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This paper ana.,’ses the problems an- presents solutions 
for building a modular robot control system. The 
approach requires modeling the entire robot system 
using multi-dimensional passive networks, breaking the 
system into subnetwork “modules,” and then discretizing 
the subnetworks, or n-ports, in a passivity preserving 
fashion. The main difficulty is the existence of “algebraic 
loops” in the discretized system. This problem is over- 
come by the use of scattering theory, whereby the inputs 
and outpits of the n-ports are mapped into wave vari- 
ables before being discretized. By first segmenting the n- 
ports into nonlinear memoryless subnetworks and linear 
dynamic subnetworks and then discretizing using passiv- 
ity preserving techniques such as Tustin’s method, a 
complete modular robot control solution is obtained. 

1.0 Introduction. 
Sandia National Laboratories has been developing sensor- 
based robot control and advanced telerobotic control for 
remediating hazardous waste and decommissioning nuclear 
facilities for the last eight years. One of the key technolo- 
gies developed as part of this effort is SMART (Sequential 
Modular Architecture for Robotics and Teleoperation). [2, 
31. SMART allows the system developer to build up 
advanced telerobotic behavior by combining SMART mod- 
ules in different sequences. It has been applied to tasks as 
diverse as multi-ann control[5], waste-tank clean-up[6], 
and kinesthetic virtual reality[3]. 

With SMART it is assumed that all telerobot system com- 
ponents, such as input devices, sensors, control laws, 
robots, constraints, and robot environmental interaction can 
be modelled by multi-dimensional networks consisting of 
lumped parameter positive-definite matrix-valued one-port 
elements connected by possibly nonlinear two-port Jacobi- 
ans, and driven by independent effort and flow sources. 

The system is modularized by breaking up the complete 
closed network into individual ports [7,8], which can then 
be separately discretized and distributed among processors 
in a multiple-processor environment. In this paper, we will 
present the discretrization techniques by which the modu- 
larity is achieved in the discrete domain, and the steps 
needed to develop a SMART module. 

1.1 Terminology 
In this paper networks will follow the effort flow anal- 
ogy[9] which relates force (effort) to voltage and velocity 
(flow) to current. Subscripts will denote the space in 
which these signals are based. The operators derived from 
this analogy, and the new scattering variables are summa- 
rized in the two tables below. 

TABLE 1.1 Network variables 

I svmbol I descriDtion 
Vi velocity, angular velocity 
fi, fdi 
xi. xdi position, desired position 

force or torque, desired force or torque 

I I input wave: ai = f i  + Zovi 1 %  
bi 

Z,,, ZO, 

output wave: bi = f i - Z , v i  
characteristic impedance: ZO, =&I, 

TABLE 1.2 Nehvork Operators 

resistance I dvv- 
l + f i -  

~~ I a i  stiffness/ 
capacitance f i  = I K i h i  + $ -  

modulated 
transformer 

1.2 A Sample Problem 
To demonstrate how SMART modules can be developed 
for a run time system we will design a sample modular tel- 
erobot control system. The sample system, albeit extremely 
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simplified, will illustrate the key issues and design tech- 
niques for building and discretizing a multitude of robot 
control modules. 

The sample system consists of a filtering module (KBl), an 
input device module, (SPACEJMLL), a kinematics mod- 
ule (PUMA-KIN), and a dynamics emulation module 
(MB 1). A SMART module icon representation, which 
shows both a pictorial representation of each module’s 
functionality, and a network depiction of the underlying 
system is shown in Fig 1 below 

2.0 The Problem of Algrebraic Loops 
In a network representation of a system we are accustomed 
to thinking in terms of standard state variables, e.g., effort, 
flow, force, velocity, voltage, current, etc. Unfortunately, 
when the system is discretized, either for simulation or for 
control, these variables are generally the wrong variables, 
since their usage can introduce non-passivity, and instabil- 
ity into a system whose ideal continuous representation 
would be passive and robustly stable. Overcoming this 
problem is the key to designing SMART modules. Before 
developing these techniques for our prototype telerobot 
system, we shall start with a much simpler example. 

