
Proceedings of the 1996 IEEE
International Conference on Robotics and Automation

Minneapolis, Minnesota - April 1996

Cycle Detection in Repair-based Railway Scheduling System

Te-Wei Chiang and Hai-Yen Hau

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan 10617, R.O.C.

Abstract
In this paper, we propose un approach for railway

scheduling based on iterative repair, a technique that
starts with a complete but possibly Jawed schedule and
searches through the space of possible repairs. The
search is guided by an earliest-conflict-jirst heuristic
that attempts to repair the earliest constraint violation
while minimiring the value of objective finction. Since
cycles may exist among a sequence of repairs during the
repair process, a cycle detection and resolution scheme
is proposed to prevent infinite loops. Experimental
results show that the efficiency of the repair algorithm
improves signijicantly when cycle detection is incorpo-
rated.

1 Introduction
Similar to conventional job-shop scheduling problem

[11, the railway scheduling problem is the decision of the
arrivaUdeparture times and the assignment of resources
(tracks) to all trains at every station while minimizing a
particular objective function and satisfying some speci-
fied constraints. The resources to be allocated include
the tracks within a station and the tracks between two
stations. For most railway systems, there are two tracks
between neighboring stations, one for southbound trains
and the other for northbound trains, assuming the railway
system is south-north rail. Thus, in our system, only the
tracks within stations need to be assigned by the sched-
uler. On the other hand, the decision of the arrival and
departure times of all trains at each station must satisfy
the specified constraints, e.g., minimum stopover time
constraints, minimum headway constraints, ..., etc.

An analogy can be made between the railway schedul-
ing and the conventional job-shop scheduling. In rail-
way scheduling problems, we can regard the tracks as
machines in a job-shop and the assignment of trains to
tracks as the dispatching of jobs to machines. The
objective of railway scheduling is to minimize the
average running time of each train, which corresponds to
minimize the average flow time of each job in job-shop
scheduling.

The main difference between the railway scheduling
problem and the conventional job-shop scheduling
problem lies in the constraints the final schedule is
subject to. There are many conditional constraints that
depend on the track assignments of each train. Further-
more, for a train that stops at station A, we must assign a
track with platform. For a train passing through station
A non-stop, we can assign any track with or without
platform to the train. Therefore, the railway scheduling
problem is similar to the conventional job-shop schedul-
ing problem with alternative machines [8]. Such differ-
ences make the problem more difficult than conventional
job-shop scheduling problem and make it impossible to
be solved by conventional OR techniques, so we resort to
AI techniques.

There is a long history of AI programs that use repair
or debugging strategies to solve problems[9], [lo] In
repair-based approach, one starts with a complete but
possibly flawed schedule and searches through the space
of possible repairs. Several attempts have been made in
the past to tackle the complexities involved in the auto-
matic generation of timetables [4], [5] , [7]. However,
their railway systems usually are special cases of a
general railway system. Chiang and Hau proposed an
iterative repair approach for railway scheduling problems
[2], [3]. The main problem of the repair-based schedul-
ing system is that cycles may exist among a sequence of
repairs during the repair process and hence circumvent
the evolution of the repair process. To this end, we
propose a cycle detection and resolution scheme for
railway scheduling problems in this paper.

2 Problem description
The ultimate goal of railway scheduling is to provide

good service for passengers (e.g., minimize the waiting
time for each passenger) while minimizing the operation
costs. Thus, we must generate a conflict-free schedule in
accordance with a master scheduling plan while mini-
mizing the average running time of each train. The
master scheduling plan contains, for each train, the
departure time of the starting station, the destination, and
the stations along the route that the train must stop. The

0-7803-2988-4196 $4.00 0 1996 IEEE 251 7

S I

s 2

s 3

s 4

Fig. 1. A simple train lagram used for illustration.

