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Abstract 
In this paper, we propose un approach for railway 

scheduling based on iterative repair, a technique that 
starts with a complete but possibly Jawed schedule and 
searches through the space of possible repairs. The 
search is guided by an earliest-conflict-jirst heuristic 
that attempts to repair the earliest constraint violation 
while minimiring the value of objective finction. Since 
cycles may exist among a sequence of repairs during the 
repair process, a cycle detection and resolution scheme 
is proposed to prevent infinite loops. Experimental 
results show that the efficiency of the repair algorithm 
improves signijicantly when cycle detection is incorpo- 
rated. 

1 Introduction 
Similar to conventional job-shop scheduling problem 

[ 11, the railway scheduling problem is the decision of the 
arrivaUdeparture times and the assignment of resources 
(tracks) to all trains at every station while minimizing a 
particular objective function and satisfying some speci- 
fied constraints. The resources to be allocated include 
the tracks within a station and the tracks between two 
stations. For most railway systems, there are two tracks 
between neighboring stations, one for southbound trains 
and the other for northbound trains, assuming the railway 
system is south-north rail. Thus, in our system, only the 
tracks within stations need to be assigned by the sched- 
uler. On the other hand, the decision of the arrival and 
departure times of all trains at each station must satisfy 
the specified constraints, e.g., minimum stopover time 
constraints, minimum headway constraints, ..., etc. 

An analogy can be made between the railway schedul- 
ing and the conventional job-shop scheduling. In rail- 
way scheduling problems, we can regard the tracks as 
machines in a job-shop and the assignment of trains to 
tracks as the dispatching of jobs to machines. The 
objective of railway scheduling is to minimize the 
average running time of each train, which corresponds to 
minimize the average flow time of each job in job-shop 
scheduling. 

The main difference between the railway scheduling 
problem and the conventional job-shop scheduling 
problem lies in the constraints the final schedule is 
subject to. There are many conditional constraints that 
depend on the track assignments of each train. Further- 
more, for a train that stops at station A, we must assign a 
track with platform. For a train passing through station 
A non-stop, we can assign any track with or without 
platform to the train. Therefore, the railway scheduling 
problem is similar to the conventional job-shop schedul- 
ing problem with alternative machines [8]. Such differ- 
ences make the problem more difficult than conventional 
job-shop scheduling problem and make it impossible to 
be solved by conventional OR techniques, so we resort to 
AI techniques. 

There is a long history of AI programs that use repair 
or debugging strategies to solve problems[9], [lo] In 
repair-based approach, one starts with a complete but 
possibly flawed schedule and searches through the space 
of possible repairs. Several attempts have been made in 
the past to tackle the complexities involved in the auto- 
matic generation of timetables [4], [ 5 ] ,  [7]. However, 
their railway systems usually are special cases of a 
general railway system. Chiang and Hau proposed an 
iterative repair approach for railway scheduling problems 
[2], [3]. The main problem of the repair-based schedul- 
ing system is that cycles may exist among a sequence of 
repairs during the repair process and hence circumvent 
the evolution of the repair process. To this end, we 
propose a cycle detection and resolution scheme for 
railway scheduling problems in this paper. 

2 Problem description 
The ultimate goal of railway scheduling is to provide 

good service for passengers (e.g., minimize the waiting 
time for each passenger) while minimizing the operation 
costs. Thus, we must generate a conflict-free schedule in 
accordance with a master scheduling plan while mini- 
mizing the average running time of each train. The 
master scheduling plan contains, for each train, the 
departure time of the starting station, the destination, and 
the stations along the route that the train must stop. The 
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Fig. 1. A simple train lagram used for illustration. 

railway scheduling process is carried out by drawing a 
train diagram. The train diagram indicates, for each 
train, the arrival time and departure time of each station 
along the route, and the stopover time at a station if the 
train makes a stop at that station. Fig. 1 shows a simple 
train diagram, where the vertical axis represents stations 
and the horizontal axis represents time. Slanted lines 
represent trains. The lines with positive slope represent 
northbound trains and that with negative slope represent 
southbound trains. The thick line in the diagram repre- 
sents the southbound train that departs station S1 at 6 5 0  
a.m., passes through S2, and arrives at S3 at 7:10, and 
stops at S3 for 10 minutes and departs S3 at 7:20. The 
goal of railway scheduling is to draw a train diagram for 
all trains and stations and determine the track assign- 
ments for each train at each station, and maximize (or 
minimize) certain performance criteria, subject to some 
physical constraints. 