2.1 Modularizing a Velocity Divider Network 
Consider the figure shown below (Fig 2). 

FIGURE 1: SMARTModufes for  sample system 

During operation with these modules, six degree-of-free- 
dom @OF) commands are input by the human operator by 
pressing the space-ball, which decouples strain-gauge read- 
ings into a forcdtorque vector at the ball center. These 
measurements are converted to velocity commands by the 
SPACE-BALL module, and injected into the system as 
world position commands. The KBl module serves to 
remove any spikes from the operator’s input command 
stream, and directs the flow towards the robot. The 
PUMA-m module maps the world space position and 
velocity commands into joint space using a PUMA robot’s 
kinematic equations. Finally, velocity commands are 
received by the ME3 1 module and mapped into joint torques 
using simulated joint inertia and damping. An actual robot 
would be controlled either by copying the stream of input 
velocities received by the M 3  1 module to a set-point con- 
troller on the robot, or by passing the torque commands 
directly to the robot’s motor amplifiers. 

In SMART each of these modules represents a separate 
computational element which can be mixed and matched 
with other modules to create behaviors. For instance, the 
PUh4AJUN module can be switched with the kinematics 
module for another robot. The SPACE-BALL module can 
be replaced or cascaded with another input device module. 
In this paper we will investigate how each of these sample 
modules are independently designed and discretized, and 
how these modules can be combined to achieve the desired 
telerobot behavior in a multi-processor computing environ- 
ment. In so doing, we hope to illustrate the basic concepts 
and techniques needed for building new modules. Before 
this is done. however, the problem of atgrebraic Ioops will 
be addressed. 

FIGURE 2: Velocity divider network 

It consists of an ideal velocity source, vd(t), and two damp- 
ing terms, B1 and B2. The constituent equations for the net- 
work elements are: 

f 1 =  ‘BPI, 
f 2  = B2v21 

and the connection equations are given by 

v2 = V I  + vd (3) 
fi =f2 (4) 

which when combined, result in the current (velocity) 
divider equations: 

v 1  = - (B ,  + B,)-lB2vd 
(5 )  

Suppose however, that these equations are to be imple- 
mented in a modular fashion, and the constituent equations 
and the connection equations for the network are computed 
separately. 
In-this case a sample deIay is incurred, since some compu- 
tations depend on results of other computations. If the con- 
nection equations can be computed without sample delay, 
i.e., for each sample instantk, 

v2 = ( B , + B , ) - ’ B , ~ ~  

v2(k) = + vd(k), (6) 
f d k )  =f2(k). (7) 

then the constituent equations must contain some sampling 
delay, as shown below 



f 2 W  = B2v2(k-I) 
Combining these equations yields 

t 9)  

Which has the discrete characteristic equation 
- . 

0 = Z+ Bl”B2 (1 1) 
For a scalar system this will be stable if and only if lB2l c 
IBzI. For a matrix valued system with diagonal damping 
operators B1 and B2 each element of B2 must be less than 
the corresponding diagonal element of B I ,  and for matrix- 
valued damping the induced two-norm’ condition 

I t  BI-’B21I2 c I 
must be satisfied. 

Sampling in a different order may reverse the stability 
requirements, requiring that Bl be less than B2, but it will 
not eliminate the problem. As long as effort and flow vari- 
ables are sampled, instability may arise due to sampling. 
This problem is called algebraic instability, where the ideal 
continuous system contains elements of the same order, 
which when separated into modular components resnit in 
additional discrete-time states. Thus, in our example, a 
zero-order damping system, becomes a first order system in 
the discrete domain. Likewise, two first-order coupled sys- 
tems might result in a third-order discretized system. It is 
important to note that this problem exists independent of 
rhe sampling rate. Thus the common belief that “sampling 
fast enough” will cause our discrete system to exhibit the 
same behavior of the ideal continuous system is in general 
invalid for modular systems. 

Now if the only goal was to design linear, time-invariant 
robotic control systems for single, rigid-body robots, with 
known a priori interactions then present methods would be 
adequate. The entire system could be combined into one 
large equation before sampling (as in Eq.5), or the stringent 
coupled stability requirements of Equation 12 could be 
met. However, if the goal is to build flexible, expandable, 
control systems such as SMART then discretization is 
mandatory, and modularity is required, not because it is 
conceptually and computationally pleasing, but because it 
is the only way to handle complex systems. 

