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Abstract

The term �xturing refers to the task of immobilizing

a workpiece for the purpose of performing operations

such as assembly and machining. As such, �xturing is

of fundamental importance to industrial manufactur-

ing. Fixtures can either be fabricated from scratch, or

assembled from a toolkit of modular components, the

latter approach is termed modular �xturing. In this pa-

per, we present a complete algorithm to automatically

design �xtures for the �xture vise toolkit. The algo-

rithm enumerates �xture con�gurations, consisting of

peg positions, workpiece pose, and jaw separation, for

a given generalized polyhedral workpiece. A general-

ized polyhedral prismatic workpiece is de�ned to have a

generalized polygonal silhouette, with a boundary com-

posed of linear edges and circular arcs.

1 Introduction

The task of immobilizing a workpiece via mechani-
cal devices, commonly called �xturing or workholding,
is of fundamental importance to industrial manufac-
turing. Fixturing constitutes 10-20% of total manu-
facturing costs [2] because �xture costs are amortized
over small batches (85% of all job shop batches consist
of 50 or fewer workpieces). It is expensive and time
consuming to fabricate �xtures from scratch, as com-
pared to assembling �xtures from a modular toolkit of
components; the latter approach, termed modular �x-
turing, can provide high precision, rigidity, durability,
speed, and recon�gurability.

Since �xturing is of fundamental importance to
manufacturing, its automation is greatly desired. In
the past, �xture design has been more of a craft than
a science. For this reason, �xtures and automated �x-
ture design have been discussed at length in the me-
chanical engineering literature, manufacturing litera-
ture, and the robotics literature. Hazen and Wright's
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review [3] implied that most of the research in auto-
mated �xturing systems are based on expert systems.
Gandhi and Thompson [2] attempted to bridge the gap
between geometrical analysis and expert systems via
a technique for analyzing force closure (the ability to
resist arbitrary external forces and torques) within the
framework of an expert system. The robotics commu-
nity has also made signi�cant contributions in terms
of grasping, e�ciently enumerating useful grasps, and
grasp qualitymetrics; the reader is referred to [4, 8, 10]
for an overview of these results. Mishra's [5] analysis
of the toe clamp toolkit sparked renewed interest in
the �eld of robotics.

Recently, Wallack and Canny [10, 11], Brost and
Goldberg [1], and Overmars et al. [6] proposed modu-
lar �xturing toolkits which incorporated peg/hole de-
vices (�xture tables) and a single degree of freedom,
as well as complete �xture design algorithms. Wallack
and Canny's [10, 11] and Brost and Goldberg's [1]
algorithms share many similarities: both algorithms
handle polygonal models, both rely on generate and
test techniques. Wallack and Canny's �xture vise
toolkit (Figure 1) is based on the Black and Decker
Workmate, wherein modular �xture elements (pegs)
are inserted into lattices of holes inlaid in �xture ta-
bles, where the �xture tables are mounted on jaws of
a vise (Figure 1). Brost and Goldberg's translating
clamp toolkit [1] involves three pegs and a translat-
ing clamp inserted into a single �xture table. Both
toolkits share many advantages such as the property
that closing the vise/tightening the clamp squeezes
the workpiece into place; furthermore, when the �x-
ture vise is turned upside down, it can function as a
universal gripper.

The �xture vise provides two di�erent types of con-
�gurations: Type I- where two pegs reside on each jaw
of the vise, and Type II- where three pegs reside on one
jaw of the vise, and one peg resides on the other. The
translating clamp toolkit involves inserting three pegs
and a translating clamp into a �xture table. We be-
lieve that the �xture vise toolkit is more general than



Figure 1: A �xture vise consists of two �xture table
jaws capable of translating in x.

the the translating clamp toolkit because all translat-
ing clamp con�gurations correspond to Type II �xture
vise con�gurations, where the jaw separation and peg
on the right jaw act as the translating clamp. The
two main di�erences between Wallack and Canny's
�xture enumeration algorithm [10, 11] and Brost and
Goldberg's �xture enumeration algorithm [1] is that
Wallack and Canny computed the set of possible peg
positions more conservatively, and Brost and Gold-
berg exploited the fact that for the translating clamp
toolkit (and Type II �xture vise con�gurations), the
workpiece's pose can be determined after choosing the
�rst three peg positions. Thereby, Brost and Goldberg
were able to exploit force closure constraints to prune
the set of candidate �xture con�gurations.

