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Abstract 

In this paper, we  present  a n  agent architec- 
ture/active vision research tool called the  Act ive  Vi- 
s ion  Shell  (AV-shell) .  T h e  AV-she l l  can be viewed as a 
programming f ramework  for expressing perception and 
action routines in the  context of situated robotics. T h e  
AV-she l l  is a powerful interactive C-shell  style inter- 
face providing m a n y  capabilities impor tant  in a n  agent 
architecture such  as  the  ability t o  combine perceptive 
capabilities of active vision with capabilities provided 
by other robotic devices, t h e  ability t o  interact with a 
wide variety of active vision devices, a set  of image  
routines and the  ability t o  compose the  routines in to  
continuously running perception action processes. At 
the  end of the  paper, we present a n  example of AV- 
shell usage. 

1 Introduction 

In recent years, active vision has become an inten- 
sive area of robotics and vision research. Active vision, 
which was first introduced in [2] and later explored in 
[l], is defined as the explicit control of the sensory 
system to  improve robustness and eliminate ill-posed 
conditions. It has been shown that by actively control- 
ling the vision system, many classic computer vision 
problems become easier to solve [I]. 

The integration of active vision into more complex 
robotic systems requires active vision devices to  pro- 
vide high quality visual information in dynamic real- 
world situations. To provide this information, active 
vision adopts the behavior based approach in which 
a tight coupling between perception and action is ex- 
ploited to  achieve particular goals in continuously run- 
ning visual systems. 

In more complex systems in which the visual infor- 
mation provided by active vision is used to  drive other 
robotic devices, multiple levels of perception and ac- 
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tion coupling must exist. For example, the micro-level 
coupling required to  drive the active vision device and 
macrc-level coupling between the active vision device 
and other robotic devices. 

In this paper, we present the Active Vision Shell 
(AV-shell), an agent architecture/active vision re- 
search tool. The AV-shell provides capabilities im- 
portant in an agent architecture such as the ability to 
interact with a wide variety of active vision devices, a 
set of image routines and the ability to  compose the 
routines into continuously running perception action 
processes. 

The remainder of this paper is organized as follows: 
In section 2, we review related work. In section 3 we 
discuss the design goals and methods used in the de- 
velopment of the AV-shell. In section 4 we present the 
methodology adopted in the AV-shell for composing 
routines into continuously running perception action 
processes. In section 5 we present the AV-shell, dis- 
cuss its origins and briefly discuss its interface. In 
section 6, we discuss a control hierarchy adopted in 
the AV-shell appropriate for active image processing 
as well as integrating active vision into more complex 
robotic systems. In section 7, we present an example 
of how the AV-shell can be used to  implement com- 
plex perception action tasks and we conclude with sec- 
tion 8. 

2 Related Work 

This paper focuses on the the AV-shell and its 
components for composing and integrating elementary 
robotic and vision routines into continuously running 
perception action processes. 

Relatively little work has been done in integrating 
active vision into more complex systems. In [4], Crow- 
ley and Christensen discuss a sophisticated architec- 
ture and system called “VAP/SAVA” for the integra- 
tion and control of a real-time active vision system. 
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Their system provides a comprehensive agent archi- 
tecture which was designed to  accommodate a contin- 
uously operating process. The VAPISAVA system was 
designed specifically for the purpose of demonstrating 
continuous operation in the context of an interpreta- 
tion. It possesses many of the features required in 
a system for active vision experiments, however it is 
desirable to  have programming facilities that enable 
flexible composition of processes to enable a variety 
of architectures and applications. Several other active 
vision environments are described in [3]. 

Process composition by representing task/plans as 
networks of processes was first proposed by Lyons [9] 
where he discusses the Robot Schema model. Kosecka 
and Christensen [7] adopt Robot Schemas and show 
how one can synthesize a finite state machine super- 
visor which serves as a discrete event controller. El- 
ementary behaviors appropriate in the domain of an 
“intelligent delivery agent” are described and exper- 
iments in robot navigation are presented. Our work 
also makes use of the Robot Schemas model, however, 
our elementary behaviors are derived from the active 
vision domain and we present a system for accessing 
these behaviors. 

