 1 1  is the 2-norm in R”. In [8] it is shown that the 
gradient of d;(x) is 

Thus, V d i ( x )  is a unit vector in the direction from CO to x, 
where CO is the nearest point to  x in C,. For convex sets, the 
closest point is always unique. A n  impor t an t  characteris- 
t i c  of d ; ( z )  and Vd;(z) is that  t h e y  can b e  computed  
f rom sensor data. 

4 The Generalized Voronoi Graph 
This section defines the Generalized Voronoi Diagram and 

the Generalized Voronoi Graph via the above distance func- 
tions. The basic building block of the GVD and GVG is the 
set of points equidistant to two sets Ci and Cj, which we term 
the Two-Equ id i s tan t  Surface,  S,j.  

s;j = {z E R” : d ; ( z )  - d 3 ( z )  = O} (3) 
Of particular interest is the subset of Sij termed the Two- 
Equidis tant  Surject ive  Surface,  sS;j: 

ss,, = (2 E s;j : Vdi(rc) # Vdj(2)). (4) 
These are the set of points equidistant to two objects such 
that Vd; # Vdj, i.e., the function (d, - d j ) ( z )  is surjective. 
This definition is necessary to deal with non-convex sets that 
are defined as the finite union of convex sets. If W is solely 
populated with disjoint convex sets, then S S i j  = S i3 ,  V i , j .  

The Two-Equ id i s tan t  Face, FiJ, is the set of points equidis- 
tant to obstacles C; and Cj, such that each point x E SS;, is 
closer to C; and Cj than any other obstacle. 

Yjj = {z E ss;, : d ; ( z )  5 d I , ( z )  Vb # i , j }  (5) 
A Two-Equidistant Face is also termed a Generalized Voronoi  
Face in keeping with the conventions of the Voronoi Diagram 
literature. The relationship between Eqs.3, 4, and 5 is shown 
in Fig. 1. The Two-Vorono i  S e t ,  p,  is the union of all Two- 
Equidistant Faces. 

n-1 n 

z=1 3 = i + l  

Fig. 1. Solid lines = YJkr Dashed lines SSij, Dotted line, &I,  

Since 9 is the set of points equidistant to  two or more ob- 
stacles, it can be shown that is the Generalized Voronoi 
Diagram. 

To define the GVG, we continue to define lower dimensional 
subsets of W .  The Three-Equidis tant  Face, ! T ; j k ,  is the set of 
points equidistant to C;,C, and CI, such that each point is 
closer to C,, Cy, and CI, than any other object. Similarly, the 
Three- Voronoi  S e t  is the union of all the Three-Equidistant 
Faces. 

Note, SS,,r and S t J k  can be defined in a similar manner such 
that !T,fiJk C ss,,~, C S t j k .  Continuing in this vein, after 
taking k - 2 intersections, one can define a k-Equadastant 
Face, Ftlz2 %, which is the set of points equidistant to ob- 
jects C,, , C,, , . . . C,, , such that each point is closer to objects 
Ctl ,  C,, , . . . C,, than any other object. The k-Voronoz S e t  is 
simply the union of k-Equidistant Faces. 

i l = l  i ? = t 1 + 1  i h = i k - l + l  

Again, SS i l ; z . . . z k  and Siliz,.,;k can be defined in a similar man- 
ner where Yili2, , , ik c s&,; z...ilr C &,; z . . . ; k .  Furthermore, it 
can be shown that Ft21i2,,.ik+l C t E F i l ; z , , . i k .  

In m. dimensions, the Generalized Voronoi  Edge and Gener -  
alized Voronoi  Ver t e z  are respectively an m-Equidistant Face, 
FLl . . .  i, and (m f 1)-Equidistant Face, Fzl...lm+l. General- 
ized Voronoi Vertices are sometimes called mee t  poin ts  because 
that is where Generalized Voronoi Edges “meet.” It will be 
shown that the Generalized Voronoi Edge is 1-dimensional, 
while the Generalized Voronoi Vertex i s  a point where Gen- 
eralized Voronoi Edges meet. Using these definitions, we can 
define the Generalized Voronoi Graph. 

DEFINITION 4.1 T h e  Generalized Voronoi  Gra.ph (GVG) is 
defined to be the collection of all of the Generalized Voronoi 
Edges, and Geiieralized Voronoi Vertices of a bounded space. 