In this report, we extend Wallack and Canny's �x-
ture vise algorithm to handle generalized polygonal
workpieces; a generalized polyhedral prismatic work-
piece has the property that its projection onto the
�xture plane is a generalized polygon, where a gener-
alized polygon is de�ned as having a boundary com-
posed of linear edges and circular arcs. The extensions
we discuss are also applicable for extending Brost and
Goldberg's �xture design algorithm [1] to handle gen-
eralize polyhedra.

1.1 Overview

In this paper, we describe the �xture vise design al-
gorithm for generalized polyhedra, and highlight the
di�erences from the original algorithm [10, 11]. The
�xture design algorithm involves enumerating candi-
date quartets of features (model edges), enumerating
candidate peg positions for each quartet of features,
computing the poses achieving simultaneous contact
for each combination of pegs features, and verifying
force closure (the ability to resist arbitrary external
forces and torques) for each simultaneous contact con-
�guration.

We enumerate candidate peg positions using the an-
nulus wedge strategy outlined in [1]; wedges of annuli
liberally characterize regions swept over by one fea-

ture while maintaining contact between another fea-
ture and a point. In the previous algorithm ([10, 11]),
we enumerated peg positions by parameterizing the
object's pose in terms of the extended intersection of
the �rst two linear features and �rst two peg positions;
this parameterization exploited the property that the
extended intersection of two linear features swept out
a circle. Unfortunately, this property does not ex-
tend to circular features; consequently, we switched
to a simpler, more liberal, method, involving ranges
of orientations and distances between points on two
features [1].

For each combination of features and pegs, we then
compute the poses achieving simultaneous contact be-
tween circular and linear features and a set of points
using a combination of classical algebraic methods and
numerical techniques. In [10, 11], we solved for the si-
multaneous contact pose by formulating and intersect-
ing pairwise constraints between contacts on the same
vise jaw. For linear features, this approach reduces to
solving at worst quartic polynomials. Extending this
approach would have resulted in 32nd degree polyno-
mials. Instead, we used a di�erent formulation which
implicitly satis�es one of the four contact constraints;
this approach reduces to solving 8th order polynomials
for Type II con�gurations, and 24th order polynomials
for Type I con�gurations.

1.2 Outline

In section two, we discuss the theoretical back-
ground and present an overview of the algorithm in
section three. In section four, we compute the simul-
taneous contact poses. In section �ve, we present �x-
tures generated by our algorithm, and we conclude by
highlighting the results and advantages of our tech-
nique.

2 Theoretical Background

2.1 Notation

� The operator � refers to the Minkowski sum: A�
B = fa + bja 2 A; b 2 Bg; we use the Minkowski
sum to map S1 � S1 ! S1, R1�R1! R1

� O refers to a generalized polygon, a two dimen-
sional region with a boundary composed of linear
and circular features.

� ~E refers to a quartet of jaw-speci�ed linear or cir-
cular feature segments.

� ~F refers a quartet of peg positions contacting the
edge segments ~E . fFig refers to a set of a posi-
tions corresponding for the ith peg.



� �x and �y refer to the column and row spacing
on the modular jaws .

2.2 Planar Task

Since the workpieces are prismatic and the pegs
are prismatic, we only need to consider the two di-
mensional projection (Figure 2). We assume that out
of plane forces and torques are countered by other
means. Still, the full three-dimensional problem is not
intractable, as evidenced by Sudsang and Ponce [7]
and Wagner and Goldberg [9].

Figure 2: The two-dimensional view of the workpiece
and the �xture vise in Figure 1.