railway scheduling process is carried out by drawing a
train diagram. The train diagram indicates, for each
train, the arrival time and departure time of each station
along the route, and the stopover time at a station if the
train makes a stop at that station. Fig. 1 shows a simple
train diagram, where the vertical axis represents stations
and the horizontal axis represents time. Slanted lines
represent trains. The lines with positive slope represent
northbound trains and that with negative slope represent
southbound trains. The thick line in the diagram repre-
sents the southbound train that departs station S1 at 6 5 0
a.m., passes through S2, and arrives at S3 at 7:10, and
stops at S3 for 10 minutes and departs S3 at 7:20. The
goal of railway scheduling is to draw a train diagram for
all trains and stations and determine the track assign-
ments for each train at each station, and maximize (or
minimize) certain performance criteria, subject to some
physical constraints.

The physical constraints to the railway scheduling are :
1) Running time constraints : These constraints indicate

that the shortest running time needed for trains to
travel from one station to the next station is constant.

2) Minimum stopover time constraints : The minimum
stopover time of each train at each station, which is
prespecified according to the master scheduling plan.

Due to the safety
concern, there must be a safety time separation
between the consecutive arrivalldeparture of trains at
each station.

4) Level crossing constraints : The time interval be-
tween two trains sharing the same crossover must
satisfy a prespecified minimum time interval to
prevent collision. Note that the crossovers corre-
sponds to the fork points shown in Fig. 2.

5) Track assignment constraints : If two trains had been
allocated to the same track in a station, then there is a
minimum time interval limited to the two trains.

Corresponding to these constraints are five types (Type
I - Type V) of conflicts that may arise during the sched-
uling process, each of which corresponds to one of the
constraint type defined above. For instance, Type I

3) Minimum headway constraints :

conflict corresponds to the violation of running time
constraint. Each conflict is associated with either one
train (Type I and Type II) or two trains (Type I11 - Type
V) and the station where the conflict happens. We can
find that there are many conditional constraints (e.g.
(4)-(5)). The minimum headway constraints, the level
crossing constraints and the track assignment constraints
are route-dependent constraints, i.e., whether these
constraints exist or not depends on the track assignments.
Such complex constraints make the problem impossible
to be solved by conventional OR techniques, not to say
the inherently large scale of the problem.

3 Approach
3.1 Problem formulation

Generally speaking, the goal of the railway scheduling
is to minimize the average " j n g time and the start
time deviation of each train while satisfying all of the
defined constraints. Mathematically, the problem can be
formulated as a constrained optimization problem: the
objective function is the minimization of the average
total running time and the start time deviation of each
train, and the constraints are that defined in section 2.
We can transform the constrained optimization problem
to unconstrained optimization problem via the incorpora-
tion of the constsaint violations into the objective
function.

Assume that X is a solution point (or a schedule) in the
problem space. It can be expressed as

X = s J , 1lilNand l<jW (1)
where N is the number of trains and A4 is the number of
stations. Each &J corresponds to an arrival time, depar-
ture time, track triplet [a,, d,, t,]. The objective function
is

C@ = Pm + AQm (2)

where P@ represents the cost due to the delay of the
stopover times of trains and the deviation of the depar-
ture time of the trains at their starting stations, which is
our measure for schedule quality; Q@ is the cost due to
the conflicts in schedule X and A is the Lagrange multi-
plier used to relax the constraint violations. We usually
refer the objective function C(2J to the cost function of
the problem. For simplicity, we call C@, P($J and e(&) the total cost, the conflict cost and the schedule
cost of the schedule respectively.

The P m can be defined as Zzl ZE, pi i , where p , is
the cost of operationx, and is defined as

(3)

251 8

- TRAlN B

A

B
...................

solthbound

N o w

southbound U

0 : Track 0 : Folk Point
Essm : Platform

Fig. 2. A sample station configuration.

where dij" represents the ideal departure time of the train
at its starting station, which is obtained from the master
scheduling plan. A, is equal to 1 if xu corresponds to the
operation of the associated train at its starting station and
is equal to 0 otherwise. The a and p represent the
weight of the delay time and the weight of the start time
deviation. On the other hand, QW can be defined as
~2: q k , where qk is an positive integer representing the
time interval the Mh conflict is violated, assuming there
are K w conflicts in the schedule X The weight a, p
and Lagrange multiplier A are chosen to satisfy a<<A
and p<<A since a conflict-free schedule is our ultimate
goal.