Luckily, there is a body of theory that can be applied, 
where stability is always maintained after discretization, 
where components can be designed in a completely modu- 
lar fashion, and where the “sampling fast enough” adage 

1. The two-nom for a matrix, A, is equal to the maximum singu- 
lar value, Le., the maximum eigenvalue of the matrix ATA. 

will be true, even in the presence of additional discrete time 
states. The theory is called scattering theory. 

3.0 Scattering Theory 
Scattering theory was developed to handle problems in 
transmission line analysis. Ideal lossless transmission lines 
transmit effort and flow (voltage and current in this case) 
across distances without losing energy and without chang- 
ing the steady-state behavior of the signal. However, 
depending on the line impedance, G, and the impedances 
terminating either end of the line, the transient behavior of 
the signal will be effected. 

3.1 Wave variables 
Scattering theory involves a change of basis. Instead of 
using effort-flow variables to describe dynamic time-delay 
phenomena at port connections, wave variables are used. 
Wave variables represent a bilinear map of the standard 
effort-flow variables. The input wave, a,  is defined as the 
effort plus the scaled flow entering the port, a = f + ZO v, 
where q2 is a constant representing the characteristic 
impedance. The output wave, b, is defined as the effort 
minus the scaled flow, b = f - ZOV 

For a two-port (Fig. 3) 
Vn 

~~~ 

- 4 Port - 

FIGURE 3: Two-port network 

with flow, vp, entering the port from the previous port, with 
flow, v,, exiting the port to enter the next port, and with 
efforts, fp, and f,, at the port terminals, the corresponding 
wave variables are defined as 

(14) 

If the underlying reference frame is matrix-valued, then the 
same equations still apply, except in this case h, represents 
the scaled identity matrix. ’ 
_ _ _ ~  

2. The characteristic impedance, 20, would normally be derived 
from transmission line impedance parameters, and would in 
general be a complex number. In SMART, however, this 
parameter is arbitrary, and should be set to a real constant that 
causes the units of force and scaled velocity to have the same 
order of magnitude. .. 



3.2 Scattering Operators. 
Using this mapping of effort and flow variables into wave 
variables, we can determine how impedance, admittance 
and hybrid operators can be mapped into scattering opera- 
tors. A scattering operator, S, is the mapping between 
input waves variables, a, and output wave variables, 6. 

b = S a ,  (15) 
and can be readily derived from the constituent equations 
for the given element. 

For instance, suppose a linear-time-invariant (LTI) one-port 
is represented by its equivalent impedance, Z(s), 

fls) = Z(s)v(s). (16) 
Then its input wave is defined by, 

4 s )  =f(s) + Z,V(S) = (z(s) + Z,) v(s), 
and its output wave is defined by 

b(s)  = f ( s )  - Z,v(s )  = ( Z ( s )  - Z,)V(S) 

= ( ~ ( s )  - z ,> ( z (~ )  + Zo)-la(s) 

and thus the scattering operator is defined by, 

S ( S )  = (z(4 - 2,) (27s) + Z*Y'. 

The inverse, (as) + Zo)-', whether scalar or matrix valued, 
is always well defined since 27s) is positive real and Zo is 
strictly positive. 

The scattering approach transforms passive impedances, 
which have Nyquist frequency plots in the right-half plane, 
to scattering operators, which have Nyquist frequency plots 
in the unit-circle. 

Suppose we have a LTI one-port consisting solely of pas- 
sive elements, e.g., masses, springs, dampers, and Jacobi- 
ans. with driving point impedance Z(s). It is a well known 
result of network theory[l] that the Nyquist plot of the 
impedance will lie entirely in the right-half plane. Like- 
wise, the singular values for a passive two-port impedance 
operator or admittance operator will also lie entirely in the 
right half plane. 

Thus for a LTI system where the characteristic impedance 
is chosen to be a real constant all of the following are 
equivalent: 

An n-port is passive . 
An n-port can be represented by a network of passive 
elements. 
An n-port has an impedance operator with a Nyquist 
plot contained entirely in the right half plane. 
An n-port has a scattering operator with frequency 
