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Abstract 

This paper investigates the partition of the configuration 
space induced b y  basic contacts between polyhedra, using 
their combinatorial interpretation in  terms of oriented 
matroids. It is shown that solving motion planning prob- 
lems using this cellular decomposition can be analytically 
expressed in terms of invariants, without explicit use of 
artificial coordinate frames. 

One o f the  main aims of  this paper is to  draw the a t -  
tention of  the reader to  some results from the Theory of 
Matroids which are directly applicable to path planning, 
and many other geometric problems arising in Robotics. 
In  particular, the relevance of the concept of mutation in  
the context of collision-free path planning is highlighted. 

Moreover, it is proved that the set of mutations con- 
tains the walls of a given cell in  configuration space, and 
that this set, as one moves from one cell to a neighbor 
one, can be updated in  linear t ime with the number of 
vertices. This provides a simple way to  detect a large 
amount of redundant constraints from purely combinato- 
rial considerations, without relying on the manipulation 
of algebraic equations. 

Keywords: Configuration Space, Movers’ problem, 
Collision-free Path Planning, Oriented Matroids, Chiro- 
topes. 

1 Introduction 

This work deepens on the combinatorial structure of the 
problem of moving, with six degrees of freedom, a three 
dimensional simplicial polyhedron between two given lo- 
cations without colliding with other simplicial polyhedra 
in the environment ( f i g .  I ) .  This is an instance of the 
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“find-path” or “piano-movers” problem (the reader is 
addressed to [ll] for a textbook on this matter). 

The motion planning problem has been studied in- 
tensively over the last 15 years and has been found to 
possess a significant mathematical content. The use of 
classical geometry, topology, algebraic geometry, alge- 
bra, and combinatorics in the analysis of many instances 
of the problem has attained a high degree of sophistica- 
tion. 

As it was pointed out in [14], because the problem has 
a rich geometric and combinatorial structure, it is im- 
perative that we understand this structure in detail from 
a mathematically rigorous point of view and explore it 
for potential algorithmic improvements. 

The papers by Schwartz and Sharir [15, 161 showed 
the possibility of using algebraic and topological, rather 
than purely geometric, methods in motion planning. Al- 
though, even for a fixed number of d.o.f., the algorithm 
proposed by them is not useful in practice (no implemen- 
tation based on this approach has been reported), they 
have motivated a great deal of research on this direction. 
This has provided formulations of the path planning 
problem in terms of semialgebraic set manipulations. 
Algorithms based on recursive cellular decompositions 
using the Collins’ Cylindrical Algebraic Decomposition 
[3], such as [16] and its sequels, or on Canny’s Roadmap 
[a] are paradigmatic. The main drawback of these ap- 
proaches is that they provide a rapid algebraization of 
the problem thus becoming blind to the underlying ge- 
ometry. This becomes clear when one realizes that these 
decompositions are greatly dependent on the location 
of the reference frame of the moving object, leading in 
most cases to much more complicated decompositions 
than those required in practice. 

In [4] an algorithm for the movers’ problem with six 
degrees of freedom for polyhedral objects decomposed 
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Fig. 1 An instance of our  case of the  movers 'problem:  Can the  seashell pass  through the hole of the  torus? 

into convex components, that does not generate an ex- 
plicit representation of the whole configuration space, is 
designed and implemented. Its main drawback is that it 
is complete at a level of user-defined resolution, so that 
arbitrary narrow paths cannot be part of the solution. In 
Donald's work, the idea of applicabili ty cons tra in t  is also 
introduced. This allowed him to consider a reduced set 
of constraints a t  each point of the configuration space. 
We follow here the same idea: we introduce more con- 
straints than those initially needed, but this allows us 
to deal with a fairly reduced set of constraints a t  each 
point of the configuration space. 

This paper also presents the most important results 
from Matroid Theory that are relevant to Motion Plan- 
ning. Most of them are given without proof, but the 
reader is addressed to proper references for them. For 
readability reasons, results are restricted, or adapted, to 
the 3-dimensional Euclidean space, thus becoming more 
intuitive and interesting for practical applications. 

