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Abstract

This paper describes an approach to combining range

data from both a set of sonar sensors as well as from

a directional laser range �nder to e�ciently take ad-

vantage of the characteristics of both types of devices

when exploring and mapping unknown worlds. We call

our approach \just in time sensing" because it uses the

more accurate but constrained laser range sensor only

as needed, based upon a preliminary interpretation of

sonar data. In this respect, it resembles \just in time"

inventory control which attempts to judiciously obtain

materials for industrial manufacturing only when and

as needed. Experiments with a mobile robot equipped

with sonar and a laser range�nder demonstrate that by

judiciously using the more accurate but more complex

laser range�nder to deal with the well-known ambigu-

ity which arises in sonar data, we are able to obtain a

much better map of an interior space at little additional

cost (in terms of time and computational expense). 1

1 Introduction

This paper describes an approach to combining

range data from both a set of sonar sensors as well

as from a directional laser range �nder to e�ciently

take advantage of the characteristics of both types of

devices when exploring and mapping unknown worlds.

We call our approach \just in time sensing" because

it uses the more accurate but constrained laser range

sensor only as needed, based upon a preliminary inter-

pretation of sonar data. In this respect, it resembles

\just in time" inventory control which attempts to ju-

diciously obtain materials for industrial manufacturing

1Appeared in \IEEE, International Conference in Robotics

and Automation", v.1, pp 667-671. Apr. 1996.

only when and as needed.

Sonar sensing is ubiquitous on mobile robots due to

its low cost, the simplicity of the required processing,

and the rapidity with which it can return results re
ect-

ing range measurements over a large region of space.

Despite these advantages however, it su�ers from sev-

eral shortcomings as a source of range data. Most im-

portantly, the measurements tend to have low spatial

resolution and the observed data (with most interpreta-

tion strategies) are typically confounded by the e�ects

of multi-bounce specular re
ections. For this reason,

the use of sonar is often con�ned to collision avoidance

rather than mapping.

Laser range sensors, on the other hand, are typically

able to obtain comparatively accurate data with fewer

artifacts when compared to simple sonar sensors. The

laser range�nder we have developed is based on BIRIS

[3] technology: a special lens with two pinholes near

the nodal point is used. This produces a double image

of objects in the scene with a disparity that depends

directly on the distance of the object from the focal

plane of the lens. We obtain a stereo image using only

a single CCD array. By projecting a laser stripe onto

the scene, a target is made available which can be used

for unambiguous stereo correspondence, allowing true

depth to be readily computed. Two of these BIRIS

sensors mounted on pan tilt units in a speci�c con�gu-

ration comprise the McGill QUADRIS sensor platform.

Like all sensing technologies, the BIRIS sensor also

has disadvantages. Its primary shortcoming is that al-

though the accuracy of range measurements is reason-

able over short distances (up to one or two meters),

accuracy degrades rapidly with longer distances (this

is one of the design parameters). Furthermore, obtain-

ing either a dense range image or range data over a



wider �eld of view than the 25 degrees or so covered by

a typical camera2 lens implies physically sweeping the

camera and laser across the scene, and hence involves

a time delay.

Early work to validate our \just-in-time" sensing

strategy using real sonar data and simulated BIRIS

data was reported earlier [8]. In this paper, we describe

results using real sonar data and real BIRIS data ob-

tained from the McGill QUADRIS platform.

1.1 Background

Various approaches have been considered for the ex-

ploration of unknown or quasi-known environments.

Most work dealing with real noisy sensor data must

cope with the management of sensor uncertainty and

exploration strategies, i.e. selecting successive un-

known locations or objects to visit (investigate) e.g.

[15, 17, 1, 6, 2]. The best way to manage exploration

in the face of real sensor noise remains an open prob-

lem. The question is further complicated by the fact

that the choice of an optimal mapping strategy is sen-

sitive to the speci�c task at hand. A somewhat dis-

tinct research stream deals with the complexity issues

in autonomous robot exploration of an unknown envi-

ronment [4, 11, 16, 12].