GVG = (Y,V+’) (9) 
The GVG’s edges are the set of points equidistant to m ob- 
jects, such that each point is closer to m objects than any 
other object. A n  impor t an t  characterist ic of the GVG 
is that it is defined in  terms of the d is tance  functions,  
which c a n  b e  readily computed  f rom sensor data, For 
subsequent analysis, it is useful to define the following. 
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OCk 
Fig. 2. (L) Nongeneric arrangement (R) Small perturbation 

DEFINITION 4.2 The  Generalized Vorormi Region, Fi, is the 
set of points closer to one particular object than any other 
object. 

Fi = {z E R" : d ; ( z )  5 d j ( Z )  v j  # i} (10) 
It can be shown that the F; is generalized star shaped, i.e., 
Vz E 3%, there is a closest point ci E Ci to z such that the line 
zci is fully contained in Ti. That is, there is a straight line in 
free space between any point in !Fi and some point on C;. 
- 

5 Basic Properties of the GVG 
To determine the generic dimension of the edges, we will 

use the pre-image Theorem below to show that the inter- 
section of a b-Equidistant Face and a 2-Equidistant Face is 
(IC - 1)-dimensional. In order to properly invoke the Pre- 
image Theorem, we must make the following transversality 
assumption. 

ASSUMPTION 5.1 (The Equidistant Surface Transversality 
Assumption): We assume that  equidistant surfaces intersect  
transversally. Tha t  is ,  Si l . . .;kjl fi S i l . , , i k j l  with respect to  
S i l . , , i b  z f  and only if jl # j 2 .  

In the case that m = 2 and the obstacles are points, 
this assumption is equivalent to  the "no four points are co- 
circular" assuniption which is often made in the Voronoi 
Graph literature. Assumption 5.1 is the generalization of 
this statement, and shows more rigorously why such assump- 
tions arise. This transversality assumption can also be inter- 
preted as an assumption on the stability of the equidistant 
surface intersection geometry. In the left diagram of Fig. 2, 

is tangent to  the 4 obstacles (a non-generic case). After a 
slight perturbation of the obstacles, the Equidistant. Surfaces 
no longer coincide (Fig 2). Since S i j k  and Sijr are points in 
this example, they intersect transversally only if they do not 
intersect at  all. The following is a corollary to  Assumption 
5.1, and its proof is omitted. 

COROLLARY 5.2 ( T h e  Equidis tant  Surface Uniqueness  Re-  
sult): Si l . . . i k j l  # Si l . . . i k j 2  iff jl # j 2 .  

To show that the edges are 1-dimensional, we invoke the 
Pre-image Theorem [I] m - 1 times on the difference of two 
distance functions. We first introduce the following two lem- 
mas. 

LEMMA 5.3 9, Fij, and SSij have co-dimension 1 in R". 
Proof First, note that the function (d i  - + ) ( E )  is smooth 
[8] by the obstacle convexity assumption. Recall that the 2- 
Equidistant Surjective Surface, SSij, is a subset of Si, such 
that V d i ( z )  # Vdj(z) Va E S i , .  This implies that V(di - 
d j ) ( z )  is surjective; thus 0 is a regular value of (di - d j )  on 
S&j. By the Pre-image Theorem, since 0 is a regular value 

s . .  Ijk - - s .  , k l  = S ; k l  = S;,l because there exists a circle which 

ofthe smooth function (d,  .- dj)(z), S S i j  is a inanifold having 
co-dimension 1 in R". Since !T;j is a subset of SS;, of the 
same dimension, it too is a co-dimension one set. 9 is a co- 
dimension l set (not necessarily a manifold) because it is the 
finite union of co-dimension 1 sets. v 

LEMMA 5.4 F3, F j j k  and S S j j k  each have co-dimension 2 in 
R'". 
Proof S&,k can also be defined as S&,b = {x E SS,, : &(z) - 
d h ( z )  = 0). By Corollary 5.2, SSi, # SSik U i # k. 
Therefore, 0 is a regular value of (d;  - d k ) ( z )  on SS;,. By 
the Pre-image Theorem, SSijk is co-dimension 1 in SSij,  and 
thus co-dimension 2 in 1%". F;,k is a subset of SSi,k and thus 
is co-dimension 2 in R". Since F3 is the finite union of co- 

v 
By induction, one can show that t,he set of points equidistant 
to  b obstacles has CO-diimension 1 in the set of points equidis- 
tant to IC -' 1 objects, and therefore this set has co-dimension 
t - 1 in R". Hence, SS" is 1-dimensional in R"" and since 
F" c SS", the GVG edges are 1-dimensional. By a simi- 
lar argument, the vertices, Fm+l, are zero-dimensional. This 
proves the following proposition. 

