
Proceedings of the 1996 IEEE
International Conference on Robotics and Automation

Minneapolis, Minnesota - April 1996

A System for Active Vision Driven Robotics

Jeffrey A. Fayman, Ehud Rivlin

Computer Science Department
Technion, Israel Institute of Technology

Haifa 32000, Israel

Abstract

In this paper, we present a n agent architec-
ture/active vision research tool called the Act ive Vi-
s ion Shell (AV-shell) . T h e AV-she l l can be viewed as a
programming f ramework for expressing perception and
action routines in the context of situated robotics. T h e
AV-she l l is a powerful interactive C-shell style inter-
face providing m a n y capabilities impor tant in a n agent
architecture such as the ability t o combine perceptive
capabilities of active vision with capabilities provided
by other robotic devices, t h e ability t o interact with a
wide variety of active vision devices, a set of image
routines and the ability t o compose the routines in to
continuously running perception action processes. At
the end of the paper, we present a n example of AV-
shell usage.

1 Introduction

In recent years, active vision has become an inten-
sive area of robotics and vision research. Active vision,
which was first introduced in [2] and later explored in
[l], is defined as the explicit control of the sensory
system to improve robustness and eliminate ill-posed
conditions. It has been shown that by actively control-
ling the vision system, many classic computer vision
problems become easier to solve [I].

The integration of active vision into more complex
robotic systems requires active vision devices to pro-
vide high quality visual information in dynamic real-
world situations. To provide this information, active
vision adopts the behavior based approach in which
a tight coupling between perception and action is ex-
ploited to achieve particular goals in continuously run-
ning visual systems.

In more complex systems in which the visual infor-
mation provided by active vision is used to drive other
robotic devices, multiple levels of perception and ac-

Henrik I. Christensen

Laboratory of Image Analysis
Aalborg University

DK-9220 Aalborg East, Denmark

tion coupling must exist. For example, the micro-level
coupling required to drive the active vision device and
macrc-level coupling between the active vision device
and other robotic devices.

In this paper, we present the Active Vision Shell
(AV-shell), an agent architecture/active vision re-
search tool. The AV-shell provides capabilities im-
portant in an agent architecture such as the ability to
interact with a wide variety of active vision devices, a
set of image routines and the ability to compose the
routines into continuously running perception action
processes.

The remainder of this paper is organized as follows:
In section 2, we review related work. In section 3 we
discuss the design goals and methods used in the de-
velopment of the AV-shell. In section 4 we present the
methodology adopted in the AV-shell for composing
routines into continuously running perception action
processes. In section 5 we present the AV-shell, dis-
cuss its origins and briefly discuss its interface. In
section 6, we discuss a control hierarchy adopted in
the AV-shell appropriate for active image processing
as well as integrating active vision into more complex
robotic systems. In section 7, we present an example
of how the AV-shell can be used to implement com-
plex perception action tasks and we conclude with sec-
tion 8.

2 Related Work

This paper focuses on the the AV-shell and its
components for composing and integrating elementary
robotic and vision routines into continuously running
perception action processes.

Relatively little work has been done in integrating
active vision into more complex systems. In [4], Crow-
ley and Christensen discuss a sophisticated architec-
ture and system called “VAP/SAVA” for the integra-
tion and control of a real-time active vision system.

0-7803-2988-4/96 $4.00 0 1996 IEEE 1986

Their system provides a comprehensive agent archi-
tecture which was designed to accommodate a contin-
uously operating process. The VAPISAVA system was
designed specifically for the purpose of demonstrating
continuous operation in the context of an interpreta-
tion. It possesses many of the features required in
a system for active vision experiments, however it is
desirable to have programming facilities that enable
flexible composition of processes to enable a variety
of architectures and applications. Several other active
vision environments are described in [3].

Process composition by representing task/plans as
networks of processes was first proposed by Lyons [9]
where he discusses the Robot Schema model. Kosecka
and Christensen [7] adopt Robot Schemas and show
how one can synthesize a finite state machine super-
visor which serves as a discrete event controller. El-
ementary behaviors appropriate in the domain of an
“intelligent delivery agent” are described and exper-
iments in robot navigation are presented. Our work
also makes use of the Robot Schemas model, however,
our elementary behaviors are derived from the active
vision domain and we present a system for accessing
these behaviors.

