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Abstract: This paper considers the problem of ser- 
pentine, or snake-like, locomotion from the perspective 
of geometric mechanics. A particular model based on 
Hirose’s Active Cord Mechanism (ACM) is analyzed. 
Using the kinematic constraints, we develop a connec- 
tion, which describes the net motion of the machine 
as a function of variations in the mechanism’s shape 
variables. We  present simulation results demonstrat- 
ing three types of locomotive gaits, one of which bears 
an obvious resemblance to the serpentine motion of 
a snake. We also discuss how these algorithms can 
be used t o  optimize certain inputs given the padicular 
choice o f  physical parameters for a snake robot. 

1. Introduction 

Most mobile robots are wheeled vehicles, since 
wheels provide the simplest means for robotic mobil- 
ity. The assumption that these wheels do not slip pro- 
vides nonholonomic kinematic constraints on a vehi- 
cle’s motion. These kinematic nonholonomic systems 
have been extensively studied in the literature. For 
more rugged terrains, robotics researchers have also 
considered legged robot designs. Nature, however, has 
demonstrated that there are a significant number of 
alternative forms of locomotion, each one suited to a 
different purpose and scale of motion. Examples in- 
clude swimming, flying, sliding, burrowing, etc. Just 
as nature uses evolution to tailor each of these types 
of motion to their environments, so also have modern 
roboticists examined alternative forms of locomotion 
suited to  particular problems. This paper focuses one 
such mode of robotic locomotion, namely snake-like, 
or serpentine, locomotion. 

One of the original studies of snake-like robots was 
conducted by Hirose [l, 21, who approached the prob- 
lem from a biologically inspired point of view. Hi- 
rose formulated what he termed a serpenoid curve-a 
curve representing the path that a snake would trace 
out as it slithers forward using an undulatory gait. He 
also showed that a snake-like vehicle could generate a 
net forward force by applying the appropriate torques 
along the length of its body. Using these results, he 
successfully built a wheel-based, snake-like robot ca- 
pable of propelling itself forward using only internal 
torques (that is, without directly driving the wheels). 
The robot (see Figure 1, photo taken from [l]), called 
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the Active Cord Mechanism Model 3 (ACM 111), con- 
sisted of a long chain of serially connected segments, 
each of which sat upon an actively controlled, rotat- 
ing wheel base (the wheels are designed to act like the 
belly of a snake in preventing lateral slipping). How- 
ever, the control of the robot’s position remained a 
heuristically derived procedure, without the ability to  
give precise feedback control for this form of locomo- 
tion. 

Fig. 1: The Active Cord Mechanism (ACM 111) 

More recently, Chirikjian and Burdick [3] coined the 
term hyper-redundant to describe robots with a very 
large number of independent degrees of freedom. Nat- 
urally, snake robots fall into this category. Chirikjian 
and Burdick considered locomotion schemes that were 
reminiscent of the sidewinding [4] and creeping [3] 
gaits of snakes. They also considered gaits that are 
analogous to those of inchworms and earthworms. 
However, a complete analysis and understanding of 
the undulatory gait of snakes has yet to be attained. 

Tsakiris and Krishnaprasad [5] have also used the 
same Variable Geometry Truss (VGT) mechanism em- 
ployed by Chirikjian and Burdick to develop models 
that employ no-slip wheel constraints and can be used 
to generate locomotion patterns. They term these 
models “G-snakes,” in reference to  the notion that 
each segment must move within a constrained subset 
of a Lie group, G. They have shown that gaits (i.e., 
specified input patterns) can be explicitly integrated 
to describe the overall locomotory motion. Kelly and 
Murray [6] have modelled a large number of locomo- 
tive systems, including basic inchworm and sidewind- 
ing gaits (using a viscous friction model). They have 
derived results for determining controllability, as well 
as suggestions for the generation of locomotive walk- 
ing patterns, or gaits. 
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The intent of this paper is to show how the analysis 
of the undulatory gait can be formulated in terms of 
some of the intrinsic properties found in general modes 
of locomotion. Recent work [6, 7, 8, 91 has shown that 
for a large class of locomotive systems there exists a 
basic underlying mathematical framework. This ex- 
tra structure can be exploited to gain a better under- 
st,anding of the processes of locomotion. In the present 
context, we seek to use these tools to explore the un- 
dulatory gait. In doing so, we hope to demonstrate 
theoretically how to implement locomotion schemes 
which to date were found purely heuristically, and to 
add additional gaits that may not have been realized 
in previous works. 