3 AV-Shell Goals and Methods 

We believe that the full realization of the benefits 
of active vision will not occur until active vision is 
studied in broader contexts. In biological systems the 
visual system and the apparatuses used for its move- 
ment perform in a way that can be described as re- 
flexive, providing the perceptive capabilities used in 
a perception-action cycle. The actions in this cycle 
are in turn carried out by other parts of the system. 
This implies that perception and action must be com- 
bined to  provide capabilities similar to  those found 
in complex systems. It also necessitates powerful and 
flexible architectures. The AV-shell can be viewed as 
playing dual roles: (1) as suggesting an agent architec- 
ture framework; and (2) as an active vision research 
tool. 

As an agent architecture framework, the AV-shell 
provides tools necessary for efficient integration of ac- 
tive vision into complex systems. As an active vision 
research tool, the AV-shell provides an intuitive inter- 
face to  an extensive set of active vision and robotics 
related commands, the ability to  compose these com- 
mands into continuously running perception action 
processes and a full programming language. 

Several goals guided the design of the AV-shell. 
Firstly, it should be applicable to  a wide variety of 

active vision devices. This helps to make it portable 
and gives us the ability to  experiment with various 
active vision configurations using the same software. 
Secondly, it should provide a modular vocabulary 
of visual routines including high-level activity rou- 
tines, medium-level basic process routines and low- 
level primitive routines. It should also provide the ar- 
chitectural flexibility to experiment with various com- 
binations of these visual modlules. Thirdly, the AV- 
shell should provide a convenient platform for per- 
forming experiments in these areas. Lastly, it should 
be based on an architecture which both enables the 
various components of active vision to  be integrated, 
and allows active vision to  be incorporated into more 
complex systems. 

3.1 Active-vision devices 

We explained earlier that the primary function of 
an active vision device is to allow for active move- 
ment of the visual sensors thereby making previously 
ill-posed problems well defined. This implies that the 
device is simply a manipulator used for moving the 
visual sensors. Various paradigms such as moveable 
eyes, eye-in-hand, robotic heads and heads-in-hand 
have been used to  do this. 

It is desirable to  provide an abstraction for a general 
interface to  this wide range of devices. At the same 
time, we would like encapsulation to  enable transpar- 
ent use of existing control software. This naturally 
leads to  an object oriented alpproach and because we 
conceptually have difficulties supporting both percep- 
tion and action in one device, we believe that it is 
necessary to view the vision sensors and the mecha- 
nisms used to  move them separately. We define an 
“Active-vision device” (AVDl) to  include two parts: 
the vision sensor, which we refer to  as “camera” and 
the device used for moving the camera, which we re- 
fer to  as “head”. By doing this, several benefits are 
realized. Firstly, the mechamism will be applicable 
to stationary vision systems as well; these are sim- 
ply cameras without the ability to  move. Secondly, 
by decoupling cameras and heads, the “vision” prob- 
lems and the “active” problerns of active vision can be 
studied individually or together. 

Another benefit we gain by this view of AVD’s is 
that we can define their operational space in terms of 
the cameras alone without concern for the underlying 
movement mechanism. This lleads to a set of medium- 
level commands that are compatible with many active 
vision devices. 
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3.2 Active vision routines 

Before we discuss the composition and integration 
facilities of the AV-shell, we will briefly mention the 
structure of the active vision routines provided by the 
AV-shell. A thorough discussion of these routines can 
be found in [5].  

The active vision routines provided by the AV-shell 
are made up of three “levels”; (1) high-level activity 
routines supporting activities such as fixation and pur- 
suit; (2) medium-level basic process routines such as 
accommodation and motion detection; and (3) low- 
level primitive routines such as convolution and corre- 
lation. In this configuration, processes at higher levels 
are made up of processes at lower levels. 