2.3 Transforming Pegs to Points

As in [10, 11], the problem of achieving simultane-
ous contact with pegs is transformed to the problem
of achieving simultaneous contact with points by ap-
propriately growing the corresponding edges by the
peg radii (Figure 3). For circular pegs, this reduc-
tion is valid, but for 
atted pegs contacting linear fea-
tures, this reduction is conservative. This point con-
tact approximation provides a consistent framework
for treating both types of pegs. The drawback of this
assumption is that we require four pegs per con�gura-
tion, even though three 
atted pegs may provide force
closure.

3 Algorithm

In this section, we describe algorithms and subrou-
tines for enumerating peg con�gurations Figures 4-6
corresponding to a given quartet of edges. This tech-
nique bounds possible peg positions using geometrical
constraints.

1. Generate:

(a) Enumerate all quartets of jaw-speci�ed fea-

ture segments f~E; ~E 0; ~E 00; : : :g which can pos-
sibly achieve force closure with four point
contacts (Figure 4).
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Figure 3: Cylindrical or 
atted pegs can be considered
point contacts by translating linear features outward
by the peg radius, or changing the radius of circular
features by the peg radius.

Enumerate Edge
Quartets Capable
of Achieving Force
Closure

Enumerate
Jaw−Specified
Edge Quartets
{E,E’,E’’,...}

Enumerate
Quartets of
Fixture Positions
{F,F’,F’’,...}

Figure 4: The generate portion of the algorithm enu-
merates quartets of jaw speci�ed feature segments,
and for each edge quartet, enumerates quartets of �x-
ture positions (represented by the �lled-in circles) ca-
pable of achieving force closure.

(b) For each feature segment quartet ~E, com-

pute �xture con�gurations f ~F ; ~F 0; ~F 00; : : :g

providing simultaneous contact with ~E (Fig-
ure 5). The �xture vise con�gurations

f ~F ; ~F 0; ~F 00; : : :g are enumerated as shown in
Figure 6. We assume the �rst peg is placed
at the origin, and then we enumerate all of
the positions for the second peg. For each
combination set of positions of the �rst and
second pegs, we enumerate all of the posi-



Figure 5: Di�erent peg con�gurations ~F , ~F 0, ~F 00 si-
multaneously contacting edge segments ~E .

tions of the third and fourth pegs.

Choose 1st
Fixture Element
Position

Choose 2nd
Fixture Element
Position

Choose 3rd
Fixture Element
Position

Choose 4th
Fixture Element
Position

Figure 6: The peg con�gurations are enumerated by
choosing the position of the second peg, then choosing
the position of the third peg, etc. (�lled-in circles
represent the �xel positions).

2. Test:

(a) Compute the workpiece poses and jaw sep-
arations achieving simultaneous contact be-
tween edge segments ~E and peg positions ~F .

(b) Verify force closure for each simultaneous
contact pose.

3.1 Enumerating Peg Positions f ~Fg

The �rst peg is placed at the origin on the left jaw.
The positions of the second, third, and fourth pegs are
bounded by geometrical constraints.

3.2 Valid Orientations: �L=R

The term �L=R refers to the set of possible work-
piece orientations allowing simultaneous contact be-
tween the left-jaw speci�ed edges and pegs on the left
jaw, and the right-jaw speci�ed edges and pegs on the
right jaw. For generalized polygonal workpieces, con-
vex hulls of circular features corresponding to opposite
jaws may overlap, and, in this case, all orientations
satisfy left/right constraints. Also notice that �L=R

that can consist of two disjoint ranges; for example
when �L=R = h��6 ; 7�6 i \ h

5�
6 ;

�
6 i.

3.3 Annulus Wedges

Possible peg positions are characterized by a range
of distances and ranges of orientations, which bound
the possible vectors between points on the two fea-
tures. Annulus wedges involve computing extremal
orientations and distances. For linear features, the
extremal orientations and distances correspond to ex-
tremal points on the features (the minimum distance
may correspond to a vertex/non-vertex pair). For
circular features, extremal orientations and distances
may correspond to tangent points on the circular fea-
tures. The the range can correspond to two distinct
annulus wedges since �L=R can correspond to two dis-
joint ranges.