The physical constraints to the railway scheduling are : 
1) Running time constraints : These constraints indicate 

that the shortest running time needed for trains to 
travel from one station to the next station is constant. 

2) Minimum stopover time constraints : The minimum 
stopover time of each train at each station, which is 
prespecified according to the master scheduling plan. 

Due to the safety 
concern, there must be a safety time separation 
between the consecutive arrivalldeparture of trains at 
each station. 

4) Level crossing constraints : The time interval be- 
tween two trains sharing the same crossover must 
satisfy a prespecified minimum time interval to 
prevent collision. Note that the crossovers corre- 
sponds to the fork points shown in Fig. 2. 

5)  Track assignment constraints : If two trains had been 
allocated to the same track in a station, then there is a 
minimum time interval limited to the two trains. 

Corresponding to these constraints are five types (Type 
I - Type V) of conflicts that may arise during the sched- 
uling process, each of which corresponds to one of the 
constraint type defined above. For instance, Type I 

3)  Minimum headway constraints : 

conflict corresponds to the violation of running time 
constraint. Each conflict is associated with either one 
train (Type I and Type II) or two trains (Type I11 - Type 
V) and the station where the conflict happens. We can 
find that there are many conditional constraints (e.g. 
(4)-(5)). The minimum headway constraints, the level 
crossing constraints and the track assignment constraints 
are route-dependent constraints, i.e., whether these 
constraints exist or not depends on the track assignments. 
Such complex constraints make the problem impossible 
to be solved by conventional OR techniques, not to say 
the inherently large scale of the problem. 

3 Approach 
3.1 Problem formulation 

Generally speaking, the goal of the railway scheduling 
is to minimize the average " j n g  time and the start 
time deviation of each train while satisfying all of the 
defined constraints. Mathematically, the problem can be 
formulated as a constrained optimization problem: the 
objective function is the minimization of the average 
total running time and the start time deviation of each 
train, and the constraints are that defined in section 2. 
We can transform the constrained optimization problem 
to unconstrained optimization problem via the incorpora- 
tion of the constsaint violations into the objective 
function. 

Assume that X is a solution point (or a schedule) in the 
problem space. It can be expressed as 

X = s J ,  1lilNand l<jW (1) 
where N is the number of trains and A4 is the number of 
stations. Each &J corresponds to an arrival time, depar- 
ture time, track triplet [a,, d,, t,]. The objective function 
is 

C@ = Pm + AQm (2) 

where P@ represents the cost due to the delay of the 
stopover times of trains and the deviation of the depar- 
ture time of the trains at their starting stations, which is 
our measure for schedule quality; Q@ is the cost due to 
the conflicts in schedule X and A is the Lagrange multi- 
plier used to relax the constraint violations. We usually 
refer the objective function C(2J to the cost function of 
the problem. For simplicity, we call C@, P($J and e(&) the total cost, the conflict cost and the schedule 
cost of the schedule respectively. 

The P m  can be defined as Zzl ZE, pi i  , where p ,  is 
the cost of operationx, and is defined as 

(3) 
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Fig. 2. A sample station configuration. 

where dij" represents the ideal departure time of the train 
at its starting station, which is obtained from the master 
scheduling plan. A, is equal to 1 if xu corresponds to the 
operation of the associated train at its starting station and 
is equal to 0 otherwise. The a and p represent the 
weight of the delay time and the weight of the start time 
deviation. On the other hand, QW can be defined as 
~2: q k  , where qk is an positive integer representing the 
time interval the Mh conflict is violated, assuming there 
are K w  conflicts in the schedule X The weight a, p 
and Lagrange multiplier A are chosen to satisfy a<<A 
and p<<A since a conflict-free schedule is our ultimate 
goal. 

3.2 System architecture 
The four basic components in the proposed system are 

: Initial Scheduler, Repair Scheduler, Local Scheduler 
and Conflict Management. First, an initial train diagram 
is established by Initial Scheduler according to the 
master scheduling plan. The track assignments of each 
train at each station are randomly assigned. The Repair 
Scheduler then determines the repairing sequence of 
conflicts after Conflict Management finds all conflicts in 
the initial schedule. The sequence of conflicts to be 
repaired in the proposed system is based on the earliest- 
conflict-jirst heuristic. Then the Local Scheduler will 
iteratively repair the conflict given by the Repair Sched- 
uler until the overall train diagram is conflict-free. 