PROPQSITIQN 5.5 The Generalized Voronoi Edges of the 
GVG, F", are 1-dimensional in R", and tho Generalized 
Voronoi Vertices of the GVG, P+l, are points. 

Another key feature of the GVG is that it provides a 
concise representation of the robot's free space. 

dimension 2 manifolds, it has co-dimension 2 in Rm. 

6 Accessibility/Departability 
Accessibility is the property that a path can be constructed 

from any point in the free space to the Generalized Voronoi 
Graph. In this section, we give a very simple argument that 
a path exists from any point in the free-space to  a GVG edge. 

PROPOSITION 6.1 The GVG has the property of accessibility. 
Proof Let Zk be apoint, on a k-Equidistant Face, Fil,,,.,ik, and 
z k + l  be a point on the (k+l)-Equidistant Face, F;lr...,ik+l, 
which is on the boundary of Fil,,,.,ik. In an m-dimensional 
world, for 2 5 IC _< m,! there always exists a a collision-free 
paths constrained to a k-Equidistant Face between Z k  and 
xk+l because for IC 2 2, k-Equidistant Faces are a subset of 
the free space. Therefore, by re-invoking the above statement, 
there exists a collision-free path from any k-Equidistant Face 
to the GVG. 

It can be shown [B], 1111 that there always exists a collision- 
free path from any point in the free space to a 2-Equidistant 
Face. Therefore, from any arbitrary point in the free space, 

Departabili ty can be shown to be accessibility, but in re- 
However, in th.e companion paper, we introduce an 

there exists a collision-free path to the GVG. 

verse. 
algorithm for the departing process. 

7 Connectivity of the GVG 
The Generalized Voronoi Regions and Equidistant Faces 

may be viewed as a cellular decomposition of W into IC- 
diiiienaional sets, where k = 0 , .  . . , m. If each k-dimcnsional 
cell is homeomorphic to  a k-dimensional disk, then the 1- 
dimensional cells of such a decomposition form a deformation 
retract or retract-like structure of W [15]. Equivalently, if the 
boundary of each b-dimensional closed cell is connected, then 
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Fig. 3. An example of a disconnected GVG 

the resulting one dimensional cells form a retract-like struc- 
ture of W [6] .  One of the appealing properties of a retract-like 
structure is its connectivity. 

For m = 2 (i.e., planar environments), the GVD and the 
GVG are the same. It is well known in this case that the 
planar GVD is connected. However, m > 2, the GVG is not 
necessarily connected. The GVG-like structure for SE(3) is 
described in [3]  also suffers from the problem of connectivity 
not being guaranteed. Fig. 3 shows an example where W is 
a box, with one box-like obstacle in the interior. For some 
dimensions of the box obstacle and enclosure, the GVG will 
be disconnected while for other sizes of the box and enclosure, 
the GVG will be connected. 

In the next section we introduce the notion of Higher Or- 
der Gcneralized Voronoi Graphs. These will be used to  link 
disconnected components of the GVG by subdividing higher 
dimension Equidistant Faces (k-dimensional cells) via a tes- 
sellation into closed regions whose boundaries are connected 
(or readily link up). For example, when W C W3, the problem 
reduces to linking up disconnected boundaries (i.e., the Gener- 
alized Voronoi Edges) of a 2-Equidistant Face via a tessellation 
into closed two dimensional regions whose boundaries are con- 
nected. This method reduces a higher dimensional problem 
into a 2-dimensional problem, which is more tractable. 

8 The Second Order GVG 
This section defines the Second Order Generalized Voronoi  

Graph,  GVG2 is defined on a 2-Equidistant Face, Fij. 
The Second Order Generalized Voronoi Graph is the set 

of points on a 2-Equidistant Face that are “second closest” 
to  nearby obstacles. The basic building block of the Second 
Order GVG is the Second Order 2-Equidis tant  Face 

L T E ~ ~ ~ ~ ~  = {Z E FiJ : (dl  - d k ) ( ~ )  = 0 and 

Vh, &(z) 2 &(x) = dr(a) 2 d i ( Z )  = d j ( ~ ) }  (11) 
It is the set of points where Ck and Cl are the second closest 
equidistant objects and Ci and C, are the closest equidistant 
objects. 