3.4 Second Peg Positions fF2g

The second peg fF2g corresponds to a lattice point
consistent with the annulus wedge constraints. The
orientation of the vector between F1 to F2 must lie
within the Minkowski sum of �L=R and the orientation
ranges between points on E1 and E2 (Figure 7).

Positions
satisfying
orientational
and length
constraints

Positions of F

F
1

2

L/Rθ θ< > <
E , E 
1    2 

>
E , E 
1    2 

r<

>

Figure 7: Possible peg positions fF2g highlighted in
grey are consistent with annulus wedge constraints
where the annulus wedge is de�ned by (hrE1;E2i,
h�L=Ri � h�E1;E2i).

3.5 Third and Fourth Peg Positions for Type II

Con�gurations f(F3;F4)g

For Type II con�gurations , since the �rst three
pegs lie on the left vise jaw,F3 is constrained to satisfy
annulus wedge constraints with respect to F1 and F2

(Figure 9): F3 must lie within the intersection of the
two respective annuli wedges (Figure 8). We can then
compute the workpiece's pose given the �rst three con-
tacts, and given the pose, enumerate the fourth peg
positions fF4g on rows overlapping the transformed
fourth edge.
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Figure 8: The third peg must lie in the region swept
by E3 while maintaining contact between E1, E2 and
F1, F2; this region is de�ned with respect to the left
jaw. For Type II con�gurations, since the third peg
lies on the same jaw as the �rst two pegs, the third
peg corresponds to a lattice point within the swept
region.
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Positions
satisfying both
orientational
and length
constraints

Positions of F
3

Figure 9: We bound the third peg positions F3 by
intersecting two wedge annuli constraints: hrE1;E3i and
h�L=Ri � h�E1;E3i, hrE2;E3i and h�L=Ri � h�E2;E3i.

3.5.1 Third and Fourth Peg Positions for

Type I Con�gurations

For Type I con�gurations, enumerating peg positions
is more di�cult because the third and fourth pegs
(F3;F4) reside on the right vise jaw which may trans-
late in x with respect to the �rst two pegs (F1;F2)
(Figure 10). Since the annulus wedge intersection re-
gions for the third and fourth features were de�ned
with respect to F1 and F2 these regions provide rel-
ative information about the possible x positions of
the third and fourth �xture pegs. We compute pairs
of possible peg positions f(F3;F4)g as follows: Con-
sider all pairs of rows corresponding to the two edge
segments, (R;R�), and the x regions included along
those rows, [XR

E3
], [XR

�

E4
]. Even though the x ranges

[XR

E3
], [XR

�

E4
] were computed with respect to the left

jaw, the di�erential between the x coordinate ranges
[XR

E3
] � (�[XR

�

E4
]) for E3 and E4 is invariant with re-

spect to translation in x. We then enumerate pairs

of peg positions (F3;F4) for each discrete di�erence
(k�x 2 [XR

E3
]� (�[XR

�

E4
])(k 2Z), Figure 11).
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first two edge
segments and
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Possible positions of
       Right  Jaw

Figure 10: In Type I cases, the right jaw is free to
translate, so the swept region does not directly spec-
i�es the set of possible positions for the third and
fourth pegs.
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Figure 11:
We compute �xture positions f(F3;F4); (F 0

3;F
0
4); : : :g

using the di�erential of the x coordinate ranges swept
by the third and fourth edges XR

E3
; XR

E4
.

4 Computing Simultaneous Contact
Poses

In this section, we present a method for comput-
ing simultaneous contact poses which transformmodel
features onto pegs where one or two of the pegs may
translate in x. We analyze this problem in terms
of grown features contacting points. Our algebraic
method uses parameterizations which implicitlymain-
tain contact between the characteristic circular fea-
ture and the corresponding point. Since character-
izing transformed points is easier than transforming
features, we compute the transformation which maps
the point set onto the model features, and then in-
vert that transformation. We numerically solve for
the orientation �, and then solve for the translation
parameters (x; y)j� using linear algebra.