4 Proposed algorithm 
4.1 Repair methods 

When a conflict arises between two trains at some 
station, one of the trains will be selected in an attempt to 
repair as much of the reduction of the cost function as 
possible. The system will try to shift the train left or 
right in time axis so that the resource is available, rather 
than exploring many possible alternatives. 

There are five repair methods that can repair a conflict: 
1) Change the track assignment of a train at the station. 
2) Left-shift the stopover time of the violated train at 

the station in the train diagram such that the 

constraint is satisfied. 
3) Right-shift the stopover time of the violated train at 

the station in the train diagram such that the con- 
straint is satisfied. 

4) Left-extend the stopover time of the train at the 
station (i.e. extend the stopover time while fixing the 
departure time of the train at this station). 

5) Right-extend the stopover time of the train at the 
station (i.e. extend the stopover time while fixing the 
arrival time of the train at this station). 

The fist  three repair methods are used to solve all 
types of conflicts except minimum stopover time viola- 
tions. Among the three methods, change the track 
assignment has the highest priority since good track 
assignment can avoid some route-dependent constraint 
violations. Furthermore, the priority of a left-shift is 
higher than that of a right-shift because moving train 
right on time axis will cause the train to occupy the 
resource longer and hence affect the performance of the 
schedule. The last two repair methods are used only for 
resolving m i n i "  stopover time violation. Similarly, 
the priority of the left-extend stopover time is higher 
than right-extend stopover time. Notice that the five 
repair methods only adjust the stopover time of each 
train, so the time required for each train running between 
any neighboring stations is unchanged. 

4.2 Iterative repair 
Initially, the initial train diagram is established accord- 

ing to the master scheduling plan and tracks are ran- 
domly assigned to trains. Since the initial schedule is 
not conflict-free, we must repair the conflicts in the 
initial schedule. During each iteration, we iteratively 
search a repair that resolves the conflict given by the 
earliest-conflict-jirst heuristic while minimizing the cost 
function. To select an appropriate repair method for a 
conflict, local search techniques can be used. 

If a repair reduces the cost function, i.e. the new cost 
value, c,, is smaller than c,, then we accept the repair 
and assign c,, to c,; otherwise we try next priority repair 
until all possible repairs to the conflict has been tried. If 
no repair method can reduce the cost function, the lowest 
priority repair method will be selected to repair the 
conflict. The main weakness of local search algorithms 
is that it has the tendency of stuck in a cycle. Unless the 
repair algorithm can identify the existence of cycles, it 
can run into infinite loops. Fig.3 illustrates how cycling 
could occur during the repair process. Fig. 3(a) shows a 
portion of train diagram in which there is a conflict 
C 1 (minimum time lag violation) occurred between train 
T1 and train T2 at station S1, as indicated by dashed 
circle. For the sake of simplicity, the repair methods 
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Fig. 3. Illustration of cycling 

used in the example is somewhat different to aforemen- 
tioned repair methods, but the concept is similar. In 
order to resolve the conflict, train T1 is selected to wait 
at station S2 (see Fig. 3(b)), but this repair introduces a 
new conflict C 2 ( m i n i "  time lag violation) (see Fig. 
3(c)). So train T1 is fiuther selected to wait at station 
S3, and results in conflict C3. To resolve C3, the s t o p  
ver time of train T1 is extended at station 53. Although 
no new conflict is occurred at this time, the system finds 
that there is a redundant wait for train T1 at station S2 
(this is because-the train is originally planned to pass the 
station) (see Fig. 3(d)). So the system cancels the wait. 
At this time, the system finds another redundant wait for 
train T1 at station S3 (see Fig. 3(e)). To avoid the 
redundancy, the system further cancels the wait and 
hence result in a cycle (i.e., it comes back to the original 
schedule) as shown in Fig. 3(0. 

4.3 Cycle detection 
A cycle occurs when the schedule is unchanged after a 

sequence of repair operations. Since different values of 
objective(cost) function C O  always correspond to 
different schedules, we can easily verify that two sched- 
ules are not identical if they have different Cm values. 
On the other hand, two schedules having identical C@ 
values may not be identical. From above observations, 
we incorporated a forbidden list into the standard local 
search algorithm. We record the C@ value of each 
intermediate schedule as the element of forbidden list. 