The organization of the paper is as follows. Section 2 
introduces the idea of oriented matroid associated with 
two polyhedra, one moving with reference to the other. 
Section 3 shows that the basic contacts between polyhe- 
dra are elements of a matroid. In this section it is also 
shown that the partition of the CS induced by the basic 
contacts is not a proper cellular decomposition in the 
sense that cells are not connected. Section 5 briefly de- 
scribes the Grassmann-Plucker relations, a fundamental 
tool in the theory of oriented matroids. Section 4 intro- 
duces the concept of mutation and its important role to 
detect redundant constraints. Finally, conclusions and 
prospects for future research are described in Section 6. 

2 Preliminaries 
Let us assume that we have two polyhedra, P and Q, 
with m and n vertices respectively, which are in general 

position. As a consequence, no face of both polyhe- 
dra has more than three vertices. This includes many 
practical applications in which object surfaces are ap- 
proximated by triangular meshes. Although extensions, 
including the general case can be considered, for the 
moment this is a reasonable simplification that highly 
easies the treatment that  follows. 

Now, consider the matrix of all the vertices of both 
polyhedra: 

4 

Cm+n-l  xm+n-l xm+n-l  
1 2 3 
xm+n xm+n 

1 2 

(1) 

X ( P , Q )  := 

where xi = (xi, xi, x:, 1) are the homogeneous coordi- 
nates of vertex i in sR3, after normalizing the last co- 
ordinate to l ,  and let E be a map which assigns to 
each ordered simplex A = ( A 1 , A ~ , A 3 , A ~ ) ,  with A i  E 
(1,. . . , n + m} and A 1  < A 2  < A3 < A4,  the determi- 
nant 

I 4 4  x;4 4 4  1 I 
(2) 

which will be called the or ien ted  volume of the simplex 
A, and let x be the map which assigns to each A the sign 
of Z(A); that  is, x(A) := sign([A]), which will be simply 
called the o r i e n t a t i o n  of A.  Note that =(A), and hence 
x(X), are independent of the reference frame. 

Let the set of 4-element ordered subsets of p = n + 
m vertices be identified with the set R ( p , 4 )  of strictly 
increasing 4-tuples. That  is, 
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Fig. 2 T h e  two basic contacts and their associated simplices in dotted lines. (a) Type-A; and (b) type-B. 

Let 

5x : = ( [ 1 , 2 , 3 , 4 ] , [ 1 , 2 , 3 , 5 ]  , . . .  J p - 3 ,  . . . ,P I )  ER( ) ,  

q4 := {ZXlX E R4P)  c d ) (5) 

(4) 
then 

is a Grassmann variety (see [lo] for a complete descrip- 
tion of Grassmanians and other related varieties). 

The combinatorial properties of x can be studied in 
the language of oriented matroids, or chirotopes. Actu- 
ally, x : A(p,4) + {-1,l) has the structure of a uni- 
form oriented matroid, or simplicial chirotope, of rank 4 
with p points. Oriented matroids play an important role 
in many parts of Discrete Mathematics. For chirotopes 
and their relationship with other axiomatics of oriented 
matroids see [l], a recent source book on the matter. 

In our case, there is an important class of simplices: 
those involving vertices of both polyhedra in which case 
their orientation depends on the relative location of 
the polyhedra. This set of simplices will be denoted 
Moving(A(p, 4), a) .  

Here two important points arise: 

0 When one polyhedron moves continuously with ref- 
erence to the other, the orientations in Moving(.) 
define equivalence classes of configurations in which 
these orientations remain unchanged. This induces 

a cell decomposition of the configuration space of 
both polyhedra. This is discussed in Section 3. 

0 It is clear that it is not possible to arbitrarily choose 
the signs of all orientations in Moving(.) and thus 
it is reasonable to look for a base set of orientations 
from which all other orientations can be obtained. 
This is discussed in Section 4. 

3 Constraints, intersection 
detection and cell 

decompositions of the 
configuration space 

Configuration Space (CS) is the product space of the 
space of translations, !R3, and the space of rotations, 
SO(3) ,  so that each point, a configuration, in this space 
represents a relative location between polyhedra P and 

A configuration, Y ,  in g3 x SO(3) has the form Y = 
(r, O), where r denotes a three-dimensional translation 
vector, and 0 some three dimensional rotation. 

Now, we are going to  introduce the traditional idea 
of the basic contacts [2]. The reason will become clear 
shortly. 