3 AV-Shell Goals and Methods

We believe that the full realization of the benefits
of active vision will not occur until active vision is
studied in broader contexts. In biological systems the
visual system and the apparatuses used for its move-
ment perform in a way that can be described as re-
flexive, providing the perceptive capabilities used in
a perception-action cycle. The actions in this cycle
are in turn carried out by other parts of the system.
This implies that perception and action must be com-
bined to provide capabilities similar to those found
in complex systems. It also necessitates powerful and
flexible architectures. The AV-shell can be viewed as
playing dual roles: (1) as suggesting an agent architec-
ture framework; and (2) as an active vision research
tool.

As an agent architecture framework, the AV-shell
provides tools necessary for efficient integration of ac-
tive vision into complex systems. As an active vision
research tool, the AV-shell provides an intuitive inter-
face to an extensive set of active vision and robotics
related commands, the ability to compose these com-
mands into continuously running perception action
processes and a full programming language.

Several goals guided the design of the AV-shell.
Firstly, it should be applicable to a wide variety of

active vision devices. This helps to make it portable
and gives us the ability to experiment with various
active vision configurations using the same software.
Secondly, it should provide a modular vocabulary
of visual routines including high-level activity rou-
tines, medium-level basic process routines and low-
level primitive routines. It should also provide the ar-
chitectural flexibility to experiment with various com-
binations of these visual modlules. Thirdly, the AV-
shell should provide a convenient platform for per-
forming experiments in these areas. Lastly, it should
be based on an architecture which both enables the
various components of active vision to be integrated,
and allows active vision to be incorporated into more
complex systems.

3.1 Active-vision devices

We explained earlier that the primary function of
an active vision device is to allow for active move-
ment of the visual sensors thereby making previously
ill-posed problems well defined. This implies that the
device is simply a manipulator used for moving the
visual sensors. Various paradigms such as moveable
eyes, eye-in-hand, robotic heads and heads-in-hand
have been used to do this.

It is desirable to provide an abstraction for a general
interface to this wide range of devices. At the same
time, we would like encapsulation to enable transpar-
ent use of existing control software. This naturally
leads to an object oriented alpproach and because we
conceptually have difficulties supporting both percep-
tion and action in one device, we believe that it is
necessary to view the vision sensors and the mecha-
nisms used to move them separately. We define an
“Active-vision device” (AVDl) to include two parts:
the vision sensor, which we refer to as “camera” and
the device used for moving the camera, which we re-
fer to as “head”. By doing this, several benefits are
realized. Firstly, the mechamism will be applicable
to stationary vision systems as well; these are sim-
ply cameras without the ability to move. Secondly,
by decoupling cameras and heads, the “vision” prob-
lems and the “active” problerns of active vision can be
studied individually or together.

Another benefit we gain by this view of AVD’s is
that we can define their operational space in terms of
the cameras alone without concern for the underlying
movement mechanism. This lleads to a set of medium-
level commands that are compatible with many active
vision devices.

1987

3.2 Active vision routines

Before we discuss the composition and integration
facilities of the AV-shell, we will briefly mention the
structure of the active vision routines provided by the
AV-shell. A thorough discussion of these routines can
be found in [5].

The active vision routines provided by the AV-shell
are made up of three “levels”; (1) high-level activity
routines supporting activities such as fixation and pur-
suit; (2) medium-level basic process routines such as
accommodation and motion detection; and (3) low-
level primitive routines such as convolution and corre-
lation. In this configuration, processes at higher levels
are made up of processes at lower levels.

4 AV-shell Process Composition

While the routines mentioned previously constitute
a rich set of active vision routines, the task of com-
posing them into continuously running perception ac-
tion processes has not been specified. In this work,
we adopt a model proposed in [9] called the Robot
Schemas (RS) model. Table 1 summarizes the RS
composition operators. In the RS model, com-
munication channels between concurrent processes are
called “ports”. Messages are written to, and read from
ports. A port to port connection relaiion can be speci-
fied as an optional third parameter in concurrent com-
position. This connection relation specifies a set of
couples op ip indicating that port ip and op are
connected.