One additioiial structure needs to be defined. Let the set 
of points on the boundary of a k-Equidistant Face which are 
equidistant to  k obstacles be termed the &Boundary  Edge,  
defined by Ci I , , . i h .  This occurs either when d; , (z)  = ...  = 
d i , ( s )  = 0 or when Vd,(z )  = V d , ( z )  for p , q  E { i l ,  ..., i k } .  
Most k-Equidistant Faces do NOT have k-Boundary Edges; 
when all of the obstacles are disjoint and convex, there are no 
k-Boundary Edges. 

The Second Order 2- Vorono i  Se t ,  which is also the Second 
Order G V D i s  

%,j = UUFkllYij (UCij) (12) 
k l  

- 
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Fig. 4. Second Order GVG 

Analogous to  the GVG, we continue our construction with 
lower dimensional subsets of Ftj. The Second Order Three-  
Equidis tant  Face, 3 n 1 , 1 ~ , , ,  is the set of points where Ck, Cl 

aid C, are second closest equidistant objects and C, and C, 
are the closest equidistant objects. Furthermore, the Sec-  
ond Order 3- Voronoi  S e t  is the union of all the 3-Equidistant 
Faces. 

The Second Order k-Equidis tant  Face is simply the intersec- 
tion of the appropriate k - 3 Second Order 2-Equidistant 
Faces. In m-dimensions, the Second Order Generalized 
Voronoi  Edge is some Second Order m - 1-Equidistant Face. 
Note, it is defined by m - 3 intersections whereas the (First 
Order) Generalized Voronoi Edge is defined by m - 2 inter- 
sections. It can be easily shown by the Pre-image Theorem 
that the edges of the GVG’ are 1-dimensional. Finally, the 
Second Order Generalized Voronoi  Ver t ex  is a Second Order 
m-Equidistant Face, and it is zero-dimensional. 

DEFINITION 8.1 (SECOND ORDER GVG) (Constrained to a 
2-Equidistant Face) 

is the set of points equidistant to the second closest m - 1 
objects such that Ci and C, are the closest equidistant objects. 
Note that a Second Order GVG may not exist on every Ft,. 
The definition of Higher Order GVG’s follows accordingly, and 
thus we get the following definition: 

DEFINITION 8.2 (HIERARCHICAL GEN. VORONOI GRAPH) 
The Hierarchical Generalized Vorono i  Graph  (HGVG) is the 
union of the Generalized Voronoi Graph and all higher order 
Generalized Voronoi Graphs. 

HGVG = GVG U;=, GVGt z=m--l 

For subsequent analysis, it will be useful to  define the Sec- 
ond  Order Generalized Vorono i  Regzon, F k l  which is the 
set of points constrained to a 2-Equidistant face, Ft,, whose 
second closest object is Ck. 

3 8 J  ’ 

3,17,J = {Z E FtJ 8.t. Vh # i , j , k  

d ( z )  = d j ( z )  I dk(z) 5 d h ( ~ ) }  (14) 
The GVG’ divides up Ft, into Second Order Gener- 

alized Voronoi Regions. See Figure 4 for an example of a 
GVG’ and how 3 ’ ~ l o o r / c e z l z n g  is divided up into Second Order 
Generalized Voronoi Regions. 

When the obstacles satisfy a certain condition (defined in 
Section lo ) ,  the U, GVGz will link the disconnected compo- 
ncmts of the GVG. This condition is a constraint which guar- 
antees that no GVG cycles (GVG edges diffeomorphic t o  the 



nnit circle) may exist. In Figure 4, the GVG’ does not link 
up the GVG because of the existence of GVG cycles. The 
following section carefully analyzes cycles, aiid the section af- 
ter that states the conditions under which cycles do not exist. 
It will be shown that when cycles do not exist, all of the 
k-Equidistant Faces are divided up iiito regions whose bound- 
aries are all connected. In this case, the GVG’ connects all 
disconnected GVG fragments. 

9 Cycles 
To simplify the discussion, we focus only on the case of 

m = 3, where HGVG = GVG U GVG’. However, analogous 
methods exist for rn > 3 [6]. In this section, we carefully 
analyze cycles, so that in the next section, we can state the 
condition under which t,hey do not exist. First we define cy- 
cles and show that they lead to GVG fragments which are 
disconnected from both other GVG edges and GVG’ edges. 