response in the unit circle. 

An n-port has a scattering operator with norm less than 
or equal to one. 

The beauty of the scattering operator approach for robotic 
systems is that the scattering operator representation is 
equally valid for nonlinear systems as it is for linear sys- 
tems. Thus although we can not talk about Nyquist plots 
for nonlinear systems we can still maintain the following 
equivalence: 

An n-port is passive 
An n-port can be represented by a network of passive 
elements. 
An n-port has a scattering operator with norm less than 
or equal to one. 

3.3 Revisiting the Velocity Divider Problem 
Let us now apply the scattering approach to the velocity 
divider problem. In terms of wave variables the connection 
equations are given by 

aifi) =fi(k) - &vl(k) =f2(k) - Zov2(k) + ZovAk) 

a2(k) =fin * zov2(k) =f i (k)  + zoVl(k) + zovAk) 
= b2(k)+ ZoVAk) (19) 

= bl(k)+ ZovAk) (20) 

bdk)  = SIadk) (21) 
bz(k) = Sza2(k-I) (22) 

and the constituent equations are given by 

where SI = (BI-Zo)(Bl+Zo)-' and S2 = (B2-Zo)(B2+Zo)-'. 

Combining these equations then yields 

a2(k) = bl(k) + Zovdk) = SIal(k)+ q v d k )  

= S1(b2(k)+ &v&) + ZovAk) 

= SiSzaz(k-l)+ (SiZo+ Z0)VAk) (23) 

(24) 
This equation has all of its poles in the unit circle since 
llSlll c 1 and IIS211 c 1 for any positive damping B,  and B2 
Furthermore this will be true no matter what sampling 
strategy is chosen. This will also be true even if B is a non- 
linear function of position andor velocity, as long as it 
remgns positive definite at all times. 

Thus when a system represented by effort-flow variables is 
modularized and sampled directly, (as in Section 2.1) it is 
likely to go unstable. If, o? the other hand, its impedance is 
represented in terms of scattering operators, wave-vari- 
ab@ rather than effort-flow variables are sampled, and the 
system is then modularized into individual ports, a discrete 
time modular system is derived which is as stable and 
robust as the original compound continuous system. The 
reason for this is summarized by the theorem below: 

which has the characteristic equation 

0 = z - S,S, 



Theorem 3.1. Any delayed passive scattering operator, e- 
sTscs), remains passive. 

Proox lle-sTs(s)ll I Ile+qI lls(s)ll I Ils(s>ll I 1. 

Because a pure phase shift cannot take the frequency 
response of the scattering operator outside of the unit cir- 
cle, it cannot affect the passivity of the scattering operator. 

4.0 Scattering Theory for Robot Ports 
To illustrate how scattering operator techniques can be 
applied to robot control modules we will develop scattering 
operator maps for each of the SMART modules shown in 
Fig 1. We will first analyze the KB 1 and MB 1 one-ports at 
either end of the network, and then tackle the 
SPACE-BALL and PUMA-KIN two-ports. 

- - -  4J -1Ip 
' 6"7-- fP port 

FIGURE 4: One-port network with driving force, ap 

4.1 One-Port Scattering Operators 
The simplest way to compute the scattering operator for a 
network is to apply a wave effort source in series with the 
characteristic impedance at each port, and then apply 
superposition of the inputs. For example, for a one-port, as 
shown in Fig 4, we can apply a driving signal, a,,, and a 
series impedance, Zo, which results in the standard wave 
equation, 

(25) 
then using standard network analysis techniques we can 
derive 

(26) 

ap =fp  + 2 0  vp 

bp =& - 20 vp 
as a function of the input wave, a,,. 

Example 4.1. KB 1 -Port Scattering Operator 

Consider the stiffness-damping one-port (KB I-port) shown 
in Fig5 with driving wave attached. 

FIGURE 5: KBI-port with driving wave. 

Applying Kirchoff's laws we get 

a, = -(x/s + B + 20) v,. 
Therefore we get for the wave equation 

b, = a,+2Zovn 

= ( K  + BS - z,s)(~ + BS + Zos)-'a, 

= S,a, 

where the scattering operator, S,, is given by 

-1 
S, = ( K + B s - Z o s ) ( K + B ~ + Z 0 s )  . (29) 

Likewise the MB 1 port scattering operator is given by 

s, = (Ms + B - zo>< Ms + i + zo,-' (30) 

4.2 'ho-Port Scattering Operators 
We can apply the same technique to two-ports, by connect- 
ing a input driving wave at both port connections. 

Example 4.2. Spaceball-Port 

Consider the Spaceball two-port in Fig 6 with both driving 