In general, work on sensor fusion has tended to fo-

cus on issues of how best to combine measurements

from di�erent sensors e.g. [18, 5], or how best to ex-

tract data with a single sensor and fuse the measure-

ments over time e.g. [9, 10, 19], rather than how to se-

lectively extract measurements from di�erent types of

sensor. This later problem of combining measurements

over time has, in fact, two variants: that problem of

fusing a set of measurements obtained somehow over

some time period e.g. [14, 7], and the problem of ef-

�ciently selecting where or when to obtain additional

measurements e.g. [21].

An apparently general �nding is that the di�culty

of the exploration task is rather sensitive to the level of

sensor noise and the �delity of the geometric inferences

made about the objects in the environment. Thus, it

seems appropriate to focus some e�ort on e�ciently

obtaining good geometric models since using all of the

sensors on the robot all of the time can lead to serious

ine�ciencies in exploration/mapping time and in using

the on-board computational resources.

2Using cameras with a very wide �eld of view leads to dis-

tortions and a loss of resolution and thus is not an acceptable

solution.

2 Just in time sensing

2.1 The Exploration Context: An Art
Gallery

As an expermental testbed for our sensing method-

ology, we are examing the performance of our approach

in an indoor environment resembling an art gallery or

museum; such an environment has certain practical ad-

vantages as speci�ed below. The environment consists

of a large enclosed room containing several stationary

objects. We make the assumption that a collision-free

paths exists between any two points within the free

space of the room. Although, the objects inside a room

are assumed to be static, the con�guration of the room

is subject to change between successive visits by the

robot and must therefore be mapped again every time

it is visited. The 
oors are 
at (except for some well

de�ned places where stairs exist) and smooth without

any anomalies.

Our robot, an RWI B-12, is equipped with a ring of

sonar sensors which provide coarse range measurements

of distances up to 8 meters omnidirectionally, and a

BIRIS sensor system that can give accurate estimates

over at short range and only in one direction; see Figure

1.

Figure 1: RWI mobile robot equipped with McGill

QUADRIS sensor platform.

In this paper we will also ignore the issue of odome-

try errors. In practice this is a signi�cant issue and we

can address it is a variety of ways [13, 9].

2.2 Processing sonar data

As previously mentioned, a primary robot sensor is

the sonar range �nder. Our RWI robot is equipped with

a ring of 12 sonars positioned equidistantly around it,

returning 12 measurements at the same time. In order

to obtain a denser range map which is less susceptible

to artifacts, the robot is commanded to rotate in place



and more measurements are made. More precisely, we

collect a total of 180 sonar measurements at each robot

(x,y) position but not all of them are used.

But as described above, multiple bounces or echos

associated with sonar data may give rise to the follow-

ing errors. Firstly, a phantom \third" wall may appear

where two walls meet at a corner. Secondly, false mea-

surements may be obtained suggesting the presence of

objects far away. In some cases, errors such as these

can be eliminated. Incompleteness and noise in sonar-

based maps is, however, di�cult to avoid completely.

In order to deal with such errors in the sonar data,

certain measurements are suppressed from further pro-

cessing. Firstly, measurements (range estimates) be-

yond a certain \logical" distance are discarded, under

the assumption that they may not be reliable. Al-

though this could result in the loss of legitimate infor-

mation, we assume that such information is su�ciently

distant from the robot as to be of little importance in

mapping that part of the environment which is nearby.

A second criterion for discarding erroneous sonar

data is related to knowledge about the immediate sur-

roundings of the robot. From knowledge of likely ob-

jects we know we can reliable detect any object within

a circle of diameter 1m about the robot Consequently,

any prior or subsequent range measurement within this

circle can be assumed to be in error, and therefore is

discarded.

Once those measurements deemed to be in error are

discarded, the sonar data measurements are then clus-

tered together using the \Sphere of In
uence Graph"

[20]. Assuming a minimum distance in order to avoid

clustering points at the same position as separate small

clusters. Line segments are then �t to the data clus-

ters by splitting and merging them using a certain con-

�dence measure to obtain new line segments with a

certain con�dence [MD94]. From that point on, the

construction of the environmental map is performed in

terms of lines with a con�dence measure attached to

them.