DEFINITION 9.1 (GVG CYCLE) is a Generalized Voronoi 
Edge which is diffeomorphic to SI, the unit circle. 

Henceforth, the terrn “cycle” refers to a GVG cycle. 

PROPOSITION 9.2 A GVG edge is a cycle if and only if it is 
disconiiected from the GVG and the GVG’. 
Proof This proof is a simple consequence of the following 
Lemma whose proof appears in the Appendix. 

LEMMA 9.3 A Second Order Generalized Voronoi Edge can 
only intersect the GVG at a meet point,. 

GVG cycles do not contain meet points, and thus GVG edges 
and GVG’ edges can not intersect them. That is, they are 
disconnected. In a bounded space, the only disconnected GVG 
edges are cycles. 

PROPOSITION 9.4 A GVG edge is a disconnected component 
of a boundary of a Second Order Generalized Voronoi Region 
if and only if it is a cycle. 
Proof The proof of this now employs the following three lem- 
mas whose proofs appear in the Appendix. 

LEMMA 9.5 If a GVG edge, F i j k ,  exists then that implies 
thc existence of a Second Order Generalized Voronoi Region, 
FkIFi j  on the Two-Equidistant Face, Fij, aiid F i j k  is a subset 

of the boundary of F k  I Fij. 

LEMMA 9.6 (UNIQUENESS) There can be at most one GVG 
edge, F i j k ,  on the boundary of a Second Order Generalized 
Voronoi Region, F k l  

LEMMA 9.7 On a 2-Equidistant face which has more than one 
GVG edge on its boundary, there will always be a GVG’ on 
that 2-Equidistant Face. 

By Lemma 9.5, the cycle F i j k  must be a subset of the 
boundary of a Second Order Geiieralized Voronoi Region, 

Second Order Generalized Voronoi Edges (Lemma 

9.7) and perhaps Boundary Voronoi Edges (by definition) are 
the other structures which may exist on the boundary of a Sec- 
ond Order Generalized Voronoi Region. Since by Proposition 
9.2, neither of these can intersect the GVG cycle, F i j k  must lie 
on a disconnected portion of the boundary of a Second Order 
Generalised Voronoi Region. 

And now for the converse, if F i i j k  is a disconnected bound- 
ary component of a Second Order Generalized Voronoi Region, 

gij ’ 

YklTij. 

3i it is a GVG cycle. Again, if 3 i j ~  is discoiinect,ed, it 

does not intersect a GVG edge, nor GVG’ edge. By Proposi- 

Second Order Cycles. Just as there is a cycle in the Geiier- 
alized Voronoi Graph, there are also cycles iii tlie Second Or- 
der Generalized Voroiioi Graph. In order to define the GVG2 
cycle, we need to recall tlie definition of the Second Order 
Generalized Voronoi Region, which is based on the definition 
of thc Generalized Voronoi Region. 

DEFINITION 9.8 (GVG’ CYCLE) is a cycle coniprised of 
GVG’ edges, and perhaps a fragment of a Boundary Edge, 
which solely forms a connected conipoiieiit of the boundary of 
a Second Order Generalized Voronoi Region. 

A G V G ~  cycle is written as U, 5 k i I g i j  or U, ~ h l l ~ ~ ~  U ciJ 

where ci j  c: C,, is a fragment of the Boundary Edge, Ci,. 
The following proposition shows there is a duality between 

the existence of GVG and GVG’ cycles. In order for one of 
them to exist, then the other must exist. If no GVG cycles 
exist, then there can not be any GVG2, aiid visa versa. 

PROPOSITION 9.9 Let Fij, F i k  and Fi jk be three Two- 
Equidistant Faces whose intersection forms !3’ijk. If the GVG 
edge, F i j k  is a cycle, then on at least one of the Two- 
Equidistant Faces, Fij, F i k ,  and F j k  there exists a second 
order cycle. The converse is also true - if there exists a Sec- 
ond Order Cycle, and there is a Generalized Voronoi Edge 
associated with it, then the Generalized Voronoi Edge is a 
cycle. 

Proof: The existence of 3 + i i j ~  implies the existence of Ftj, F i k  

and F j k .  13y Proposition 9.2, if F i j k  is a cycle, then it is a 
disconnected boundary component on each: F,,, F i k  and F j k .  

