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Abstract 
Inspection stations are now an integral part of any 
manufacturing system and help track product quality 
and process performance. I n  this paper we consider 
re-entrant manufacturing systems (such as semicon- 
ductor fabrication facilities) with inspections at vari- 
ous stages of processing. At the end of  each inspec- 
t ion,  three possibilities are assumed, namely accept, 
reject, or rework at some previous stage. We propose 
re-entrant lines with probabilistic routing as models f o r  
such systems and present an ef ic ient  analytical tech- 
nique based on mean value analysis t o  predict mean 
cycle t imes and throughput rates. We can use the 
method t o  compare different ways of locating inspec- 
t ion stations, f rom a cycle time and throughput view- 
point. 

1 Introduction 
Global competitive pressures are forcing today’s man- 
ufacturing companies to become more customer fo- 
cussed in terms of offering high quality products and 
reduced product lead times. The recognition that 
product quality is a strategic asset has spurred factory 
managers to  re-examine the role of on-line and off-line 
quality in product design and manufacuring. In spite 
of the best process control methods, it is impossible to 
eliminate defects altogether, hence inspection stations 
are essential. 

Inspection stations now constitute an integral part 
of any manufacturing system. They help track the 
product quality and process performance. Two im- 
portant problems related to inspection are 

e how many inspection stations to  use? 

0 where to  locate the inspection stations? 

There is much literature on the above two topics. For 
an overview and references, see [l]. Researchers have 
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so far not addressed the problem of performance anal- 
ysis in the presence of inspections, except in two early 
works of Seidmann, Schweitzer, and Nof [a], and Davis 
and Kennedy [3]. 

In this paper we consider re-entrant manufactur- 
ing systems such as semiconductor fabrication facil- 
ities and explicitly model the effect of inspections at  
various stages of processing. We extend the re-entrant 
lines [4, 51 model to include probabilistic routing and 
propose this as a model for re-entrant manufactur- 
ing systems with inspections. We also develop an effi- 
cient analytical technique based on mean value analy- 
sis (MVA) [6 ,7 ,8 ,9]  to compute the mean steady-state 
cycle time and throughput rate of such models under 
various scheduling policies. The new model and the 
analysis technique facilitate 

predicting the mean steady-state cycle time and 
throughputs of re-entrant manufacturing systems 
in the presence of inspections, reworking, and re- 
jection of parts, under a wide variety of scheduling 
policies, and 

comparing different ways of locating inspection 
stations from a cycle time and throughput view- 
point. 
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Earlier research in the topic of performance of re- 
entrant lines has not considered inspections. Kumar 
[4,5] has looked at the performance of a wide variety of 
buffer priority based scheduling policies and due-date 
based scheduling policies using simulation. Lu, Deepa 
Ramaswamy, and Kumar [lo] have investigated the 
cycle time and throughput performance of a class of 
scheduling policies called fluctuation smoothing poli- 
cies. More recently, Narahari and Khan [6, 111 have 
used an MVA-based analytical method to  evaluate the 
performance of buffer priority based scheduling poli- 
cies in re-entrant lines, and the effect of high priority 
jobs or hot lots on the cycle time and throughput of 
other jobs in a re-entrant line. 

This paper is organized as follows. In Section 2, we 
present a model for re-entrant manufacturing systems 



with inspections and outline an analytical methodol- 
ogy based on MVA to compute the mean steady-state 
cycle time under various scheduling policies. We pro- 
vide numerical results obtained for a 4 machine, 13 
buffer example including simulation results to validate 
the analytical method proposed. In Section 3, we show 
how we can compare the performance of different ways 
of locating inspection stations in re-entrant lines, us- 
ing the analytical method proposed. 

2 A Model and An Analysis 
Methadalogy 

In this paper, the model we propose is based on a type 
of non-traditional queueing models called re-entrant 
lines. Re-entrant lines [4] are appropriate for model- 
ing manufacturing systems with distinct multiple vis- 
its to work centers. Examples of such (re-entrant) 
manufacturing systems include semiconductor fabri- 
cation facilities, thin film lines, and systems with re- 
work tasks. In such systems, parts typically visit a 
given station several times for undergoing either mul- 
tiple operations or rework operations. The analysis 
methodology we propose is based on MVA [B, 7, 8, 91. 