waves attached. The spaceball adds a desired velocity com- 
mand signal, Vd. to the input from the previous port to get 
the velocity input for the next port. It also adds a small 
amount of symmetrically placed damping, B, to help 
reduce wave reflections in the module. 

B ' n  z 

I I - I 

FIGURE 6: Spaceball -port with driving waves. 

Applying Kirchoff's laws we get 

1 1 1 -1 v + - v d  = v,--vd = - (Z, ,+B) (ap -a , )  (31) p 2  2 2 
and thus for the wave equations: 

= spJ-zOfj 



' 5.0 The Jacobian Scattering Operator. 
A Jacobian operator, J, can be used to define any mapping 
between reference frames which satisfies the principal of 
virtual work. In robotics it typically refers to the velocity 
mapping between a robot's joint space and its world space 
motions. In SMART the Jacobian is used for a wide variety 
of variable mappings. It is used to map between different 
frames on a manipulator, it is used to implement nonlinear 
boundary functions, and it is used to map between spaces 
with different degrees-of-freedom. More than any other 
element it enables the versatility and generality of the vec- 
tor network approach. In this section the scattering operator 
representation for the Jacobian element will be derived. 

5.1 Transformer Representation of Jacobians 
Consider the Jacobian element shown in Fig I below and 
represented by a modulated transformer. 

vn za - - 

which implies that the scattering operator for the two-port 
Jacobian, Jdp ,  is given by, tan([ 

'* -1 r 

hat 

This matrix inversion is always easily computable since the 
desired inverses are positive definite symmetric. This is an 
important point, even if the Jacobian is singular or non- 
square, the scattering operator derived from the Jacobian is 
always well defined. Thus the functional dependency of the 
Jacobian operator on the xp can be changed without being 
concerned by the effects of singularities. 

- 
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5.2 The Jacobian Scattering Operator Norm. 
The imposed two-norm on a matrix valued system is 
defined as the maximum singular value of the matrix. To 
compute the singular values for SPm, we need to compute 
the eigenvalues of, 

r 

FIGURE 7: Jacobian element driven by wave inputs 

The Jacobian, Jdp(xp), maps the velocities from space p to 
space n as a function of the position xp, according to the 
equation, vn = Jdp(xp)vp, and thus has the force mapping, 
fp=JdpTfn. The goal is to determine the mapping between 
the input waves (eq. 13-14), 

rn 
rented iq 
constan 

Applying the loop equation to Fig 7 gives, 

T T ap  - Z Q p v p  = JnIp a, + Jalp ZO,v,. 
I - 2 D , + D , 2 + D p J  T JD,  D,J T D , - D ,  

= [ D n J D p - I D ,  2 (33) 
since the impedance operators are just scaled identity oper- 
ators,Wp=Zdp and zO,=Zd,, it follows that 

T T T 2 but D p J n I p  = J,,,D,, and D p 3  J D ,  -i- D, = 2 D p , .  

(34) T Therefore,Sp,,Sp,, = and consequently a11 

of the eigenvalues are identity, and thusIISpxn]lz = 1 for 

any choice of JFJP. 

By defining the matrix, 

(35) 

the output waves can be written as So despite the fact that the Jacobian can vary widely as a 
function of position, the resulting scattering operator is 
always orthonormal, with a norm of one. This somewhat 
surprising mathematical result, is not surprising at all when 
the physics of the system are analyzed. Because the Jaco- 
bian represents a lossless transformation, and the norm of 

1. A simitar form can be computed using the matrix, 

D,  = 2(I ,  + JnIp JTiP )-I which may be more efficient than 
(Eq. 35) depending on the number of respective DOFs. 

er 
0 maps k 
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1. This scattering operator will only work directly for the three 
linear DC Fs. The angular velocity DOFs can be computed in a 
similar fashion only by premultiplying and post-multiplying 
the wave variables by the appropriate rotation matrix. This 
technique is beyond the scope of this paper. 



. and calling the update routine for each of the modules at a 
fixed rate. For the SMART system each module is placed 
arbitrarily across the processor boards in a VME back- 
plane. Dual ported memory is used to link up the outputs of 