Even though it is possible that F i j k  may be the only bound- 
ary component of a Two-Equidistant Face, by boundedness 
F i j k  can not be the sole boundary component, on all three 
Two-Equidistant Faces. Therefore, at least one of the Two 
Equidistant Faces, say Lfi,, has another boundary component 
- implying that, as;, := U, Tiji, U F i j k  (U c i j ) .  

By Lemma 9.5, the existence of F i j k  implies Fklgi j  ex- 

ists on F;j such that F, j k  is on the boundary of F k I g i J .  By 
Leinina 9.6, FiJk and any other Generalized Voronoi Edge, 
can not exist on any other boundary component of FkIFij. 

By Boundedness and Lemma 9.7, F k l F j j  must have another 
boundary component fully comprised of Second Order Gener- 
alized Voronoi Edges, arid perhaps Boundary Edge Fragments. 
Such a boundary component is a Second Order Cycle, by def- 
inition. 

The second order cycle consists of GVG2 edges (and per- 
haps Boundary Edges) which form a boundary component of 
a Second Order Generalized Voronoi Region, F k l  By hy- 
pothesis, there exists a GVG edge, F i j k  and thus by Lemma 
9.5, it is on the boundary of FklFi j .  By Lemnia 9.6, F t j k  is 
the only GVG edge inside of the Second Order Generalized 
Voronoi Region. Therefore by Lemma 9.3, no GVG or Sec- 
oiid Order GVG Edges can emanate from F i j k .  Since F i J k  is 
disconnected, by Proposition 9.4, 3 i j k  is a cycle because it is 

tion 9.2, Ftijk: is a cycle. 

Ftj. 

a disconnected boundary component of F k  I gij. 
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10 Extended Boundedness Assumption 
With the above definitions and relationships in place. we 

are now able to state the assumption which will guarantee 
connectivity of the GVG U GVG’. This assumption will be 
used to  eliminate environments in which cycles in the GVG 
arise. 

ASSUMPTION 10.1 (EXTENDED BOUNDEDNESS) For every  
combina t ion  of k equidistant obstacles ( 2  5 k < m), there 
exis ts  a po in t  which i s  equidis tant  to a k + lSt obstacle. 

In R3 this means that all Two-Equidistant Faces contain 
at least one Generalized Voronoi Edge. Furthermore, all Gen- 
eralized Voronoi Edges have at least one meet point. That is, 
V i , j , k ,  3z E Fi3k,Z, such that d l ( z )  = d k ( x ) .  By the Equidis- 
tant Surface Transversality Assumption (Ass. 5.1), this point 
is isolated. 

By definition, this assumption is stronger in higher di- 
mensional workspaces because it requires higher dimensional 
workspaces to be more “cluttered” than those of lower dimen- 
sions. Robots whose configuration spaces are higher tend t,o 
be highly articulated and are thus better suited for cluttered 
environments. 

We will now show that the Extended Boundedness As- 
sumption leads to a cycle-free environment. First, we will 
show that under the Extended Boundedness Assumption, all 
Second Order Generalized Voronoi Regions must have a Gen- 
eralized Voronoi Edge on its boundary. This is necessary 
in showing that environments which satisfy the Extended 
Boundedness Assuniption, do not have GVG nor GVG’ cy- 
cles. 

LEMMA 10.2 Given the Extended Boundedness Assumption 
all Second Order Generalized Voronoi Regions must contain 
a Generalized Voronoi Edge. 

Proof Recall the definition of the Second Order Generalized 
Voronoi Region, F k  I “ i j .  

FklF;, = {z E Fij : V h  # { i , j , k > d h ( Z )  2 dk(Z) = dz(z)) 

The Extended Boundedness Assumption (Ass. l O . l ) ,  there 
exists some h‘ # {i,j} and some 2 where such that d ; ( z )  = 
d j ( z )  = dhl (z) .  If h’ = k ,  then F i j k  exists, and by Lemma 
9.5 and Lemma 9.6, i t  is the only Generalized Voronoi Edge 

If h‘ # h,  then that implies, F i j h f  exists, that is, d ; ( z )  = 
d, (x) = d h /  (z). However, since the Second Order Generalized 
k ” i  Region Fk lLF i j  exists ( d k ( y )  I d h ‘ ( Y ) V Y  E FkIF,,), 

by continuity of the single object distance function, F i 3 k  must 
also exist in Fkl IFi j  (Lemma 9.5). This however is a contra- 
diction of Lemma 9.6, where only one GVG edge may exist 
in Fkly,,. Therefore h’ # IC, and 3;j~ is always a subset of 

in m k  I “;,. 