2.3 Processing laser range data

In order to improve the results we obtain from pure

sonar data, the BIRIS laser range �nder is judiciously

called into play, according to our \just-in-time" sens-

ing strategy. As previously described, the useful range

of BIRIS is about three to four meters but in order

to assume very good accuracy, most of the scans are

performed at one and a half meters range. Another

limitation is its �eld of view of 25 degrees, which is,

in practice, even smaller due to artifacts appearing at

the edges of the scan lines. The BIRIS sensor may be

used to obtain up to 512 range measurements per scan

whenever something is present (an object or a series of

objects) in the whole �eld of view.

Once again, the \Sphere of In
uence Graph" is used

to cluster measurement data into clusters but this time,

no minimum distance threshold is used, since the data

points are already closer together. When line segments

are grouped into clusters, we have observed almost ideal

con�dence levels.

Note too that when BIRIS is used in addition to

sonar, a third criterion for discarding sonar data in er-

ror may be de�ned as follows. Whenever a line seg-

ment is observed by BIRIS, we assume that no ob-

ject is present inside the triangle formed by the BIRIS

line segment and the position of the robot at the apex.

Moreover, as we shall see, BIRIS is only used in places

where sonar is ambiguous, i.e. where much sonar data

is error.

2.4 Just-in-time BIRIS sensing

We now describe the way in which the mobile robot

explores and maps its unknown environment with just-

in-time BIRIS sensing to complement sonar sensing.

Simply, BIRIS data is only acquired to accurately pin-

point the corners and the borders of objects, where the

sonar data is ambiguous.

The exploration strategy developed as a testbed for

the fusion of sonar and laser data is a form of wall

following, or more accurately, \closest object follow-

ing". The world is modeled in terms of line segments

with marked endpoints; an endpoint is marked as ei-

ther \terminal" (con�rmed) or \non terminal" (to be

con�rmed). The algorithm for exploration is outlined

next.

The robot explores its unknown environment by pro-

ceeding to the nearest object (or wall). (When multiple

objects are present in the same sonar scan, the robot

applies a modi�ed breadth �rst search algorithm in or-

der to structure the way in which it will explore one ob-

ject after another.) The robot then navigates around

the object while increasing the length of the current

line segment until reaching a non-terminal endpoint of

the current line segment in a trajectory parallel to it at

a distance of approximately one meter from it (making,

if necessary, the proper adjustments). It is at this stage

that BIRIS is used.

Non-terminal endpoints will arise when the robot

is approaching the corner of two walls whereby the

current object (the wall that the robot was following)

comes to an end. The robot localizes the potential

corner using sonar data, aims BIRIS at the corner,

and then maps the corner accurately, marking the end-

points of the two lines as terminals, i.e. the end of the

wall that the robot was following, and the beginning of



the other wall.

When the robot reaches the physical extremity of a

line/wall, BIRIS is needed to accurately map the end-

point position. This is because the endpoint critically

de�nes the geometry yet is especially hard to acuu-

rately position using sonar. Once again, the robot aims

BIRIS at the endpoint of the object currently marked as

\non-terminal", obtains data, transforms the data into

line segments, and then calculates the exact position

of the endpoint while marking it as \terminal". When

both endpoints of the closest object line segment are

marked as terminal, then the robot moves away from

until a new object, not fully explored (with at least one

non-terminal endpoint) becomes the new closest object.

2.5 Constructing the map from sonar and
BIRIS data

The incremental construction of the map of the un-

known world takes into account the position and ori-

entation of the line segments, their data source (sonar,

BIRIS), and the con�dence measure attached to them.

In particular, the map consists of three types of lines:

Sonar, for the line segments created using only sonar

points; Biris, for the ones that use only BIRIS measure-

ments; Complex, for the ones that appear after merging

Sonar and Biris line segments.

If two lines are almost parallel and their separation is

less than a critical threshold d (in our experiments, d =

5cm), then they are merged. There are two di�erent

cases for merging.