3.2 System architecture
The four basic components in the proposed system are

: Initial Scheduler, Repair Scheduler, Local Scheduler
and Conflict Management. First, an initial train diagram
is established by Initial Scheduler according to the
master scheduling plan. The track assignments of each
train at each station are randomly assigned. The Repair
Scheduler then determines the repairing sequence of
conflicts after Conflict Management finds all conflicts in
the initial schedule. The sequence of conflicts to be
repaired in the proposed system is based on the earliest-
conflict-jirst heuristic. Then the Local Scheduler will
iteratively repair the conflict given by the Repair Sched-
uler until the overall train diagram is conflict-free.

4 Proposed algorithm
4.1 Repair methods

When a conflict arises between two trains at some
station, one of the trains will be selected in an attempt to
repair as much of the reduction of the cost function as
possible. The system will try to shift the train left or
right in time axis so that the resource is available, rather
than exploring many possible alternatives.

There are five repair methods that can repair a conflict:
1) Change the track assignment of a train at the station.
2) Left-shift the stopover time of the violated train at

the station in the train diagram such that the

constraint is satisfied.
3) Right-shift the stopover time of the violated train at

the station in the train diagram such that the con-
straint is satisfied.

4) Left-extend the stopover time of the train at the
station (i.e. extend the stopover time while fixing the
departure time of the train at this station).

5) Right-extend the stopover time of the train at the
station (i.e. extend the stopover time while fixing the
arrival time of the train at this station).

The fist three repair methods are used to solve all
types of conflicts except minimum stopover time viola-
tions. Among the three methods, change the track
assignment has the highest priority since good track
assignment can avoid some route-dependent constraint
violations. Furthermore, the priority of a left-shift is
higher than that of a right-shift because moving train
right on time axis will cause the train to occupy the
resource longer and hence affect the performance of the
schedule. The last two repair methods are used only for
resolving m i n i " stopover time violation. Similarly,
the priority of the left-extend stopover time is higher
than right-extend stopover time. Notice that the five
repair methods only adjust the stopover time of each
train, so the time required for each train running between
any neighboring stations is unchanged.

4.2 Iterative repair
Initially, the initial train diagram is established accord-

ing to the master scheduling plan and tracks are ran-
domly assigned to trains. Since the initial schedule is
not conflict-free, we must repair the conflicts in the
initial schedule. During each iteration, we iteratively
search a repair that resolves the conflict given by the
earliest-conflict-jirst heuristic while minimizing the cost
function. To select an appropriate repair method for a
conflict, local search techniques can be used.

If a repair reduces the cost function, i.e. the new cost
value, c,, is smaller than c,, then we accept the repair
and assign c,, to c,; otherwise we try next priority repair
until all possible repairs to the conflict has been tried. If
no repair method can reduce the cost function, the lowest
priority repair method will be selected to repair the
conflict. The main weakness of local search algorithms
is that it has the tendency of stuck in a cycle. Unless the
repair algorithm can identify the existence of cycles, it
can run into infinite loops. Fig.3 illustrates how cycling
could occur during the repair process. Fig. 3(a) shows a
portion of train diagram in which there is a conflict
C 1 (minimum time lag violation) occurred between train
T1 and train T2 at station S1, as indicated by dashed
circle. For the sake of simplicity, the repair methods