A type-A contact occurs when a vertex, xa, of one 
polyhedron touches a face, f b ,  of the other. For this to 
occur, the vertex must lie in the plane of the face. This 
can be expressed, assuming wlog that the indices of the 
generated simplex are already ordered, as 

Q. 
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Fig. 3 Two configurutions of a moving triangle associated with the sume chirotope but located in  diflerent cells of the  CS. 

S(a, c ,  d ,  e )  = 0, (6) 

where xc, xd, and xe are the vertices on face fa ( f i g .  2u). 
A type-B contact occurs when an edge, ef, from one 

polyhedron touches an edge, e g ,  from the other. For this 
to occur, both edges must lie on the same plane. This 
can be expressed, as above, as 

E ( h ,  i ,  j ,  k )  = 0, (7) 
where xh and xi are the vertices defining e t ,  and xj and 
xk those defining eg ( j ig .  2b). 

Definition 1. (Constraint). The simplices involved in 
equations (6) and (7) will be called constraints and the 
set of all constraints will be denoted Constraints(P, Q). 

Given a reference frame, the algebraic manifolds rep- 
resented by equations (6) and (7) in terms of r and 0 are 
called C-surfaces, which induce a partition of configura- 
tion space into cells. Actually, each C-surface divides 
the CS into two half-spaces, each containing all con- 
figurations where the orientation of the corresponding 
simplex has the same sign. 

This partition is important because it contains two ba- 
sic kinds of cells: cells where all configurations in them 
lead to intersections between the surfaces of both poly- 
hedra and cells free from configurations leading to sur- 
face intersections. This means that the decision whether 
both polyhedra have their surfaces intersecting can be 
carried out directly from the orientations of the sim- 
plices in Constraints(P, &). This is true even in the case 
that both polyhedra are not simplicial. The proof is not 
straightforward and the reader is addressed to [17] for 
it. 

In general, only from the orientations of the simplices 
in Constraints(P,Q) it is not possible to detect inclu- 
sions between P and Q. Assuming that we start at 
a configuration in which both polyhedra are far apart, 

a configuration in which one is fully inside the other 
cannot be reached without generating an intersection 
between their surfaces, and this is enough for most 
path planning practical applications. Anyway, if ob- 
jects without interior, such as the seashell in f i g .  1, are 
considered, there is no alternative. 

By considering all simplices in Moving(h(p, 4),  n) ,  not 
only Constraints(P, Q), we can generate a finer partition 
of the CS so that each simplex in Moving(A(p, 4), n )  has 
an associated C-surface. In this case, all configurations 
in each cell of the partition lead to the same orienta- 
tions of all simplices, i.e. each cell has an associated 
chirotope. Unfortunately, the converse is not true, that 
is, a realizable chirotope does not correspond, in general, 
to a single cell of this partition (a formal definition of 
realizability will be given in the next section). A simple 
example of this fact, in the context of 2D path planning, 
is shown in f i g .  3. While the two configurations shown in 
it correspond to the same chirotope, i.e. the signs of all 
involved determinants are identical in both cases, they 
cannot be moved continuously into each other without 
violating one of these signs. 

In what follows cells refer to the partition induced by 
Moving(A(p, 4) ,  n).  

4 Grassmann-Plucker relations 
For an arbitrary chirotope, the following identities 
( Grassmann-Plucker relations) are always fulfilled 
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for X E &, 5) and p E R ( p ,  3).  
As a consequence of these relations, the orientations 

of the simplices involved are not independent. 
According to  the second fundamental theorem of pro- 

jective invariant theory, all other relations - such as 
Laplace extensions - are consequences of these ones. 
This is also a consequence of the following theorem. 

the next section, where the concept of mutation is in- 
troduced). If a sign contradiction is found during this 
inductive process, the chirotope is not realizable. Unfor- 
tunately, this is just a necessary condition because we 
only used orientations instead of oriented volumes. A 
chirotope leading to no sign contradictions but which is 
not realizable is called polytopal chirotope. 

Theorem I. The Grassmann variety Gz4 is th.e com- 
mon zero locus of the corresponding Grassmann- Plucker 

polynomials. That  is, separators 
5 Mutations, walls and 

We will give two characterizations of mutations, the first 
in terms of Grassmann-Plucker relations, the second in q4 = { E E %( 1; ) / { A  1 p } ( Z )  = 0, 

VX E h(p15)i p E A(P, 3)) (9) terms of Tucker matrices. 