Using Robot Schemas notation, we see how the
temporal and structural dependencies required to im-
plement the high-level activities of fixation and pursuit
are captured (stabilization is similar to pursuit). Fix-
ation is initiated with a saccade to the fixation point
followed by continuous vergence control driven by dis-
parity and accommodation cues.

fixation = saccade :
((disparity 1 accommodation) :; (vergence control))

In pursuit, vergence, foveal motion detection
(FMD) and dynamic accommodation are used to con-
tinuously drive motion of the vision sensor.

pursuit =
(vergence # FMD # dynamic accommodation) :; move.

‘Notationin table 1 is consistent with those of [e], however,
in our implementation, the operators were changed to avoid
conflicts with existing operators.

1.

2.

3.

4.

5 .

6.

Sequential Composition:
T = P;Q. The process T behaves like the process
P until that terminates, and then behaves like the
process Q (regardless of P’s termination status).
Concurrent Composition :
T = (PIQ)c. The process T behaves like P and Q
running in parallel and with the input ports of one
connected to the output ports of the other as indi-
cated by the port-to-port connection map c . This can
also be written as t = (I z ~ ~ P t) ‘ for a set of processes
indexed by I .
Conditional Composition:
T = P (v) : Q,,. The process T behaves like the
process P until that terminates. If P aborts, then
T aborts. If P terminates normally, then the value
v calculated by P is used to initialize the process Q,
and T then behaves like Q,,.
Disabling Composition:
T = P#Q. The process T behaves like the concurrent
composition of P and Q until either terminates, then
the other is aborted and T terminates. At most one
process can stop; the remainder are aborted.
Synchronous Recurrent Composition:
T = P (U) :; Q,,. This is recursively defined as
P : ; Q = P : (Q ; P : ; Q) .
Asynchronous Recurrent Composition:
T = P (v) :: Q,,. This is recursively defined as
P :: Q = P : (QI (P :: Q)) .

Table 1: Summary of RS Composition Operators

Each active vision routine has clearly defined ini-
tiation, terminations and interruption mechanisms.
Therefore, the routines can be represented as finite
state machines. Using this representation] system be-
haviors may be formally analyzed. Composition of
active vision routines is achieved by traversing a parse
tree built from an expression in this notation.

An example of such a parse tree is given for fixation
in figure 1.

The previous discussion of process composition ap-
plies to robotic processes as well. For example, a task
which integrates an active vision device with a manip-
ulator for repeatedly locating and grasping parts from
a moving conveyor can be specified as follows:

capture =
(find part : fixate) :; ((pursuit I locate part) : grasp part)

In the example, we first find the part on the con-
veyor, then fixate on it. Once fixated, we pursue it
with the active vision device which provides data to

1988

Disparity Accomodation

R-shell commands can be entered interactively or
placed in R-shell scripts and executed by simply typ-
ing the script file name followed by its actual param-
eters. Thus scripts provide procedural abstraction in
R-shell. Scripts can call other scripts and can call
themselves providing nesting and recursion. The R-
shell script language provides a full set of flow control
statements such as if-then-else, while, loop and case.
Additionally, R-shell supports both call-by-name and
call-by-value methods for passing parameters.

Figure 1: Fixation Parse Tree
5.2 AV-shell

the arm for locating to the part. Finally we grasp the
object. The purpose of the example is to illustrate the
expressive power of the composition operators rather
than how each primitive process is implemented.

5 The AV-Shell

In this section we present the AV-shell. The active
vision components of the system provide the ability to
control a wide variety active vision devices while inte-
grating active vision into complex robotic systems is
accomplished by combining the AV-shell with another
system called the Robot Shell (R-shell) [ll, 10, 61.
The R-shell provides the tools necessary for control-
ling and coordinating various robotic devices such as
manipulators and dextrous robotic hands. However,
it does not possess active vision capabilities or the
process composition capabilities required in behavior
based systems. We begin with a brief overview of the
R-shell, then discuss the AV-shell.