251 9

T l T2 T 2 T 1

S I s1

s2 s2

53 s3

S I

s2

s3

c-
I I

(4 (b)
T2 T1 T2 T 1

S I

s2

s3

T1 T2 i2 IT1
s1 s1-

s 2 s 2

s3 s3

Fig. 3. Illustration of cycling

used in the example is somewhat different to aforemen-
tioned repair methods, but the concept is similar. In
order to resolve the conflict, train T1 is selected to wait
at station S2 (see Fig. 3(b)), but this repair introduces a
new conflict C 2 (m i n i " time lag violation) (see Fig.
3(c)). So train T1 is fiuther selected to wait at station
S3, and results in conflict C3. To resolve C3, the s t o p
ver time of train T1 is extended at station 53. Although
no new conflict is occurred at this time, the system finds
that there is a redundant wait for train T1 at station S2
(this is because-the train is originally planned to pass the
station) (see Fig. 3(d)). So the system cancels the wait.
At this time, the system finds another redundant wait for
train T1 at station S3 (see Fig. 3(e)). To avoid the
redundancy, the system further cancels the wait and
hence result in a cycle (i.e., it comes back to the original
schedule) as shown in Fig. 3(0.

4.3 Cycle detection
A cycle occurs when the schedule is unchanged after a

sequence of repair operations. Since different values of
objective(cost) function C O always correspond to
different schedules, we can easily verify that two sched-
ules are not identical if they have different Cm values.
On the other hand, two schedules having identical C@
values may not be identical. From above observations,
we incorporated a forbidden list into the standard local
search algorithm. We record the C@ value of each
intermediate schedule as the element of forbidden list.

We can conjecture that a repair may result in a cycle
when the Cm value of the schedule resulting from this
repair is equal to one of those stored in the forbidden list.
If the C m value of the current schedule is not found in
the forbidden list, we can quickly ascertain that cycle
does not exist; otherwise cycle may exist and further
investigation is required. We employ another list called
action list to memorize the information about each
recent repair. From the action list, we can realize the
transition of the intermediate schedule and find out
whether the intermediate schedules having the same
C m values are actually identical.

In the following we define the train variables and the
repair operations more precisely.

Defnition I : (Train variables) There are three
variables associated with a train T, and a station S, the
train stops at; a(TI , S,), d(T, , S,) and t(TI , S,) represent
the arrival time, departure time and track assignment of
train TI at station S,, respectively. The total number of
train variables equal to 3NM, where N is the number of
trains and M is the number of stations.

Definition 2: (Repair operations, Characteristic
pattem, Numeric pattem) Each repair operation is
represented by F(Tl, S, , 0, , A). It is associated with four
parameters: TI (the train ID), S, (the station ID), 0, (the
operation type) and A (the amount changed), since a
repair operation modifies the values of a set of train
variables and the train variables depend on the train ID
and the station ID (see Definition 1). The combination
of the fist three parameters is called the characteristic
pattem of the operation, which identifies which vari-
able(s) to be modified by the repair operation, and the
last parameter is called the numeric parameter which
specifies the degree of the value(s) of the variable(s) to
be changed. Actually, each element of the action list
records the four parameters of the associated repair.

Definition 3: (Shijit operation) The shift operation
F(T, , S, , SHIFT, A) shifts the line segment representing
train TI between station S, and S,,, in the train diagram (
each line segment corresponds to the running time of the
train between the two stations). The train variables to be
modified are shown as follows:

d(T,, SI) := d(TI, S,) + A and a(T,, SI+,) := a(T,,
S,,,) + A, if the direction of train T, is southbound.

a(T, , S,) := a(T, , S,) + A and d(T, , S,,,) := d(T, ,
S,,,) + A, if the duection of train TI is northbound.

Definition 4: (Track reassignment operation) The
operation F(T,, S, , TRACK-REASSIGN, (NewTrackId -
OldTrackId)) modifies the following train variable:

t(T, , S,) := t(T, , S,) + (NewTrackId-OldTrackId) (or t(
T, , S,) := NewTrackId), where OldTrackId and New-
TrackId represent the index of the original assigned track

2520

and the new assigned track, respectively.
Definition 5: (Cycle) If the schedule is unchanged

after a sequence of repairs, then we say that there is a
cycle among the sequence of repairs.

From the above definitions, we can derive the follow-
ing properties to support our cycle detection method.