4 AV-shell Process Composition 

While the routines mentioned previously constitute 
a rich set of active vision routines, the task of com- 
posing them into continuously running perception ac- 
tion processes has not been specified. In this work, 
we adopt a model proposed in [9] called the Robot 
Schemas (RS)  model. Table 1 summarizes the RS 
composition operators. In the RS model, com- 
munication channels between concurrent processes are 
called “ports”. Messages are written to, and read from 
ports. A port to port connection relaiion can be speci- 
fied as an optional third parameter in concurrent com- 
position. This connection relation specifies a set of 
couples op ip indicating that port ip and op are 
connected. 

Using Robot Schemas notation, we see how the 
temporal and structural dependencies required to  im- 
plement the high-level activities of fixation and pursuit 
are captured (stabilization is similar to  pursuit). Fix- 
ation is initiated with a saccade to  the fixation point 
followed by continuous vergence control driven by dis- 
parity and accommodation cues. 

fixation = saccade : 
((disparity 1 accommodation) :; (vergence control)) 

In pursuit, vergence, foveal motion detection 
(FMD) and dynamic accommodation are used to con- 
tinuously drive motion of the vision sensor. 

pursuit = 
(vergence # FMD # dynamic accommodation) :; move. 

‘Notationin table 1 is consistent with those of [e], however, 
in our implementation, the operators were changed to avoid 
conflicts with existing operators. 

1. 

2. 

3. 

4. 

5 .  

6. 

Sequential Composition: 
T = P;Q.  The process T behaves like the process 
P until that terminates, and then behaves like the 
process Q (regardless of P’s termination status). 
Concurrent Composition : 
T = (PIQ)c. The process T behaves like P and Q 
running in parallel and with the input ports of one 
connected to the output ports of the other as indi- 
cated by the port-to-port connection map c .  This can 
also be written as t = ( I z ~ ~ P t ) ‘  for a set of processes 
indexed by I .  
Conditional Composition: 
T = P ( v )  : Q,,. The process T behaves like the 
process P until that terminates. If P aborts, then 
T aborts. If P terminates normally, then the value 
v calculated by P is used to initialize the process Q, 
and T then behaves like Q,,. 
Disabling Composition: 
T = P#Q. The process T behaves like the concurrent 
composition of P and Q until either terminates, then 
the other is aborted and T terminates. At most one 
process can stop; the remainder are aborted. 
Synchronous Recurrent Composition: 
T = P (U) :; Q,,. This is recursively defined as 
P : ; Q = P : ( Q ; P : ; Q ) .  
Asynchronous Recurrent Composition: 
T = P ( v )  :: Q,,. This is recursively defined as 
P :: Q = P : (QI ( P  :: Q)) .  

Table 1: Summary of RS Composition Operators 

Each active vision routine has clearly defined ini- 
tiation, terminations and interruption mechanisms. 
Therefore, the routines can be represented as finite 
state machines. Using this representation] system be- 
haviors may be formally analyzed. Composition of 
active vision routines is achieved by traversing a parse 
tree built from an expression in this notation. 

An example of such a parse tree is given for fixation 
in figure 1. 

The previous discussion of process composition ap- 
plies to  robotic processes as well. For example, a task 
which integrates an active vision device with a manip- 
ulator for repeatedly locating and grasping parts from 
a moving conveyor can be specified as follows: 

capture = 
(find part : fixate) :; ((pursuit I locate part) : grasp part) 

In the example, we first find the part on the con- 
veyor, then fixate on it.  Once fixated, we pursue it 
with the active vision device which provides data to 
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Disparity Accomodation 

R-shell commands can be entered interactively or 
placed in R-shell scripts and executed by simply typ- 
ing the script file name followed by its actual param- 
eters. Thus scripts provide procedural abstraction in 
R-shell. Scripts can call other scripts and can call 
themselves providing nesting and recursion. The R- 
shell script language provides a full set of flow control 
statements such as if-then-else, while, loop and case. 
Additionally, R-shell supports both call-by-name and 
call-by-value methods for passing parameters. 

Figure 1: Fixation Parse Tree 
5.2 AV-shell 

the arm for locating to  the part. Finally we grasp the 
object. The purpose of the example is to  illustrate the 
expressive power of the composition operators rather 
than how each primitive process is implemented. 