5.1 Robot Shell

The R-shell is an interactive program written in
C under the UNIX operating system. It interprets
and executes robotics related commands called “R-
shell commands” in much the same way that a shell
such as c-shell interprets and executes system related
commands. Robotic data in the R-shell environment
are entered, manipulated and displayed through the
use of these commands. Included in the set of R-
shell commands are an extensive set of algebraic oper-
ations such as matrix and vector addition, multiplica-
tion, matrix inversion and transposition, computation
of determinants, traces and norms as well as various
arithmetic operations and standard mathematic func-
tions for scalars all of which are used extensively in
robotics work.

The AV-shell provides capabilities missing in R-
shell for handling active vision devices and behavioral
composition. The interface consists of four groups of
commands: camera, head, active image routine and
general. Camera commands are used to control cam-
eras and camera lenses, head commands are used to
control heads, active image routines provide the lev-
els of active image functions provided by the AV-shell
and general commands are R-shell commands which
have been extended to handle active vision devices.
A thorough review of important AV-shell and R-shell
commands can be found in [5] .

The following are examples, of a camera command
and an active vision routine command respectively.

&
Map a screen space coordinate to a Cartesian
space coordinate using the calibration matrix in
the standard AV-shell variable C.

fixate [x, y, z]
Cause the optical axis of the cameras attached to
head hsel to intersect a t the 3D point given in
2, Y, z .

6 Combining Perception and Action

Combining the perceptive capabilities of AVD’s
with the action capabilities of other robotic devices
in an agent architecture poses some interesting prob-
lems. On one hand, we must view perception and
action on a micro-level looking only at the AVD as it
operates independently in an perception-action loop.
On the other hand, at the macro-level, the percep-
tions provided by the AVD are used to drive actions
of other robotic devices. In t,his section we will look
at architectural issues related to the combination of
perception and action at both the micro and macro
levels.

1989

The control of robotic devices can be conveniently
divided into three levels: high, medium and low.
Figure 2 shows this relationship.

Figure 2: Typical Control Hierarchy

High-level control usually refers to task-level plan-
ning. At this level, reasoning is incorporated into the
control system with methods such as knowledge-based
systems, fuzzy logic and artificial neural networks. An
example is the reasoning behind chess playing algo-
rithms. Typical output from the high-level includes
Cartesian information such as the position and ori-
entation of various pieces on the chess board and to
where they should be moved.

The medium-level takes output from the high-level
and converts it into a form that is suitable to the joint
controllers. In the case of the chess playing robot, the
medium-level will convert the Cartesian position and
orientation information of the pieces provided by the
high-level into the joint values needed by the robot at
the low-level to move the pieces. As an aid to research,
the medium-level should provide an interactive inter-
face so that researchers can bypass the high-level task
planners.

Low-level controllers deal with trajectory genera-
tion, sensor integration and servo joint control. This
is the level where connection to physical devices is
made.

6.1 Active-Vision integration and Active-
Image processing

While this hierarchy is appropriate for devices such
as manipulators, it is insufficient for active image
processing and the various compositions of active vi-
sion routines, both of which are required in AVD’s.
Active vision processing is needed to compose lower
level active image routines into higher level activities.
These higher level activities in turn must be composed

according to changing tasks and and effectively in-
voked. Effective invocation requires system delays to
be compensated for by the controller (using a Smith-
controller or other techniques).

In order to modularize these various levels of pro-
cessing, we feel that in the case of AVD’s, two ad-
ditional levels are needed in the control hierarchy of
figure 2. The new levels are called the “Active Vision
Integration Level” (AVIL) and the “Active Image Pro-
cessing Level” (AIPL). The hierarchy of figure 2 has
been augmented with the new levels. The augmented
hierarchy is shown in figure 3.

i L a - L r V c l

Lens Control
Servo Control

Pre-Attentive IP

Figure 3: Augmented Control Hierarchy

According to the diagram, the low-level is respon-
sible for providing pre-attentive image processes. The
AIPL performs filtering and and fusion to provide data
to the set of attentive routines found in the AVIL.
The AVIL in turn is responsible for composing the
higher level primitives according to changing require-
ments and compensating system delays. All three of
these levels are accessible from the command inter-
face at the medium-level facilitating development and
simulation.