2.1 Re-entrant Lines With Probabilis- 
tic Routing 

A re-entrant line can be described as follows. There 
is a set of service centers { 1 , 2 ,  . . . , m}. Service cen- 
ter i E { 1 , 2 ,  . . . , m} has ni logical or physical buffers, 
b i l , b i 2 , .  . . , b in , .  For Q E { 1 , 2 , .  . . , ni}, the buffer bij 
contains parts visiting service center i for the j t h  time, 
(call it stage ( i , j )  of service). A part visits these 
buffers in a given sequence and any service center is 
typically visited several times in the route of the part. 
Figure 1 shows a typical re-entrant line with 4 ser- 
vice centers and 13 buffers. Parts enter the system 
at buffer b l l  and visit the buffers at various centers 
according to  a deterministic route as shown. When 
there is an inspection at the end of a particular stage 
of processing, it is reasonable to  assume three possibil- 
ities namely accept, reject, or rework. A part that is 
accepted will queue up for the next stage of processing 
in the deterministic route. A part that is rejected will 
disappear from the system. A part that needs rework 
may need to  be routed to any of the earlier stages of 
processing. 

We make the following assumptions regarding the 
parts that need to  go for reworking. 

1. A part may have to  go to any earlier stage say, 

Figure 1: A reentrant line with 13 buffers 

stage ( i ,  j) for reworking. Such a part is indistin- 
guishable from the one going through stage (i, j )  
for the first time. This implies that the part go- 
ing for reworking to  an earlier stage ( i , j )  will go 
through all the stages from ( i , j )  to the current 
one. 

2. Rework times have identical processing require- 
ment as original processing times. 

3. Parts that go for reworking to  a particular stage 
join the tail of the queue at that stage. 

After each stage of processing, note that a part may 
advance to the next stage, come back to the same 
stage, or go back to any previous stage, or get re- 
jected. The probabilities of each of these events are 
assumed to be known for all stages of processing. An 
important assumption we make is that the inspection 
process is inst,antaneous. This assumption is relaxed 
in a forthcomiing paper [12]. 

The inspections, reworking, and rejections detailed 
above can be described by a re-entrant line with a 
Markovian routing matrix, P ,  where the entries indi- 
cate the probability of going from a given stage to  any 
other stage. For example consider the matrix P for a 
4-buffer re-entrant line shown in Figure 2: Note that 
P is a square matrix with dimension B + 1 ,  where B 
is the total number of stages. The last entry in each 
row gives the percentage of parts rejected after an in- 
spection at that stage. Note that the sum of entries in 
each row, except that corresponding to the last stage 
i (stage (2 ,2 )  in the example), is unity. In the case of 
the last stage, it is easy to see that (1- sum of entries) 
is the probability that a part exits successfully from 
the system, after finishing all the processing. 
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Figure 2: A re-entrant line with 4 buffers 

2.2 An Analysis Methodology 
The analysis methodology uses ideas from the well 
known mean value analysis (MVA) technique [7, 81 
applied in an approximate way to non-product form 
queueing networks. In an earlier paper [B], Narahari 
and Khan have already presented an analysis tech- 
nique for re-entrant lines with strictly deterministic 
routing based on MVA. Here this methodology is ex- 
tended to  include inspections. The extended method- 
ology is validated by extensive simulations. 

A special feature of this methodology is that it ex- 
plicitly models any buffer priority based scheduling 
policy that may be followed at different service centers. 
That is, when a processing center i finishes servicing 
a part, it selects the next part for processing from 
among the buffers b i l ,  b22,  . . . , bSn, , in a fixed priority 
order that is independent of the state of the system. 
The analysis assumes that the priorities accorded are 
non-preemptive and that parts in any given buffer are 
processed in FCFS fashion. 

To apply MVA, we have to assume that the re- 
entrant line is a closed queueing network. This as- 
sumption is valid if the input release policy is a fixed- 
work-in-process policy (a  fresh part is released into the 
network as soon as a finished part leaves the system) 
[5]. Also because of inspections, we might reject some 
parts at intermediate stages, and this will reduce the 
number of jobs in the system. In order to keep the 
number of jobs in the system constant, we shall as- 
sume that a rejected part is immediately replaced by 
a fresh part which enters the first buffer in the system. 

Let N be the total number of jobs in the system. 
We shall use the following indices: i denotes a pro- 
cessing center; j denotes a buffer at a given processing 
center; L denotes a current job population and has the 
range 1,. . . , N .  Let stage (i, j )  as usual correspond to 
the waiting and the processing of a job visiting center 

i for the j t h  time. Let the performance measures of 
the network be denoted as follows. 

Li j (L)  : mean steady-state number of jobs in stage 
( i , j )  when the network has L jobs. 