5 The AV-Shell 

In this section we present the AV-shell. The active 
vision components of the system provide the ability to  
control a wide variety active vision devices while inte- 
grating active vision into complex robotic systems is 
accomplished by combining the AV-shell with another 
system called the Robot Shell (R-shell) [ll, 10, 61. 
The R-shell provides the tools necessary for control- 
ling and coordinating various robotic devices such as 
manipulators and dextrous robotic hands. However, 
it does not possess active vision capabilities or the 
process composition capabilities required in behavior 
based systems. We begin with a brief overview of the 
R-shell, then discuss the AV-shell. 

5.1 Robot Shell 

The R-shell is an interactive program written in 
C under the UNIX operating system. It interprets 
and executes robotics related commands called “R- 
shell commands” in much the same way that a shell 
such as c-shell interprets and executes system related 
commands. Robotic data in the R-shell environment 
are entered, manipulated and displayed through the 
use of these commands. Included in the set of R- 
shell commands are an extensive set of algebraic oper- 
ations such as matrix and vector addition, multiplica- 
tion, matrix inversion and transposition, computation 
of determinants, traces and norms as well as various 
arithmetic operations and standard mathematic func- 
tions for scalars all of which are used extensively in 
robotics work. 

The AV-shell provides capabilities missing in R- 
shell for handling active vision devices and behavioral 
composition. The interface consists of four groups of 
commands: camera, head, active image routine and 
general. Camera commands are used to control cam- 
eras and camera lenses, head commands are used to  
control heads, active image routines provide the lev- 
els of active image functions provided by the AV-shell 
and general commands are R-shell commands which 
have been extended to  handle active vision devices. 
A thorough review of important AV-shell and R-shell 
commands can be found in [ 5 ] .  

The following are examples, of a camera command 
and an active vision routine command respectively. 

& 
Map a screen space coordinate to  a Cartesian 
space coordinate using the calibration matrix in 
the standard AV-shell variable C. 

fixate [x, y, z ]  
Cause the optical axis of the cameras attached to  
head hsel to  intersect a t  the 3D point given in 
2, Y, z .  

6 Combining Perception and Action 

Combining the perceptive capabilities of AVD’s 
with the action capabilities of other robotic devices 
in an agent architecture poses some interesting prob- 
lems. On one hand, we must view perception and 
action on a micro-level looking only at the AVD as it 
operates independently in an perception-action loop. 
On the other hand, at the macro-level, the percep- 
tions provided by the AVD are used to  drive actions 
of other robotic devices. In t,his section we will look 
at architectural issues related to  the combination of 
perception and action at both the micro and macro 
levels. 
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The control of robotic devices can be conveniently 
divided into three levels: high, medium and low. 
Figure 2 shows this relationship. 

Figure 2: Typical Control Hierarchy 

High-level control usually refers to  task-level plan- 
ning. At this level, reasoning is incorporated into the 
control system with methods such as knowledge-based 
systems, fuzzy logic and artificial neural networks. An 
example is the reasoning behind chess playing algo- 
rithms. Typical output from the high-level includes 
Cartesian information such as the position and ori- 
entation of various pieces on the chess board and to  
where they should be moved. 

The medium-level takes output from the high-level 
and converts it into a form that is suitable to  the joint 
controllers. In the case of the chess playing robot, the 
medium-level will convert the Cartesian position and 
orientation information of the pieces provided by the 
high-level into the joint values needed by the robot at 
the low-level to move the pieces. As an aid to research, 
the medium-level should provide an interactive inter- 
face so that researchers can bypass the high-level task 
planners. 

Low-level controllers deal with trajectory genera- 
tion, sensor integration and servo joint control. This 
is the level where connection to  physical devices is 
made. 

6.1 Active-Vision integration and Active- 
Image processing 

While this hierarchy is appropriate for devices such 
as manipulators, it is insufficient for active image 
processing and the various compositions of active vi- 
sion routines, both of which are required in AVD’s. 
Active vision processing is needed to compose lower 
level active image routines into higher level activities. 
These higher level activities in turn must be composed 

according to changing tasks and and effectively in- 
voked. Effective invocation requires system delays to 
be compensated for by the controller (using a Smith- 
controller or other techniques). 