one module to the inputs of the next module. 

If all of the modules in the system have been designed 
using the techniques described in this paper, then they will 
have the same stability and performance independent of the 
order that they are sampled. If sampling is increased then 
the performance will more cIosely approximate the contin- 
uous system upon which they are based. The system will 
remain stable even if modules are sampled at different 
rates, miss  sample updates, or stop updating all together. In 
SMART the modules are all clocked at the same basic 
period by setting up a clocked interrupt process on the first 
CPU, and using mailbox interrupts to trigger the other 
CPUS, - -- - - - - - 

Stable forcdvelocity feedback paths are maintained in 
SMART by using the wave variable approach presented 
here. Exact position tracking, however, requires that posi- 
tion information be passed as well. This can be done in a 
stable fashion by passing position only in a feedforward 
loop, based on the feedback wave variables. As long as the 
scattering operators are passive for all positions, the force 
and velocity loops will remain stable, and as long as feed- 
forward position is based only on the stable wave variables, 
the position will remain stable as well. 

8.0 Conclusions. 
Our approach to building a modular robot control system 
consists of the following steps. First represent the system 
and the controller as a closed network, such as the teleoper- 
ator control system in Figure 1. Second, break up the net- 
work system into a series of n-port modules. Third, for 
each n-port module, break the system into linear time 
invariant sections and nonlinear Jacobian sections. Fourth, 
apply Tustin’s passivity preserving discretization method to 
all linear-time-invariant components of the system. Fifth, 
apply scattering theory to all network components to get 
input-output mappings between wave variables for every 
module, precompute all filter constants. Sixth, distribute 
the modules across the processors in the system and con- 
nect the output waves of each module to the input waves of 
the next modufe using pointers in dual-ported memory. 

By basing the SMART Ghitecture on these intuitive net- 
work modular blocks, rather than reducing the system to a 
state-space format, even novice users can build up complex 
nonlinear, behavior based telerobotic control systems, 
incorporating multiple robots, nonlinear constraint forces, 
human operator input, and sensor feedback. Furthermore, 
since the modules can be independently updated and con- 
nected, these systems can be automatically generated and 

flexibly adapted to fit any distributed computer architec- 
ture. 

9.0 References. 
[ 11 B. D. 0. Anderson, Network Analysis, Prentice Hall, Engle- 
wood Cliffs, NJ, (1973). 
[2] R. J. Anderson, “SMART A Modular Control Architecture 
for Telerobotics”, IEEE Robotics and Automation Society Maga- 

[3] R. J. Anderson, “Teleoperation with Virtual Force Feedback”, 
Proceedings of the’93 SPIE Int. Symp. on Optical Tools for Man- 
ufacturing and Advanced Automation, Sept. 1993, Boston, MA. 
[4] R. J. Anderson, “Autonomous, Teleoperated, and Shared Con- 
trol of Robot Systems”, ‘96 IEEE International Conference on 
Robotics and Automation, St. Paul, Minn. April 22-28. 

zine, Vol. 2, No., 3, Sept. ‘95, pp. 10-18. _ _  

151 R. J. Anderson and K. Lilly, “A Modular Approach to Multi- - . 

Robot Control”, IEEE Conference on Decision & Contr#’, New 
Orleans, Dec. 1995. 
[6] R. J. Anderson and B. Davies, “Using Virtual Objects to Aid 
Underground Storage Tank Teleoperation”, Proceedings of ‘94 
IEEE International Conference on Robotics and Automation”, pp. 
1421-1426, San Diego, May. 1994. 
[7] R. J. Anderson and M. Spong, “Asymptotic Stability for Force 
Reflecting Teleoperators with Time Delay”, The International 
Journal of Robotics Research, vol. 11, pp. 135-149,1992. 
[8] G. Raju, G. C. Verghese and T. B. Sheridan, “Design Issues in 
2-port Network Models of Bilateral Remote Manipulation”, IEEE 
International Conference on Robotics and Automation, Scotts- 
dale, A& pp. 1316-1321, 1989. 
[9] R. Rosenberg and D. Karnop, Introduction to Physical System 
Dynamics. New York: McGraw-Hill, 1983. 

. -  