4.1 Parameterizations

For Type I and Type II con�gurations, we rely
on two di�erent parameterizations which implicitly
achieve contact between characteristic points and as-
sociated characteristic circular features (any circular
feature can be the characteristic feature, the charac-
teristic point is simply the point associated with that
feature). In section 4.2, we discuss the pose parame-
terization used to solve for Type II cases which solves
for the simultaneous contact pose between three fea-
tures and three points. In section 4.4, we discuss the
pose parameterization used to solve for Type I cases
which must incorporate a degree of freedom to char-
acterize the jaw separation.

4.2 (�; �) Parameterization: Type II

For Type II con�gurations, we use a parame-
terization (�; �) which corresponds to rotating the
points by � and then translating the points by
(R cos(�); R sin(�)), where R refers to the radius of the
characteristic circular feature. This parameterization
implicitly achieves contact between the characteristic
point and the characteristic circular feature assuming
both the characteristic point, and characteristic circle,
are initially centered at the origin.

C

pc

C

pc

=>
p2

p3

e2

e3 e3

e2p3

p2

Figure 12: In order to utilize the parameterization,
we �rst transform the points and features so that the
center of the characteristic circle and the characteristic
point both lie at the origin .

We then formulate the contact constraints alge-
braically. For Type II con�gurations, the simulta-
neous contact pose is found by solving the multi-
variate system corresponding to the other two con-
tact constraints. Equation (1) characterizes the two-
dimensional rigid transformation, T(�; �), in homo-
geneous coordinates. In order to arrive at algebraic
expressions, we used the trigonometric substitutions
t = tan( �2 ) and u = tan(�2 ).

T(�;�) =

h
cos(�) � sin(�) R cos(�)
sin(�) cos(�) R sin(�)

0 0 1

i
=

T(t;u) =

�
(1 � t2)(1 + u2) �(2t)(1 + u2) R(1 + t2)(1 � u2)

(2t)(1 + u2) (1 � t2)(1 + u2) R(1 + t2)(2u)

0 0 (1 + t2)(1 + u2)

�
(1)
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Figure 13: The Type II parameterization involves ro-
tating the other 2 points around the origin by � and
then translating them by the vector expressed in polar
coordinates as (R;�). This parameterization implic-
itly achieves contact between the characteristic circu-
lar feature and associated characteristic points.

4.3 Contact Constraints

h(t; u) = 0 (equation (2)) expresses the constraint
that a point is mapped onto a line and g(t; u) = 0
(equation (3)) expresses the constraint that a point is
mapped onto a circle. (X;Y ) refers to the point po-
sition, (a; b; c) characterize the line aX + bY = c, and
(xc; yc; r) characterize the circle (xc � X)2 + (yc �
Y )2 = r2 . Fortunately the circular constraint ex-
pression is divisible by (1 + t2)(1 + u2) yielding a bi-
quadratic expression.

h(t; u) =

 
[T(t;u)]

"
X

Y

1

#!T

�

"
a

b

�c

#
= 0 (2)

K(t;u) =

 
[T(t; u)]

"
X

Y

1

#!
�

"
xc

yc

(1 + t2)(1 + u2)

#

g(t; u) =
K(t;u)T �K(t; u)� r2((1 + t2)(1 + u2))2

(1 + t2)(1 + u2)
= 0 (3)

4.4 (�; �;�) Parameterization: Type I

For Type I con�gurations, two of the points are free
to translate in x. We use a similar parameterization
(section 4.3) which incorporates the additional degree
of freedom, the jaw separation � (Figure 14). Since
another (feature,point) pair resides on the same jaw
as the characteristic feature, the contact constraint
corresponds to the h; g expressions (section 4.3). The
other two (feature,point) pairs which correspond to
contacts on the opposite jaw must include a degree of
freedom to characterize the jaw separation �.