In order to modularize these various levels of pro- 
cessing, we feel that in the case of AVD’s, two ad- 
ditional levels are needed in the control hierarchy of 
figure 2. The new levels are called the “Active Vision 
Integration Level” (AVIL) and the “Active Image Pro- 
cessing Level” (AIPL). The hierarchy of figure 2 has 
been augmented with the new levels. The augmented 
hierarchy is shown in figure 3. 

i L a - L r V c l  

Lens Control 
Servo Control 

Pre-Attentive IP 

Figure 3: Augmented Control Hierarchy 

According to the diagram, the low-level is respon- 
sible for providing pre-attentive image processes. The 
AIPL performs filtering and and fusion to provide data 
to  the set of attentive routines found in the AVIL. 
The AVIL in turn is responsible for composing the 
higher level primitives according to  changing require- 
ments and compensating system delays. All three of 
these levels are accessible from the command inter- 
face at the medium-level facilitating development and 
simulation. 

7 Example AV-shell Usage 

In this section, we will demonstrate how the AV- 
shell can be used to  easily implement a complex 
perception-action task. In the example, the AV- 
shell will be used to  coordinate the activities of three 
robotic devices: a manipulator, a dextrous robot hand 
and an AVD (head). The scenario, which is illus- 
trated in figures 4 and 5(a,b), consists of an Adep- 
t o n e  manipulator with an attached Belgrade/USC 
dextrous hand [6]. Additionally, there is a table in 
the workspace of the AdeptOne on which a cylindri- 
cal toy train is moving. Observing the movement of 
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the train is an TRH robotic head [8]. The goal of the 
example is to have the head track the train and signal 
when the train is about to  fall off an edge of the ta- 
ble. The arm waits for the signal at which point it is 
commanded to  bring the hand to the train so that it 
can be grasped before it falls. 

Manipulator ~ Active Vision Device 
U 

I universe) 

Figure 4: Example Environment 

Figure 5: (a) TRH Head; (b) AdeptOne and Train 

The AV-shell script necessary to  perform this task 
is made up of two parts. In the first part, the in- 
ternal representations of the environment and devices 
are created. This includes creating and locating the 
manipulator, hand, table, cameras and head. In the 
second part, we activate the head and perform the 
task. 

Creating the internal representation of the environ- 
ment in the AV-shell includes defining parameters of 
the various components present. Each robotic device 
has a set of parameters required for its control which 
must be defined. This includes things such as mini- 
mum and maximum joint values etc ... Additionally, 
the components must be initially located relative to 
the universe and devices attached to  other devices (i.e. 
hand on manipulator and cameras on head) in reality 
must also be attached in the internal representation. 
Also, the description of the train must be memorized 
by the AV-shell. 

Once the environment has been defined, we are 
ready to  begin the task. The first step is to con- 

nect the internal description of the devices to  their 
physical counterparts. This is accomplished with the 
connect command. Once connected, commands caus- 
ing changes in the internal configuration will effect the 
physical devices as well. If we execute the task without 
connection to  the physical devices, we have simulation. 
Next, using the AV-shell commands find and saccade, 
we locate the train in the environment, invoke a sac- 
cade l,o its position and begin smooth pursuit tracking 
(this is an example of where perception-action takes 
place at the micro-level of the active vision device). 
When the train approaches an edge of the table, the 
event e l  is set signaling the arm to bring the hand 
to  the estimated falling point of the train (this is an 
example of where perception-action takes place at the 
macro-level of the integrated system). At the same 
time, the hand is preshaped for grasping the train. 
When the arm has brought the hand to the grasping 
point and the hand is preshaped, the train is grasped. 