2. Background 

In [8] we described a general framework for studying 
the mechanics of undulatory locomotion systems. We 
review here the relevant aspects of this work, in order 
to motivate the use of this geometrical framework in 
the study of more general problems of locomotion. 

It is always possible to divide a locomoting robot’s 
configuration variables into two classes. The first 
class of variables describes the position of the robot 
relative to an inertial frame. Since robots move in 
Euclidean space, the set of frame displacements is 
SE(m) ,m 5 3, or one of its subgroups-i.e., a Lie 
group. For our purposes, we will primarily be inter- 
ested in SE(2),  the group of translations and rota- 
tions in the plane. The second class of variables de- 
fines the internal configuration, or shape, of the mech- 
anism. We only require that the set of all possible 
shapes (the “shape space”) be described by a mani- 
fold, M .  Hence, the Lie group, G, together with the 
shape space, M ,  form the total configuration space of 
the system, which we denote by Q = G x M .  

We say that Q is a fiber bundle with fibers (posi- 
tion) G and base space (shape space) M .  When the 
fibers are Lie groups (as is the case here using position 
variables), this splitting of configuration variables into 
position and shape describes a principal fiber bundle. 
The group variables have a natural translation, or ac- 
tion, denoted by L,, such that L,h = gh for g ,  h E G 
(for problems of locomotion, this is most commonly 
represented by matrix multiplication on the left). The 
action on G naturally extends to an action @, on 
Q by @,(g,r) = (Lhg,T) for ( g , T )  = q E Q (this 
is sometimes denoted by simply h . q) .  The tangent 
map of CP,, denoted Tq@,, is called the lifted action 
of G on Q. The interpretation of the configuration 
space as a principal bundle has been successfully used 
for kinematic locomotion systems by Kelly and Mur- 
ray [6] and for dynamic systems implicitly by Mont- 
gomery [lo] and explicitly by Ostrowski et al. [7, 81. 

The shape and position variables are coupled by 
the constraints acting on the robot. Hence, by mak- 
ing changes in the shape variables, it is possible to 

effect changes in the position variables through the 
constraints. The relationship between shape changes 
and position changes can be described using a geomet- 
ric quantity called a connection. The mathematical 
properties of connections allow us to simplify greatly 
both the dynamics and the control of locomotion sys- 
tems. 

In accordance with the literature, let us denote by 
VqQ the vertical subspace composed of all vectors are 
tangent to the fiber. That is, a vector vq E Vq& rep- 
resents a net velocity of the body with respect to an 
inertial frame, such that vq = ( vg ,O)  with U, E T,G. 
We then define the connection to be the invariant hor- 
izontal subspace composed of those vectors comple- 
mentary to VQ that correctly represent the interac- 
tion between shape and position velocities as specified 
by the constraints. 

Definition 4 A connection is a smooth assignment of 
a horizontal subspace, H q Q  c T q Q ,  for each point 
q E Q such that 

1. T q Q  = V,Q@ Hq&, and 
2. TqO,Hq& = H,.,&, for every q E Q and g E G. 

A connection can alternatively be written locally 
as a Lie algebra-valued one-form, i.e., a mapping 
A(T) : T,M ---t 0, where elements in g (which can 
be thought of as screws) describe translational and 
rotational velocities relative to a frame attached to 
the robot. A is said to be the local form of the con- 
nection, such that if q is a horizontal velocity vector, 
with = (gj +), then 4 must satisfy the relationship 

g-’g = --A(r)r,  (2.1) 

where g-’g = TgLg-1g E g. Notice that as a map 
from shape velociities to position (fiber) velocities, A 
provides most (and in some cases all) of the infor- 
mation required It0 understand the effect of internal 
shape changes in generating locomotion. 

The analysis contained in this paper focuses on a 
kinematic system in which dynamics do not play a 
significant role. It should be noted, however, that 
a locomoting robot will in general be subject to two 
types of Constraints: kinematic and dynamic. The 
kinematic constraints typically arise from kinematic 
rolling and/or slilpping assumptions. For example, a 
wheeled based robot has no-slip constraints along the 
wheel axes. The dynamic constraints arise from sym- 
metries, or invariances, of the Lagrangian with respect 
to the group action, @,. In the case of locomotion, 
these constraints are conservation laws, such as con- 
servation of linear or angular momentum. However, 
when both constraints are present, the kinematic con- 
straints may break some or all of the system’s sym- 
met ries. 