h�(t; u) = 0 (equation (4)) expresses the contact
constraint corresponding to a point (X;Y ) translated
in x by � and then transformed by (�; �) contacts
a line. g�(t; u) = 0 (equation (5)) expresses the
constraint that a point (X;Y ) translated in x by �
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Figure 14: The Type I parameterization involves
translating two of the points in x by � and then ro-
tating the 3 points around the origin by � and then
translating them by the vector expressed in polar co-
ordinates as (R;�).

and then transformed by (�; �) contacts the circle
(xc; yc; r). Again the circular constraint expression
is divisible by (1 + t2)(1 + u2).

h�(t; u) =

 
[T(t;u)]
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= 0 (4)
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= 0

(5)

5 Results

In this section, we present example �xtures de-
signed by the algorithm, and �xture counts for various
workpieces. Table 1 lists the �xture counts and run-
ning times for various workpieces and �x; �y spacings,
and c, the number of �xture vise columns. We include
the speci�c case where c = 1 because it corresponds
to using the �xture vise as a universal gripper with
retractable pegs.

5.1 Example Fixtures

Fixtures generated by our algorithm are shown in
Figures 15-18.

Workpiece �y; �x c # (I/II) Time (s)

thin4Handle 10,10 1 208 / 4 792
8Handle 10,10 1 36 / 0 356

small4Handle 10,10 1 14 / 0 395
small4Handle 10,10 10 88 / 123 9195
large4Handle 10,10 1 40 / 5 949

large4Handle 10,10 10 492 / 572 38968
oblongPart 10,10 1 26 / 0 112
oblongPart 10,10 10 280 / 198 4217

oblongPart 8,8 10 801 / 278 13896
widget 10,10 1 305 / 62 8644
widget 8,8 1 636 / 124 8896


ange 10,10 1 60 / 1 1742

Table 1: Fixture counts for various workpieces where
c refers to the number of columns in the �xture vise

Figure 15: Two Type I �xtures for thin4Handle, a thin
four sided handle

5.2 Degrees of Resultant Polynomials

We compute the simultaneous contact poses using
numerical techniques and consequently, we are very
interested in the complexity of the multivariate sys-
tem (and corresponding univariate polynomials). The
speed and precision of the numerical solver routines
decrease as the polynomial degree, � increases. Ta-
ble 2 presents the polynomial degrees � corresponding

(a) (b)

Figure 16: (a) a Type II �xture for thin4Handle (b) a
Type I �xture for 8Handle, an eight sided handle



(a) (b)

Figure 17: (a) a Type I �xture for widget (b) a Type
II �xture for widget

(a) (b)

Figure 18: (a) a Type I �xture for 
ange (b) a Type
II �xture for 
ange

to solving for � for various scenarios;

Type # Left # Left # Right # Right
Linear Circular Linear Circular �

Features Features Features Features

I 2 0 2 0 4

I 1 1 2 0 12
I 0 2 2 0 12
I 1 1 1 1 24

I 1 1 0 2 24
I 0 2 0 2 24
II 3 0 1 0 2

II 3 0 0 1 2
II 2 1 1 0 4
II 2 1 0 1 4

II 1 2 1 0 6
II 1 2 0 1 6
II 0 3 1 0 8

II 0 3 0 1 8

Table 2: The maximum degree � of the resultant ex-
pressions utilized for solving for each case

6 Conclusion

In this report, we extended the original �xture de-
sign algorithm [10, 11] to handle generalized polyhe-
dral workpieces; we presented a complete, e�cient al-
gorithm for designing �xture vise con�gurations for
generalized polyhedral prismatic workpieces. Since
there are only a �nite number of ways to �xture an
arbitrary workpiece, �xtures can be enumerated in a
generate and test manner. Simultaneous contact poses
were computed algebraically using a novel parameter-
ization which implicitly satis�es one of the three or
four contact constraints, thereby decreasing the com-
plexity of computing the simultaneous contact pose.
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