Property 1: Using the two primitive repair operations
defined in definition 3 and 4, different characteristic
patterns refer to different variable@) and all possible
characteristic patterns cover all train variables,

From train diagram's point of view, the schedule can be
seen as a collection of slanted line segments. Each of
the line segments corresponds to the running process of a
train between two stations and is associated with two
train variables, i.e., the departure time from the previous
station and the arrival time at the next station. The
difference between the two times corresponds to the
running time between the two stations. Definition 3
implies that each of the line segments is characterized
by a particular characteristic pattern and is controlled by
the shift operations with the same characteristic patterns.
The shift operation F(T, , SI , SHIFT, A) controls the
position of the slanted line segment belonging to train TI
between station SI and SI+, in the train diagram. On the
other hand, the track reassignment operations control all
the variables referring to track assignments. Thus, the
two primitive repair operations, shift operations and
track reassignment operations, control all of the train
variables. In conclusion, different characteristic patterns
refer to different variable(s) and all possible characteris-
tic patterns cover all train variables.

Property 2: The schedule is unchanged, if and only if
the sum of the numeric parameters of the repair opera-
tions with the same characteristic pattern is zero.

If the schedule is unchanged then the value of each
train variable must be unchanged, In other words, the
operation applied to each variable has no effect. Since
each variable is associated with a particular characteris-
tic pattern, it is uniquely controlled by the repair opera-
tions with the same characteristic patterns. Thus, if the
value of a variable remains unchanged then the combina-
tion of all changes to the variable must be zero, i.e., the
sum of the numeric parameters of the repair operations
with the characteristic pattern associated with the vari-
able is zero.

From the above properties, we can devise an algorithm
used for cycle detection. Let ALIST denotes the part of
action list required to be examined. The ALIST records
the parameters (see Definition 2) of the sequence of
repairs between the two schedules having the same cost
value. Since the above properties only hold for the two
primitive repair operations defined in Definition 4 and 5,
the aforementioned five repair methods have to be stored

Algorithm CD
begin

for all element (Tl, S,, 0,, A) in ALIST do

end;
for all element (T,, S,, 0,. A) in ALIST do

S ~ [T I I I S , l [O J := s~[T,I[sJl[okl + A ;

if SUM[T,I[S,][OJ f 0
then return FALSE;

end;
return TRUE;

end;

Fig. 4. The algorithm used for cycle detection

in the action list in their primitive forms. For example,
the element (S, ,T, ,Right-Shift, t) can be decomposed
into (S,-,,T,, SHIFT, t) and (S, ,T,, SHIFT, t), where
Right-Shift corresponds to the third of the five repair
methods. The algorithm used for cycle detection is
shown in Fig. 4. The algorithm CD returns TRUE if a
cycle is detected and returns FALSE otherwise. If a
repair method results in a cycle, we reject the repair and
try another repair method. The proposed iterative repair
algorithm is shown in Fig. 5, in which the following
notations are used :

S,: The set of conflicts corresponding to current

S, : The set of repair methods
c, : The cost of the original schedule
c,, : The cost of the new generated schedule
count : the number of iterations
limit : a prespecified number used to limit the number

of iterations in the iterative repair process.

schedule

5 Experimental results
In our experiments, we set a , p and A in eq. (2)-(3) to

1, 2 and 10 respectively. The station configuration used
is the example station shown in Fig. 2. All experiments
were run on a PC 80486-33. Each experiment ran until
the resulting schedule was conflict-free. Since the repair
functions are probabilistic, we calculated average results
over five repeated trials for each experiment. In Fig.6 we
graph the average cost as a function of iteration for a
random generated 10-station 1 00-train problem solving
by local search with cycle detection. The weight of
conflict cost is set to 10 and the schedule range is 12
hours. The three curves in this figure represent the cost
due to conflicts, the cost due to schedule performance
and the total cost of the schedule (see eq. (2)) respec-
tively. Each iteration corresponds to the process of
repairing a conflict. As a result, the number of iterations

2521

Step 1. Generate the initial schedule according to the
master scheduling plan; Randomly assign
tracks to train; Find all conflicts in the initial
schedule and put these conflicts to S, ;
Evaluate c,; count := 0.