Proof. See [ lo ,  p. 65-66]. 

The following identities 

for a E R(p, 2) and 7 E A(p,  4), are a particularization 
of (S), which are known as the three-term Grassmann- 
Plucker relations or simply syzygies, term borrowed from 

Definition 3. (Mutation, mutant). Let x and x’ de- 
note two chirotopes. We will call x and x’ mutants if 
they differ in exactly one simplex orientation, and the 
simplex will be called a mutation. 

This defines in a natural way the mutation graph. x 
and x’ are joined by an edge in this graph if and only if 
they are mutants. 

Proposition I. (Bokowski-Sturmfels). X E h ( p )  is a 
mutation of x if and only if x(X) is not determined by 
any Grassmann-Pliicker relation. 

the literature of classical invariant theory. In our case, 
their relevance comes from the following theorem. 

In other words, the mutations of x are exactly the tu- 
ples in A ( p ) ,  whose sign is not determined. Let Mut(x) 
denote this set of simplices. 

It can be proved that, if x is realizable, then 
IMut(X)[ 2 p ,  where p is the number of points of x. 
This provides another necessary condition for a chiro- 

Theorem 11. (Las Vergnas). In the uniform case, 
x(X) # 0 for all X E A ( p ,  4), the three-term Grassmann- 
Plucker relations (IO) subsume the five-term relations 
In \  

( 8 ) .  tope to be realizable. 

Proof. See [6] for a discussion and references where a 
proof can be found. 0 

Definition 4. (Reduced System) [S, Def 3.31. The re- 
duced system of a chirotope x on p elements is a subset 

Definition 2. (Realizable, coordinalizable or repre- 
sentable chirotope). A chirotope is realizable, or equiv- 
alently coordinalizable or representable, iff there exists a 
set of points in ?J?’ that generate it.  

More formally, a realizable uniform oriented matroid 

is a point x E .,’ ) of the form x = sign(=) for some 
elements Z E GE4 of the corresponding Grassmann va- 
riety. 

In the identities (10) not all products can have the 
same sign. Therefore, an unknown orientation might be 
determined when 5 others are given. This argument can 
be applied repeatedly to  determine all orientations as 
far as they really are determined (this is discussed in 

R E A ( p )  such that any chirotope x’ on p elements which 
agrees with x on R is necessarily equal to x. 

The concept of reduced system of a chirotope plays a 
crucial role in the algorithmical coordinatizability test 
described in [8, Algorithm 4.21, where an algorithm to 
obtain a reduced set starting with a set of mutations is 
also described. 

In some cases the mutations are already a reduced 
system, but in general this cannot be expected. 

Remark I. (Roudneff-Sturmfels) [ la ,  Remark 3.21. 
Given a chirotope x,  the set Mut(X) is contained in ev- 
ery reduced system R of x. 
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Fig. 4 =(a) = 0 and = ( E )  = 0 act (IS separators of the two components of the set of configurations define by =(a) > 0 and 
Z ( p )  > 0 in CS (C, uCZ). 

Definition 5.  (Tucker Matrix). For X E A(p,4) its 
associated Tucker matrix, M x ( A ) ,  is the following ( p  - 
4) x 4-matrix 

f o r j E  (1, . . . ,  .}\A. 

Theorem 111. (Roudneff-Sturmfels). X E A(p,4) is a 
mutation of the simplicial chirotope x if and only if the 
Tucker matrix M x ( A )  has rank 1. 

Proof. The proof is quite straightforward from the three- 
term syzygies (see [12] for details).o 

Corollary I. Given a chirotope, the complexity of com- 
puting its set of mutations is O(p5).  

Corollary 11. Given a chirotope and its set of muta- 
tions, if the sign of one of the mutations is changed, the 
complexity of updating the set of mutations is O(p).  

Definition 6 .  (Walls). Given a configuration Y of CS, 
those C-surfaces bounding the cell in which it is located 
are said to  correspond to  walls of the cell. Walls(X, Y) 
will denote this set. 

It is of great relevance to  determine the set of walls for 
a given cell, because they correspond to  the smallest set 
of simplices that are locally relevant to motion planning. 
In practice, this problem becomes untractable when it 
is treated from a purely algebraic point of view (see [4]). 