3 

Fk I F; j - ‘I 

LEMMA 10.3 Given Assumptions 5.1 and 10.1, there can not 
be any GVG, or GVG’ cycles. 

Proof Let F Z 3 k  be a Generalized Voronoi Edge. We will show 
it can not be i t  cycle. By the Extended Boundedness As- 
sumption and Equidistant Surface Transversality Assumption, 
3z E F z 3 k ,  such that d l ( z )  = d k ( z )  which is isolated. That is 
F t 3 k l  = Ft31 n F Z 3 k  # 0. The Equidistant Surface Transver- 
sality Assumption 5.1 guarantees that FtJl and F,,k intersect 

transversely. This rules out the possibility that FzJ[ is tangent 
to T t , k .  while FtJk is diffeomorphic to si. Therefore, a GVG 
cycle can not exist. 

By Proposition 9.9, if there exists: (1) a second order cy- 
cle. which is a component of the boundary of F k l  , and 

(2)  a Generalized Voronoi Edge which is a subset of F k l  
F,, 

(whose existence is guaranteed by the Extended Boundedness 
Assumption), then there exists a first order cycle. 

The contrapositive of this statement is also true. If a GVG 
cycle does not exist, that implies a GVG2 cycle can not exist or 
the Extended Boundedness Assumption is not in effect. The 
Extended Boundedness Assumption implies a GVG cycle can 
not exist which, in turn, implies a GVG2 cycle can not exist 
o r  the Extended Boundedness Assumption is not in effect. 
However, since the Extended Boundedness Assumption is in 

‘I 

11 Connectivity, Continued 
And now we are ready to show that under the Extended 

Boundedness Assumption, the HGVG is connected. In [ 6 ] ,  
we show that if the union of the Second Order Generalized 
Voronoi Regions on a 2-Equidistant Face is the 2-Equidistant 
Face (trivial), and the boundaries of each of the Second Or- 
der Generalized Voronoi Regions are connected, then the Sec- 
ond Order Generalized Voronoi Graph connects disconnected 
GVG edge fragments on a Two-Equidistant Face. The follow- 
ing proposition shows that given the Extended Boundedness 
Assumption, the boundaries of each of the Second Order Gen- 
eralized Voronoi Regions are connected. 

PROPOSITION 11.1 Given the Extended Boundedness As- 
sumption, the Equidistant Surface Transversality Assump- 
tion, and the Boundedness Assumption, the boundary of a 
Second Order Generalized Voronoi Region is connected. 

Proof The boundary of F k l  is comprised of Second Or- 
dcr Generalized Voronoi Edges, one Generalized Voronoi Edge 
(Lemma 10.2) and perhaps one or more Boundary Edge Frag- 
ments from the same Boundary Edge. 

F 2 3  

effect, there can not be any GVG’ cycles. 

F13 

i € L  

where L is the set of indices, cataloging the Second Order 
Generalized Voronoi Edges which are in the boundary of the 
Generalized Voronoi Region, 3’k I Note, there can be mul- 
tiple Boundary Edge Fragments, but they must all come from 
the same Boundary Voronoi Edge. 

is a closed and connected set (actually if it 
is not connected, consider each connected component), the 
boundary of F k l  can be written as the union of connected 
components. 

FZj. 

Since F k  
IF,5 

F a 3  

1 

where 8,Fkl 
By Lemmas 9.5 and 10.2, F%,, can only be the subset of one 

of the boundary components. Let & F k  be the connected 

component that contains F t 3 k ,  that is, F z J k  C &3’klFs3.  Fur- 
thermore, by the Extended Boundedness Assumption (Ass. 

is the ith connected boundary component. 
3v 

17.3 
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10.1) and Proposition 9.4, F; jk  # &FklFij. Therefore, 

&Fk lF i j  contains a GVG edge, GVG’ edge(s) and perhaps 
Boundary Edge fragments. 

81 Yk I !Fij = L f i j k  U %IFzj  (U%) 
l l E L l  

where L1 c L and ui Li = L. 
For i > 1, &Fk lF i j  = UfiELi Fki i lF. .  ( u c i j ) .  However, 

for i > 2, the existence of 8;Fkl violates the Extended 
Boundedness Assumption by Lemma 10.3. Therefore, the Ex- 
tended Boundedness Assumption implies that &!Fklg , is the 

The union of the 2-Equidistant Faces is the Generalized 
Voronoi Diagram, and thus, the union is connected. Since all 
of the GVG Edges are connected (through GVG’ edges) on 
each 2-Equidistant Face and all of the 2-Equidistant Faces are 
connected (through GVG edges), the HGVG is connected. 