We can conjecture that a repair may result in a cycle 
when the Cm value of the schedule resulting from this 
repair is equal to one of those stored in the forbidden list. 
If the C m  value of the current schedule is not found in 
the forbidden list, we can quickly ascertain that cycle 
does not exist; otherwise cycle may exist and further 
investigation is required. We employ another list called 
action list to memorize the information about each 
recent repair. From the action list, we can realize the 
transition of the intermediate schedule and find out 
whether the intermediate schedules having the same 
C m  values are actually identical. 

In the following we define the train variables and the 
repair operations more precisely. 

Defnition I :  (Train variables) There are three 
variables associated with a train T, and a station S, the 
train stops at; a( TI , S,), d( T, , S,) and t( TI , S,) represent 
the arrival time, departure time and track assignment of 
train TI at station S,, respectively. The total number of 
train variables equal to 3NM, where N is the number of 
trains and M is the number of stations. 

Definition 2: (Repair operations, Characteristic 
pattem, Numeric pattem) Each repair operation is 
represented by F(Tl, S, , 0, , A). It is associated with four 
parameters: TI (the train ID), S, (the station ID), 0, (the 
operation type) and A (the amount changed), since a 
repair operation modifies the values of a set of train 
variables and the train variables depend on the train ID 
and the station ID (see Definition 1). The combination 
of the fist three parameters is called the characteristic 
pattem of the operation, which identifies which vari- 
able(s) to be modified by the repair operation, and the 
last parameter is called the numeric parameter which 
specifies the degree of the value(s) of the variable(s) to 
be changed. Actually, each element of the action list 
records the four parameters of the associated repair. 

Definition 3: (Shijit operation) The shift operation 
F(T, , S, , SHIFT, A) shifts the line segment representing 
train TI between station S, and S,,, in the train diagram ( 
each line segment corresponds to the running time of the 
train between the two stations). The train variables to be 
modified are shown as follows: 

d( T,, SI) := d( TI,  S,) + A and a( T,, SI+,) := a( T,, 
S,,,) + A, if the direction of train T, is southbound. 

a( T, , S,) := a( T, , S,) + A and d( T, , S,,,) := d( T, , 
S,,,) + A, if the duection of train TI is northbound. 

Definition 4: (Track reassignment operation) The 
operation F(T,, S, , TRACK-REASSIGN, (NewTrackId - 
OldTrackId) ) modifies the following train variable: 

t( T, , S,) := t( T, , S,) + (NewTrackId-OldTrackId) (or t( 
T, , S,) := NewTrackId), where OldTrackId and New- 
TrackId represent the index of the original assigned track 
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and the new assigned track, respectively. 
Definition 5: (Cycle) If the schedule is unchanged 

after a sequence of repairs, then we say that there is a 
cycle among the sequence of repairs. 

From the above definitions, we can derive the follow- 
ing properties to support our cycle detection method. 

Property 1: Using the two primitive repair operations 
defined in definition 3 and 4, different characteristic 
patterns refer to different variable@) and all possible 
characteristic patterns cover all train variables, 

From train diagram's point of view, the schedule can be 
seen as a collection of slanted line segments. Each of 
the line segments corresponds to the running process of a 
train between two stations and is associated with two 
train variables, i.e., the departure time from the previous 
station and the arrival time at the next station. The 
difference between the two times corresponds to the 
running time between the two stations. Definition 3 
implies that each of the line segments is characterized 
by a particular characteristic pattern and is controlled by 
the shift operations with the same characteristic patterns. 
The shift operation F(T, , SI , SHIFT, A) controls the 
position of the slanted line segment belonging to train TI 
between station SI and SI+, in the train diagram. On the 
other hand, the track reassignment operations control all 
the variables referring to track assignments. Thus, the 
two primitive repair operations, shift operations and 
track reassignment operations, control all of the train 
variables. In conclusion, different characteristic patterns 
refer to different variable(s) and all possible characteris- 
tic patterns cover all train variables. 

Property 2: The schedule is unchanged, if and only if 
the sum of the numeric parameters of the repair opera- 
tions with the same characteristic pattern is zero. 

If the schedule is unchanged then the value of each 
train variable must be unchanged, In other words, the 
operation applied to each variable has no effect. Since 
each variable is associated with a particular characteris- 
tic pattern, it is uniquely controlled by the repair opera- 
tions with the same characteristic patterns. Thus, if the 
value of a variable remains unchanged then the combina- 
tion of all changes to the variable must be zero, i.e., the 
sum of the numeric parameters of the repair operations 
with the characteristic pattern associated with the vari- 
able is zero. 