In this example, specific roblotic devices were used. 
The same code is applicable to any other devices 
known to the AV-shell. For instance, we could have 
used a PUMA manipulator and a KTII head instead. 
The AV-shell script for performing this task is given 
below 

ttttttItllttttttttttIttttttIIIIItttIIIIIttt~IIttItt8tt8tttttttttttttttttttttttt 

ttttttttl l*ttIttttttttttl lttl l l ltt l l l ltttttttItttttttttttttttttttIttt~ttIttIttt  
I Create environment f o r  grasp t a i l  t 

#Create  imd locate  manipi l l tor:  t 
t l e c e ,  se def ine  parameters for the adeptone manipilator type .  create II t 
rinstancu c a l l e d  H and locate  it r r l a t i r e  t o  the u i v r r i e .  t 

cop -a I dcfamlt category option i s  -a (arm) t 

par L 321.0 315 .0  0 . 0  I define 1 L t  parameters I 
type adaptom t create a" type  mame I 

. . . . , . . 
i n i t  adeptoir H t create an are instance c a l l e d  H I 

t locate  am H a t  Univeme l O C  t 
trai 0 100 150 t trans late  I" base t 
rot -I 90 t rotate arm base Iboml. z-axis by 90 degrees I 

*Create and locate  dertroms h a d :  t 
IHere we define parameters f o r  the  BSCUGD hand typt: ,  create u iiit?.are I 
t c n l l e d  I a i d  attach U t o  H. t 

cop -1 t 
type USCBGD t create k u d  type =am! t 
par p i n  -20, -15. -90, -90 t d e f L e  h a d  parameters 1 

t change defaal t  category option t o  -h (hand) 

Lit USCBGD H t create a hand instm8rr c a l l e d  W t 
open H t prepare muipnlator  for a t t a c h a t  t 
attach U H 8 noant h a d  onto arm t 
c lose  H I d isable  firther attacbmenti t 

#Create amd locate  tabla:  I 
tHere we create the  table  and locate  it re lat ive  t o  the aaiverse I 

cop -0 t 

1C.C t locate  table  at  Universe I 
t trans late  table  base tram 0 800 100 t 

rot -I -.so t rotate table  base abont z-axis by -90 deprees t 

I clawe defamlt category option t o  -0 (object )  
obj T 8 create table  name t 

#Create and l o c i t e  h a d :  t 
#Hen s e  defime parameters f a r  the T1Y head type .  Lieate an in l tance  I 
# c a l l e d  HD and locate  it r e l a t e i r e  t o  the  nniverm.  t 

cop -d t 
type Tt l l  I create herd type aaNe I 

t change defamlt category option t o  -d (head) 

... ... 
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inst  TLH WD : create a head mstuCe cal lsd HD t 
l O C  t locate lead WO at  h ive r se  t 
tran 0 400 150 I t r u i l a t e  i r r d  base t 
rot  -7. 180 : t rotate  head bass aboit z-axis by 180 degrees 

#Create and locate cai.eras: 
:Yere, tso  ane eras Cl a d  CL are created and attached t o  ED. 

cop -1. 

i n l t  rohl CL CI t create c u e m  i n s t axes  cal led CL a d  CL 
open w 
se1 CL : .elect c u e n  CL 
attach C 1  HD : R m x t  CL oat0 YD 
t rans  -0 -x so 
.e1 CI 1 select  camera CI 
attach CI YD 8 Hmnt CL Onto XI) 
tram -0 -x -50 
close HO t dimble f i r t h e r  a t t aLhex t*  01 ID 

: chugs defaal t  category q t i o i  t o  -c (camera) 
type cohn t create camera t y p e  =am* 

t Prepare head fo r  c u c r i  a t t i c h e i t  

I t r u i l a t e  camera CL t o  f i a a l  position ox I D  

t t r a s l i t e  camera LL t o  f u a l  poi i t ion ox ID 

t 
: 
1 
: 
t 
: 
t 
: 
t 
t 
t 
: 
t 
: 
t 

8 Conclusion 

In this paper, we addressed issues related to  agent 
architectures in active vision research. We pre- 
sented the agent architecture/active vision research 
tool called the AV-shell which provides a program- 
ming framework for expressing perception and action 
routines as well as the techniques necessary to  inte- 
grate a wide range of active vision devices into com- 
plex robotic architectures. The AV-shell is built up of 
a set of active vision routines along with the ability 
to compose these routines into continuously running 
perception action tasks. Future work on the AV-shell 
includes research into providing fault tolerance. 
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