The �rst case is when there is one Sonar line seg-

ment and one Biris or Complex line segment. Since

BIRIS is much more accurate than sonar, we project

the Sonar line segment onto the Biris/Complex line

segment. In all other cases, we merge two line seg-

ments by taking into account the con�dence measure

(fi) associated with each one, and its length (li). If

the two line segments intersect, then a new line seg-

ment passing through the point of intersection is cre-

ated with slope m (Equation 1) where mi is the slope

of the line segment with the largest con�dence mea-

sure (length multiplied by con�dence). If the two line

segments do not intersect, then we identify their two

nearest endpoints and calculate a weighted midpoint

using the same weights used for the slope, thereby cre-

ating a new line segment passing through the weighted

midpoint with a slope m as described above.

m = � �mi + (1� �)mj

� = max( l1
l1+l2

� f1;
l2

l1+l2
� f2)

(1)

One di�culty arises when merging changes the po-

sition of line segment endpoints. Consider the case of

merging two line segments with one having an endpoint

marked terminal. It is possible that when we map a

Biris or Complex line having a terminal endpoint onto

a Sonar line segment, the length of the sonar line seg-

ment will change, in order to preserve the position of

the terminal endpoint. In this way, BIRIS data helps

\clean up" the Sonar line segments by discarding erro-

neous points and by adjusting the lengths of the Sonar

line segments.

Every time the robot uses its sonar sensors or BIRIS

range�nder, it updates its map with new Sonar or Biris

line segments, in order to decide how to continue to ex-

plore that part of the environment which is still un-

known. In addition, the partially constructed map

would also be useful for helping the robot return to a

\home base" in case of sensor/BIRIS failure, low power

problems, etc.

3 Experimental results

A set of experiments were conducted in the Mobile

Robotics Lab of McGill's Centre for Intelligent Ma-

chines using the abovementioned RWI robot and spe-

cially developed running on a Silicon Graphics INDY

workstation. At �rst, just sonar was used to perform

the world modelling in order to establish a baseline for

comparison; see Figure 2. Note that the robot does

not complete a full tour of the indoor space; just three

walls are followed.

Figure 2: Map of our interior space generated using

only sonar sensors.

The same experiments were repeated for sonar and

BIRIS, in order to demonstrate the improvement in

accuracy. The following four �gures are a sequence



of \snapshots" during di�erent stages of the map con-

struction of the same world, using \just-in-time sens-

ing" with BIRIS.

In Figure 3, we observe that the robot started its

exploration at a slightly di�erent position and has now

followed two walls; the portions in the �gure shaded

in grey indicate where BIRIS data was used to more

accurately map corners.

Figure 3: Progressive map construction using just-in-

time sensing; Step A

In Figure 4, partial information about the interior

object and about a third wall has been added to the

map. Note too that the artifact present in the lower left

of the previous �gure has been \cleaned-up" as part of

the accurate mapping of the third wall.

In Figure 5, we observe that BIRIS is used once again

to more accurately map the corner associated with the

end of the third wall and the beginning of the fourth

wall.

Finally, in Figure 6, the robot has completed the

same partial tour as before (using just sonar), by fol-

lowing three walls. When compared to the map shown

in Figure 2, we observe that the modelling is much

cleaner, especially with respect to the interior (naviga-

ble) space, i.e. artifacts still remain \behind" the walls

of the interior space but they have no bearing on the

way in which the robot would use its map in the future

to navigate within the world now explored.

4 Conclusions

This paper describes an approach to combining

range data from both a set of sonar sensors as well as

from a directional laser range �nder to e�ciently take

advantage of the characteristics of both types of devices

Figure 4: Progressive map construction using just-in-

time sensing; Step B

when exploring and mapping unknown worlds. We call

our approach \just in time sensing" because it uses the

more accurate but constrained laser range sensor only

as needed, based upon a preliminary interpretation of

sonar data. In this respect, it resembles \just in time"

inventory control which attempts to judiciously obtain

materials for industrial manufacturing only when and

as needed.

Experiments were also reported with an RWI mo-

bile robot equipped with sonar (supplied by RWI)

and a laser range�nder we have developed at McGill

University's Centre for Intelligent Machines based on

BIRIS technology. They demonstrate that by judi-

ciously using the more accurate but more complex

laser range�nder to deal with the well-known ambigu-

ity which arises in sonar data, we are able to obtain a

much better map of an interior space at little additional

cost (in terms of time and computational expense).
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