7 Example AV-shell Usage

In this section, we will demonstrate how the AV-
shell can be used to easily implement a complex
perception-action task. In the example, the AV-
shell will be used to coordinate the activities of three
robotic devices: a manipulator, a dextrous robot hand
and an AVD (head). The scenario, which is illus-
trated in figures 4 and 5(a,b), consists of an Adep-
t o n e manipulator with an attached Belgrade/USC
dextrous hand [6]. Additionally, there is a table in
the workspace of the AdeptOne on which a cylindri-
cal toy train is moving. Observing the movement of

1990

the train is an TRH robotic head [8]. The goal of the
example is to have the head track the train and signal
when the train is about to fall off an edge of the ta-
ble. The arm waits for the signal at which point it is
commanded to bring the hand to the train so that it
can be grasped before it falls.

Manipulator ~ Active Vision Device
U

I universe)

Figure 4: Example Environment

Figure 5: (a) TRH Head; (b) AdeptOne and Train

The AV-shell script necessary to perform this task
is made up of two parts. In the first part, the in-
ternal representations of the environment and devices
are created. This includes creating and locating the
manipulator, hand, table, cameras and head. In the
second part, we activate the head and perform the
task.

Creating the internal representation of the environ-
ment in the AV-shell includes defining parameters of
the various components present. Each robotic device
has a set of parameters required for its control which
must be defined. This includes things such as mini-
mum and maximum joint values etc ... Additionally,
the components must be initially located relative to
the universe and devices attached to other devices (i.e.
hand on manipulator and cameras on head) in reality
must also be attached in the internal representation.
Also, the description of the train must be memorized
by the AV-shell.

Once the environment has been defined, we are
ready to begin the task. The first step is to con-

nect the internal description of the devices to their
physical counterparts. This is accomplished with the
connect command. Once connected, commands caus-
ing changes in the internal configuration will effect the
physical devices as well. If we execute the task without
connection to the physical devices, we have simulation.
Next, using the AV-shell commands find and saccade,
we locate the train in the environment, invoke a sac-
cade l,o its position and begin smooth pursuit tracking
(this is an example of where perception-action takes
place at the micro-level of the active vision device).
When the train approaches an edge of the table, the
event e l is set signaling the arm to bring the hand
to the estimated falling point of the train (this is an
example of where perception-action takes place at the
macro-level of the integrated system). At the same
time, the hand is preshaped for grasping the train.
When the arm has brought the hand to the grasping
point and the hand is preshaped, the train is grasped.

In this example, specific roblotic devices were used.
The same code is applicable to any other devices
known to the AV-shell. For instance, we could have
used a PUMA manipulator and a KTII head instead.
The AV-shell script for performing this task is given
below

ttttttItllttttttttttIttttttIIIIItttIIIIIttt~IIttItt8tt8tttttttttttttttttttttttt

ttttttttl l*ttIttttttttttl lttl l l ltt l l l ltttttttItttttttttttttttttttIttt~ttIttIttt
I Create environment f o r grasp t a i l t

#Create imd locate manipi l l tor: t
t l e c e , se def ine parameters for the adeptone manipilator type . create II t
rinstancu c a l l e d H and locate it r r l a t i r e t o the u i v r r i e . t

cop -a I dcfamlt category option i s -a (arm) t

par L 321.0 315 .0 0 . 0 I define 1 L t parameters I
type adaptom t create a" type mame I

. . . . , . .
i n i t adeptoir H t create an are instance c a l l e d H I

t locate am H a t Univeme l O C t
trai 0 100 150 t trans late I" base t
rot -I 90 t rotate arm base Iboml. z-axis by 90 degrees I

*Create and locate dertroms h a d : t
IHere we define parameters f o r the BSCUGD hand typt: , create u iiit?.are I
t c n l l e d I a i d attach U t o H. t

cop -1 t
type USCBGD t create k u d type =am! t
par p i n -20, -15. -90, -90 t d e f L e h a d parameters 1

t change defaal t category option t o -h (hand)

Lit USCBGD H t create a hand instm8rr c a l l e d W t
open H t prepare muipnlator for a t t a c h a t t
attach U H 8 noant h a d onto arm t
c lose H I d isable firther attacbmenti t

#Create amd locate tabla: I
tHere we create the table and locate it re lat ive t o the aaiverse I

cop -0 t

1C.C t locate table at Universe I
t trans late table base tram 0 800 100 t

rot -I -.so t rotate table base abont z-axis by -90 deprees t

I clawe defamlt category option t o -0 (object)
obj T 8 create table name t

#Create and l o c i t e h a d : t
#Hen s e defime parameters f a r the T1Y head type . Lieate an in l tance I
c a l l e d HD and locate it r e l a t e i r e t o the nniverm. t

cop -d t
type Tt l l I create herd type aaNe I

t change defamlt category option t o -d (head)

... ...