Wij(k):  mean steady-state delay for jobs in stage 
( i , j)  (mean waiting time in buffer bij  + 
mean processing time). 
: mean steady-state throughput rate of jobs 
when the network has IC jobs. 

X ( k )  

If W ( k )  denotes the mean total delay (also called mean 
cycle time) in the entire network in the steady state, 
we have 

m n, 

i=l  j=1 

where uij is the mean number of times a part visits 
stage ( i , j )  during its sojourn in the network. We can 
note immediately that u i j  = 1 for all i and for all j if 
there are no inspections in the re-entrant line. If we 
do have inspections, we can compute uij’s from the 
routing probability matrix in the standard way done 
for product form queueing networks [9, 131. 

Using MVA we can recursively compute W ( N )  and 
X(N). For details, see [6 ] .  We give an outline of the 
procedure below. Consider the scenario a job would 
encounter upon its arrival at a certain buffer bij  and 
the sequence of activities that occur while it is waiting 
there. When this distinguished part arrives at b i j ,  it 
would see a certain number of jobs in various buffers 
at the service center i. Let S be the set of jobs cur- 
rently at center i and having higher priority than the 
distinguished part. Note that S will include all jobs 
that are ahead of the distinguished job in bi j  and all 
jobs in all buffers having higher priority than b i j ,  The 
total mean waiting time of the distinguished job in bi j  

on each visit can be seen to be the sum of three terms, 
say Term 1, Term 2, and Term 3 defined as follows. 

Term 1 : 

Term 2 : 

Term 3 : 

Mean total time until all jobs in the set S 
are serviced and leave center i. 
Mean total time required to process all 
higher priority jobs which arrive during 
the stay of the distinguished job 
in the queue at b i j  ( i.e. until the 
commencement of its service). 
Mean processing time of the distinguished job. 

Term 3 is easy to compute. The computation of 
Term 1 and Term 2 is done by presuming that the ar- 
rival theorem [9] is valid in the given network. In fact 
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the arrival theorem is not valid for the given network 
since the network is not product form. However since 
we are only seeking an approximate analysis, we as- 
sume the arrival theorem to be valid for this network 
and verify the accuracy of the approximation using 
detailed simulations. The computation of Term 1 and 
Term 2 is described in detail in [6]. We can thus com- 
pute Waj(k) and using (l), we can compute W ( k ) .  

Applying Little's Law in the network, we obtain 

Again we use Little's Law to obtain 

Consider the following initial conditions: 

Lij(0) = O i = 1 , 2 , .  . . , m ; j  = 1 , 2 , .  . . ,n i (4)  

X(0) = 0 ( 5 )  

Using the initial conditions above and the relations for 
Wij(k), X(le), and L i j ( k ) ,  we can compute the above 
performance measures for all le = 1 , 2 , .  . . , N .  Thus 
W ( N )  and X ( N )  can be computed. 

2.3 A Numerical Example 
Consider the re-entrant line shown in Figure 1. This 
line has 4 machine centers and 13 buffers. The service 
time for all buffers at a given machine center are as- 
sumed to be identical exponential random variables. 
Let 1 be the mean service time at each buffer at ma- 
chine center i .  In the analytical and simulation exper- 
iments, we have assumed 

PE 

= 0.1 hour 

= 0.5 hour 

1 - = 0.5 hour 
P1 P2 

1 - = 0.5 hour 
P3 P4 

- 1 

1 - 

In this re-entrant line, machine center 3 is a bottleneck 
center since there is a maximum service demand on 
this center. 

Assume that there is an inspection at the end of 
every stage. After inspection at each stage, we have 
assumed the probability of rejection as 0.05 and the 
probability of sending for rework to any of the ear- 
lier stages as 0.05. Using the proposed MVA based 
method, and also simulation, we have computed the 
mean cycle time and mean throughput rate of ac- 
cepted parts for populations ranging from 1 to 3 5 .  Fig- 
ures 3 and 4 provide a graphical representation of the 
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Figure 3: Analytical and simulation results for mean 
cycle time 

numerical results. It can be seen from the graphs that 
there is a cIoi;e agreement in the results obtained by 
the proposed method and simulation. The maximum 
discrepancy between the simulation and analytical re- 
sults is about 4% in the case of mean cycle time, and 
about 7% in lthe case of mean throughput rate. 