Two neighbor cells share a piece of wall of dimension 
five, so that the configurations in them differ in exactly 
one simplex orientation: the one associated with this 
common wall. Thus, two such cells correspond to mu- 
tant chirotopes and the common wall, to the mutation. 
It follows that:  

Remark 11. The set of walls is contained in the set of 
mutations, i.e. Walls(X, Y) c Mut(X). 

As a consequence, the set Walls(X, Y) is always con- 
tained in any reduced system of x, as expected. 

In general, the signs of the simplices in Walls(X, Y) 
can define more cells than the one in which Y is in- 
cluded. Taking into account some other simplices, be- 
sides those included in the set of walls, some of these 
extra cells can be separated. These simplices will be 
called separators (term that we borrow from the CSG- 
based solid modeling theory [13]). Separators(X) will 
denote this set. 

Let us see an example to  clarify the above definitions. 
If the set of configurations C1 (see fig. 4)  is the set of 
points in CS that satisfy 
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, All Simplices 

Moving Simplices / \ A Reduced System 

Fig. 5 Classification of simplices. Some of the elements in the sets represented in dotted lines must be reclassified CIS one 
moves from one cell of the CS to another one. 

(12) 

(13) 

E((.) > 0 
q p )  > 0 

e(&) > 0 
E(4) > 0 

then 
E(&) > 0 =(a) > 0 
E ( p )  > 0 } and F [ P )  > 0 } 
E(6) > 0 I & ) > O  

are two different reduced systems. a and /3 are muta- 
tions. 6 and E are separators, and 4 simply corresponds 
to a redundant orientation. 

Note that a mutation might also act as a separator. In 
the example above, let us suppose that 6 is not contained 
in our chirotope, then E would become a mutation. 

The set of mutations is not just composed of walls 
and possibly separators, it might include other simplices 
that would correspond to  mutations that do not preserve 
representability. As a consequence, a reduced system is 
not just composed of walls and separators. 

Fag. 5 shows a Venn’s diagram of the final classifica- 
tion of simplices, according to  the above definitions. 

A search in CS, looking for a collision-free path,  can 
be seen as an iterative motion from one cell to a neighbor 
one traversing one wall. Only when the wall is included 
in the set of constraints, one has to check for possible 
intersections. This suggest that  an incremental update 
algorithm should be possible: when a wall is traversed, 

one imagines detecting which walls expire and which 
new ones become active. Since this iteration has to be 
repeated a huge number of times, such an algorithm 
would be of little interest if its complexity would be 
high. But, since 

we can conclude, according to Corollary 11, that  a set 
that tightly contains the walls of a cell can be updated 
in linear time as one moves from one cell to  a neighbor 
one. 

6 Conclusions 
It has been shown that algebraic geometry approaches to 
the movers’ problem can be benefited from interpreting 
C-surfaces as elements of a given chirotope. By focusing 
on the interplay between interference detection based 
on predicates and the Theory of Oriented Matroids, a 
new line of research for the movers’ problem has been 
presented. 

The most relevant result from Matroid Theory applied 
here is due to Roudneff and Sturmfels who provided in 
[12] a linear decision algorithm for the mutation set of a 
uniform oriented matroid, thus providing a fast and easy 
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way to detect a large amount of redundant constraints 
without solving systems of algebraic equations. 

Approaches that are more engineering or AI based and 
that emphasize approximating, rule-based, or based- 
case-tailored solutions, have been implemented but, in 
general, they are not complete or only complete a t  a res- 
olution level. An important property of the presented 
results is that they permit the development of complete 
algorithms for collision-free path planning, without re- 
lying on a user-defined resolution. 

Finally, it is worth to mention three points for future 
research: 

o Actually, all results given herein are consequence of 
the Grassmann-Plucker relations. These relations 
do not require to consider all simplices, as done 
here. Thus, the same concepts can be developed 
for subsets of simplices containing the set of con- 
straints. 

o The Grassmann-Plucker relations have a simple 
geometric interpretation [5]. This interpretation 
could be extended to mutations. A geometric con- 
struction that would permit obtaining the set of 
mutations would be valuable to attain further com- 
plexity improvements. 

0 The characterization of mutations which preserve 
realizability is still an open problem, already stated 
in [la], which deserves further attention to obtain 
even tighter sets to the set of walls. To this end, a 
geometric interpretation of mutation would be also 
very helpful. 
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