1991

inst TLH WD : create a head mstuCe cal lsd HD t
l O C t locate lead WO at h ive r se t
tran 0 400 150 I t r u i l a t e i r r d base t
rot -7. 180 : t rotate head bass aboit z-axis by 180 degrees

#Create and locate cai.eras:
:Yere, tso ane eras Cl a d CL are created and attached t o ED.

cop -1.

i n l t rohl CL CI t create c u e m i n s t axes cal led CL a d CL
open w
se1 CL : .elect c u e n CL
attach C 1 HD : R m x t CL oat0 YD
t rans -0 -x so
.e1 CI 1 select camera CI
attach CI YD 8 Hmnt CL Onto XI)
tram -0 -x -50
close HO t dimble f i r t h e r a t t aLhex t* 01 ID

: chugs defaal t category q t i o i t o -c (camera)
type cohn t create camera t y p e =am*

t Prepare head fo r c u c r i a t t i c h e i t

I t r u i l a t e camera CL t o f i a a l position ox I D

t t r a s l i t e camera LL t o f u a l poi i t ion ox ID

t
:
1
:
t
:
t
:
t
t
t
:
t
:
t

8 Conclusion

In this paper, we addressed issues related to agent
architectures in active vision research. We pre-
sented the agent architecture/active vision research
tool called the AV-shell which provides a program-
ming framework for expressing perception and action
routines as well as the techniques necessary to inte-
grate a wide range of active vision devices into com-
plex robotic architectures. The AV-shell is built up of
a set of active vision routines along with the ability
to compose these routines into continuously running
perception action tasks. Future work on the AV-shell
includes research into providing fault tolerance.

References

Y. Aloimonos, I. Weiss, and A. Bandyopadhyay.
Active vision. In International Journal on Com-
puter Vision, pages 333-356, 1987.

R. Bajcsy. Active perception vs passive percep-
tion. In Proceedings of the Third IEEE Work-

shop on Computer Vasron, pages 55-59, Bellaire,
Michigan, 1985.

[3] H.I. Christensen and J.L. Crowley. Experrmen-
tal Enuaronments for Computer Vasaon and Image
Analysas. World Scientific Press, 1994.

[4] J.L. Crowley and H.I. Christensen. Vzszon as Pro-
cess. Springer-Verlag, January 1995.

[5] J.A. Fayman, E. Rivlin, and H.I. Christensen
The active vision shell. Technical Report CIS Re-
port 9510, Israel Institute of Technology - Tech-
nion, May 1995.

[6] Jeffrey A. Fayman. Medium-level control of robot
hands. Master’s thesis, San Diego State Univer-
sity, Department of Mathematical Sciences, San
Diego, CA, 1990.

[7] Jana Kosecka and Henrik I. Christensen. Experi-
ments in behavior composition. In Proceedangs of
the 3rd Internatzonal Symposaum on Intellagent
Robotac Systems, pages 129-139, Pisa, Italy, July
1995.

[8] 0. Kraft and J.A. Fayman. Trh - low level hard-
ware and software. Technical Report RLR Report
RLR0003, Israel Institute of Technology - Tech-
nion, April 1995.

[9] Damian M. Lyons. Representing and analyzing
action plans as networks of concurrent processes.
IEEE Transactaons on Robotacs and Automataon,
9(7):241-256, June 1993.

[lo] M.I. Vuskovic. R-shell: A unix-based devel-
opment environment for robotics. In Proceed-
angs of the IEEE Internatzonal Conference on
Robotacs and Automatzon, Philadelphia, Pennsyl-
vania, April 1988.

1111 M.I. Vuskovic, A.L. Riedel, and C.Q. Do. The
robot shell. International Journal of Robotacs and
Automataon, 3(3):165-175, 1988.

1992