3 Comparing Different Ways of 
Locaking Inspection Stations 

An important problem in inspection is to determine 
the optimal inumber and the optimal location of in- 
spection stations in a given manufacturing system. In 
this section we shall address the problem of a given 
number of inspection stations and evaluate different 
alternatives from a cycle time and throughput view- 
point. We shall illustrate the methodology with an 
example. Consider the re-entrant line of Figure 2 ,  
which has fcur stages, (1,1), (2,1), (1,2), and (ala). 
Call these stages stage 1, stage 2,  stage 3,  and stage 4, 
respectively. Assume that an inspection at the end 
of stage 4 is always required. For i = 1 , 2 , 3 , 4 ,  de- 
fine variable zi = l if there is inspection at the end 
of stage i and xi = 0 otherwise. Call (z~,x~,z3,~~) 
as the inspection location vector. If only one inspec- 
tion is being done, this vector can only take the value 
(O,O, 0,l). If two inspections are being done, the pos- 
sible vectors are (1,0,  0, l), (0,1,0, l),  and (O,O, 1,1). 
In the case of three inspections, the possible values are 
(1, l , O ,  1), ( I  , O ,  1, 1), and (0 ,1 ,  1, 1). Finally for four 
inspections the only possible vector is (1,1,1,1). Thus 
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4 

si = 1 - r4 - yii 
j=1 

Similarly, we can 'compute these probabilities for all 
possible location vectors. 

The analysis methodology of Section 2 can be used 
for computing the mean steady-state cycle time and 
throughput rate of accepted, finished parts. Figure 
5 shows the mean steady-state throughput rates for 
all the above inspection location vectors. The mean 
processing time a t  each buffer in center 1 is assumed 
as 1 unit wheras that a t  each buffer in center 2 is 
assumed 2 units. 

Note from Figure 5 that the maximum throughput 
rate is obtained in the case of (1,1,1, l) ,  i.e., com- 
plete inspection, and the minimum throughput rate 
is in the case of ( O , O , O ,  1), i.e., no intermediate in- 
spection. This is easy to see since in the latter case, 
parts can only get rejected after the last stage. It 
is also interesting to note that the vectors ( O , O ,  1, 1), 
( 0 , 1 , 1 ,  1), and ( l , O ,  1 , l )  lead to very nearly the same 
throughput rates. This is significant because two in- 
spection stations located a t  stage 3 and stage 4 give 
out the same performance as three inspection stations 
located according to (0,1,1,1) or (1,0,  1,l).  Also the 
vector ( O , O ,  1 , l )  outperforms the vector (1,1,0, l ) ,  in 
spite of the fact that former has one inspection sta- 
tion less. This shows that a small number of strate- 
gically located inspection stations can perform better 
than larger number of poorly located inspection sta- 
tions. The proposed technique can be conveniently 
used to study comparitive merits of different inspec- 
tion schemes. 

0 

o b  i s 1'2 ih it2 i4 d8 B 7 3 6  
, I t  . I S  1 1 8  V I ,  s t ,  I 

Population 

Figure 4: Analytical and simulation results for mean 
throughput rate 

we have eight possible inspection location vectors. 
To compare the above alternative inspection loca- 

tion possibilities, we need accept, reject, and rework 
probabilities in each case. Consider the inspection lo- 
cation vector (1,1,1,1). For i = 1,2,3,4, define 

ri = probability of rejection of a part after stage i. 
qij= probability that a part goes for reworking to 

stage j after stage i .  

Note that y i j  = 0 for all j > i. Define si as the prob- 
ability that a part passes the inspection after stage i. 
It is easy to  see that 

i 
S. - 1 - r. - 
2 -  z qij  

j=1 

Assuming that we know the probabilities ri and y i j  for 
all the four stages in the case of the vector (1,1,1, 1), 
we can compute these probabilities for any of the 
other seven vectors. For example, consider the vec- 
tor ( O , O , O ,  1). Since there is no inspection at the end 
of the first three stages, we only need to compute the 
probabilities for the stage 4. Let these probabilities 
be r i ,  q i l ,  y i 2 ,  qi3, qk4, and si. It is easy to see that 

4 Conclusions 
In this article, we have proposed re-entrant lines 
with probabilistic routing as an accurate model of re- 
entrant manufacturing systems with inspections. We 
have also proposed an efficient analysis method for 
the new model based on MVA. The proposed analysis 
method has been validated using simulation. 

For a four buffer re-entrant line, we have compared 
the throughput rates for different inspection location 
vectors by considering different numbers and locations 
of inspection stations. Thus the modeling methodol- 
ogy enables different inspection strategies to  be com- 
pared from a cycle time and throughput rate view 
point. 

In a forthcoming article [la], we have extended the 
model to include inspection times and contention for 
inspection stations. 
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