From the above properties, we can devise an algorithm 
used for cycle detection. Let ALIST denotes the part of 
action list required to be examined. The ALIST records 
the parameters (see Definition 2) of the sequence of 
repairs between the two schedules having the same cost 
value. Since the above properties only hold for the two 
primitive repair operations defined in Definition 4 and 5,  
the aforementioned five repair methods have to be stored 

Algorithm CD 
begin 

for all element (Tl, S,, 0,, A) in ALIST do 

end; 
for all element (T,, S,, 0,. A) in ALIST do 

S ~ [ T I I I S , l [ O J  := s~[T,I[sJl[okl + A  ; 

if SUM[T,I[S,][OJ f 0 
then return FALSE; 

end; 
return TRUE; 

end; 

Fig. 4. The algorithm used for cycle detection 

in the action list in their primitive forms. For example, 
the element (S, ,T, ,Right-Shift, t )  can be decomposed 
into (S,-,,T,, SHIFT, t) and (S, ,T,, SHIFT, t), where 
Right-Shift corresponds to the third of the five repair 
methods. The algorithm used for cycle detection is 
shown in Fig. 4. The algorithm CD returns TRUE if a 
cycle is detected and returns FALSE otherwise. If a 
repair method results in a cycle, we reject the repair and 
try another repair method. The proposed iterative repair 
algorithm is shown in Fig. 5,  in which the following 
notations are used : 

S,: The set of conflicts corresponding to current 

S, : The set of repair methods 
c, : The cost of the original schedule 
c,, : The cost of the new generated schedule 
count : the number of iterations 
limit : a prespecified number used to limit the number 

of iterations in the iterative repair process. 

schedule 

5 Experimental results 
In our experiments, we set a , p and A in eq. (2)-(3) to 

1, 2 and 10 respectively. The station configuration used 
is the example station shown in Fig. 2. All experiments 
were run on a PC 80486-33. Each experiment ran until 
the resulting schedule was conflict-free. Since the repair 
functions are probabilistic, we calculated average results 
over five repeated trials for each experiment. In Fig.6 we 
graph the average cost as a function of iteration for a 
random generated 10-station 1 00-train problem solving 
by local search with cycle detection. The weight of 
conflict cost is set to 10 and the schedule range is 12 
hours. The three curves in this figure represent the cost 
due to conflicts, the cost due to schedule performance 
and the total cost of the schedule (see eq. (2)) respec- 
tively. Each iteration corresponds to the process of 
repairing a conflict. As a result, the number of iterations 
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Step 1. Generate the initial schedule according to the 
master scheduling plan; Randomly assign 
tracks to train; Find all conflicts in the initial 
schedule and put these conflicts to S, ; 
Evaluate c,; count := 0. 

Step 2. If S, is empty or count > limit then stop, else 
select and delete the earliest conflict from 
S,; Put all possible repair methods to S,. 

Step 3. Select and delete the highest priority repair 
method from S,; Test to repair the selected 
conflict; Evaluate c,. 

Step 4. If S, is empty, then goto step 7. 
Step 5. If c, 2 c,, then goto step 3. 
Step 6. If c, is in TLIST and procedure CD returns 

TRUE, then goto step 3. 
Step 7. Perform the selected repair; Update S,; c, := 

c,; Increase count by one; Goto step 2. 

Fig. 5. The proposed iterative repair algorithm. 
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Fig.6. Results of scheduling a randomly generated 
10-station 100-train problem using local search 
with cycle detection. 

to achieve a conflict-free solution is 761.6. The average 
total cost is 283. 

6 Conclusions 
The railway scheduling problem is more difficult than 

conventional job-shop scheduling problems because it is 
inherently large-scale and there are conditional con- 
straints, many alternative machines (tracks), and the 
processing time (stopover time) may be adjustable. In 
this paper, we demonstrated a railway scheduling system 
based on the iterative repair method. We introduced 
how to transform the railway scheduling problem into a 
repair-based search problem. Searching through the 
space of possible repairs, the system can quickly find a 
good feasible schedule without trying all possible alter- 
natives. The proposed cycle detection and resolution 
scheme can help the repair process escape from infinite 
loops. Through the cooperation of the earliest-conflict- 
first heuristic and the local search with cycle detection, 
the system will result in a conflict-free schedule. In 
conclusion, the proposed repair-based system can resolve 
the large-scale railway scheduling problem in an effi- 
cient and effective manner. This approach can be ap- 
plied to general scheduling problems to solve scheduling 
with alternative machines and dynamic scheduling 
problems. 
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