Step 2. If S, is empty or count > limit then stop, else
select and delete the earliest conflict from
S,; Put all possible repair methods to S,.

Step 3. Select and delete the highest priority repair
method from S,; Test to repair the selected
conflict; Evaluate c,.

Step 4. If S, is empty, then goto step 7.
Step 5. If c, 2 c,, then goto step 3.
Step 6. If c, is in TLIST and procedure CD returns

TRUE, then goto step 3.
Step 7. Perform the selected repair; Update S,; c, :=

c,; Increase count by one; Goto step 2.

Fig. 5. The proposed iterative repair algorithm.

imoo w

43- T d C e s t

+ CMIlnCal

+ %&le COIt

BODO w

4000 w

ow
OM moo 400 00 800 w 800 00

Iteration

Fig.6. Results of scheduling a randomly generated
10-station 100-train problem using local search
with cycle detection.

to achieve a conflict-free solution is 761.6. The average
total cost is 283.

6 Conclusions
The railway scheduling problem is more difficult than

conventional job-shop scheduling problems because it is
inherently large-scale and there are conditional con-
straints, many alternative machines (tracks), and the
processing time (stopover time) may be adjustable. In
this paper, we demonstrated a railway scheduling system
based on the iterative repair method. We introduced
how to transform the railway scheduling problem into a
repair-based search problem. Searching through the
space of possible repairs, the system can quickly find a
good feasible schedule without trying all possible alter-
natives. The proposed cycle detection and resolution
scheme can help the repair process escape from infinite
loops. Through the cooperation of the earliest-conflict-
first heuristic and the local search with cycle detection,
the system will result in a conflict-free schedule. In
conclusion, the proposed repair-based system can resolve
the large-scale railway scheduling problem in an effi-
cient and effective manner. This approach can be ap-
plied to general scheduling problems to solve scheduling
with alternative machines and dynamic scheduling
problems.

References
[l] K. Baker, "Introduction to sequencing and sche-

[2] T. W. Chiang and H. Y. Hau, "Knowledge-based
duling," John Wiley & Sons, 1974.

railway scheduling system," in Proc. Int. Con$ on
Industrial Fuzzy Control and Intelligent Systems,
Houston, Texas, pp. 42-46,1993.

[3] T. W. Chiang and H. Y. Hau, "Railway scheduling
system using repair-based approach," in Proc. IEEE
Int. Con$ on Tools with Artificial Intelligence,
WashingtonDC, pp. 71-78, 1995.

[4] J. E. Cury, F. A. C. Gomide, and M. J. Mendes, "A
methodology for generation of optimal schedules for
an underground railway system," IEEE Trans. on
Automatic Control, vol. AC-25, no. 2, pp.217-222,
April 1980.

[5] K. Fukumori, H. Sano, "Fundamental algorithm for
train scheduling based on artificial intelligence,"
Systems and Computers in Japan, vol. 18, no. 3, pp.

[6] J. Gu, "Local search for satisfiability (SAT)
problem," IEEE Trans. on Systems, Man, and
Cybernetics, vol. 23, no. 4, pp. 1108-1 129, 1993.

[7] K. Komaya and T. Fukuda, "A Knowledge-based
approach for railway scheduling," in Proc. CAIA,
pp.405-411, 1991.

[8] A. Kusiak, "Intelligent manufacturing system,"
Prentice-Hall, 1990.

[9] S. Minton, M. D. Johnston, A. B. Philips, and P.
Laird, "Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling
problems," Artificial InteZEigence, vol. 58, pp.

[lo] M. Zweben, E. Davis, B. Dam, and M. J. Deale,
"Scheduling and rescheduling with iterative repair,"
IEEE Trans. on Systems, Man, and Cybemehcs,
vol. 23 ,no. 6, pp. 1588-1596, 1993.

52-63,1987.

161-205, 1992.

2522