Fi j  

I J  

only connected boundary component of 3 k  I 
F Z j .  

12 Conclusion 
This paper introduced a retract-like structure called the Hi- 

erarchical Generalized Voronoi Graph. Although this struc- 
ture was specifically developed for sensor based implemen- 
tation, it can be used for classical motion planning as well. 
However, since it is defined in terms of the distance function, 
the HGVG readily lends itself to  sensor based implementa- 
tion [7]. Because of its graph-like structure, motion planning 
can be reduced to a 1-dimensional graph search. Simulations 
validating this approach for the case of 2-dimensions can be 
found in [5], but simulations of the 3-dimensional case are 
under way. 

For the 3-dimensional case, it was shown that under a cer- 
tain set of conditions the HGVG is connected. Proof of the 
higher dimensional case can be found in [6]. In the case where 
the Extend Boundedness Condition is not met, a linking pro- 
cedure is required. That is the current area of research and 
will soon be included in [6]. 
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Appendix 
A.1 Proof of Lemma 9.3 
Proof Around the interior of Generalized Voronoi Edge, 3yjk, 
&(a) = djjz) = &(a) < &(z) for all h and z E Spjk. Let 
Y = F;j nhbd(z ) .  By continuity of the distance function, 
Vy E Y ,  d,(y)  = d j ( y )  5 &(a) < d h ( z ) .  Therefore, there 
can not exists an I # i ? j , k  for which dl(y) = dk(y) for any 
y E Y .  That is, there can to be a 3’kll which intersects the 
interior of the GVG edge. Continuity of the distance function 
oiily allows A GVG’ can only intersect a GVG edge at a meet 

A.2 Proof of Lemma 9.5 
Proof 3 i j k  can be defined as: {z  : Vhd(h) 2 &(a) = d j ( a )  = 
d , (z ) } .  And F L ~ ~ , ~  is: F k l g t J  = {z : Vh, &(z) 2 &(z) 2 
d,(z) = &(a)} 

Pick a E int(Fijk). Let Y = nbhd(z) 0 Ft3. By continuity 
of‘ the distance function, for all y E Y ,  V h d h ( y )  2 dk(y) 2 
d,(y) = d i ( y ) .  Therefore, FkIlij exists. 

T,j 

point. v 

Fi,k = {z : Vh&(z) 2 &(z) = d3(a)  = d k ( Z ) }  

C a(z : Vhd(h)  2 d k ( z )  2 d j ( ~ )  = d ; ( z ) }  

= askiFij 

the boundary of F k  I F ~ j .  

Therefore, by definition, if F; jk exists, then it is a subset of 
‘I 

A.3 Proof of Lemma 9.6 
Proof Assume that F i j k  and 3+ijl are on the boundary of 
Fk.lyij. By definition, Vz E FklF,J, &(z) 2 &(z) 2 &(a) = 
d3(z). BY assumption, vz E Fijf c ~ k 1 ~ ~ ~ , d i ( z )  5 d l ( z ) .  

Of course, this is the same thing as saying, Vz E F; j l \F ; jk  c 
FklFij,dk(a) 5 d l ( z ) .  However, this is a contradiction be- 

cause: Va E! F i j i \ !F i j k ,  d l ( z )  < &(a). ‘I 

A.4 Proof of Lemma 9.7 
Proof: For the sake of discussion, assume Fij has two 3- 
Equidistant Faces on its boundary: F; jk  and Fiji. By defini- 
tion, the existence of 3; ; , k  and 3ijl implies 3 k  I 5 i j  and Fl I ~ * ~ ,  
respectively exist. It can be shown that union of the Second 
Order Generalized Voronoi Regions on a 2-Equidistant Face is 
the 2-Equidistant Face, and Generalized Voronoi Regions only 

{z E Fij : V h d h ( z )  2 d l ( z )  = dk(z) 2 &(a) = d3(a) which is 
v 

intersect at their boundaries. Therefore, F k  I F d j  n Fl I F,, - - 

the definition of a GVG2 edge, Fk i /F , j .  
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