In [8] we develop a methodology to construct a con- 
nection in the general case of mixed constraints which 
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can be used to  study problems of dynamzc locomotion. 
The form of the connection in both cases leads us to 
the following observation regarding locomotion sys- 
tems: the dynamics and the constraints are in general 
invariant with respect to the action of the Lie group. 
Thus, the relative effect of a wheel constraint remains 
unchanged under transformations of position and ori- 
entation as do the inertial properties of the system. It 
is this invariance that allows us to write the connec- 
tion in the form of Eq. 2.1. 

3. The Kinematic Snake Model 
The system presented here is based on the ACM I11 

snake robot built by Hirose [2], where certain assump- 
tions are made regarding the actuation of the indi- 
vidual segments. The basic principles relating the 
ACM I11 to  a real snake are based on the idea that the 
body of a real snake has a small coefficient of friction 
along the length of its belly and a high coefficient of 
friction transverse to its length. Discretization of the 
snake’s backbone curve then allows us to model the 
snake as a finite number of such wheeled segments. 
The reader is referred to [l] for more detail. 

1 

Fig. 2: A model for the kinematic snake 

We begin by examining a three-segment model of a 
snake (see Figure 2). We find that there are the same 
number of constraints as the dimension of G, and so 
the kinematic constraints define a connection. This 
is called the principal kanematic case, and is studied 
for other locomotion systems by KeIly and Murray 
in [6]. We assume that there are control inputs at 
each segment joint and a t  each wheel pivot joint. The 
wheels themselves are unactuated and rotate freely. 

Recognizing that the three wheel constraints define 
a connection leads naturally to a method for handling 
additional body segments. The technique consists of 
using the first three segments to define the motion in 
SE(2) ,  and then using the wheel constraints of the 
additional bays as the governing equations for these 
segments. Thus, we develop a system that has a “fol- 
lowing” behavior, in which the lead segments define 
the path to  be traced, and the additional segments are 
constrained to  follow this lead. In a real snake, the 
additional segments serve a useful purpose in provid- 
ing greater stability for the snake, and can be used to 
perform more complicated maneuvers, such as cross- 
ing over gaps in the floor or pushing off objects to 

move along a slippery surface. 

For the three segment snake drawn in Figure 2, 
we label the center point of the middle segment by 
(z,y,S) E SE(2) ,  the wheel angles of segments 1, 2, 
and 3 by (q51jq52,q53) E S x 9 x 9, respectively, and 
the relative orientation of segment 1 with respect to 
segment 2 and segment 2 with respect to  segment 3 
by ($1, $3) E S x S, respectively. 

Each no-slip wheel constraint takes the following 
general form: 

where & is the absolute angle (measured with re- 
spect to horizontal) of the ith wheel, and (&,vi)  is 
the Cartesian positioning of the center of rotation for 
the i th  wheel. Using this notation, we find that 

and $1 = h - $ l + e ,  $2 = $2+0, and J3 = 43+$3+e. 
Thus, the constraint equations can be written as 

-sin& i + cos Jl j l  

This supplies three constraints on the three dimen- 
sional Lie group, G = SE(2).  Straightforward cal- 
culations show that the constraints are G-invariant. 
Therefore, the kernel of these constraints defines a 
connection on the trivial principal fiber bundle Q = 
G x M = SE(2)  x S x S x S x S x S. We can invert the 
constraint equations directly to write the local form 
of the connection one-form as 

4 = g-1g = -A(?-)+,l E g. 
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This gives the following: 

+ $3 cos 43 (cos(41 + $1) + cos $1) ] 
(3.5) 

- $3 cos 43 Sin(4l - $1 - 4 2 ) ]  , 
(3.7) 

where 

deb W = I[sin(41- $1 - 42)(COS(43 + $3) + cos 43) 
+ s i443  + $3 - 42)(cos(41 - $1) + cos 41)]. 

Next, we examine a possible method for extending 
the snake to an arbitrary number of segments. Sup- 
pose that we add a fourth segment. Let 4 4  and $4 

denote the angles of the wheels and the body segment, 
respectively. Then, following the above notation, 

J4 = 44 + $3 + 1 ~ 1 ~  + 0 ,  
z4 = 2 - icose - 2icos(e + 43) - icOs(o + + $4), 

g4 =y-Is in~-21s in ( l+$3) - l s in (O+$3+$4) ,  

and the constraint becomes 

- sin44 x + cos 4 4  y 

- l(cOs(44 + $3 + $4) + 2 cos(d4 + $4) + COS 44)e 

- 1(2cOs(44 + $4) + cOs44)$3 = /COS44 $4. 
(3.8) 

Observe that we have added two additional degrees 
of freedom- one wheel angle, 4 4 ,  and one inter- 
segment angle, $4- and added one kinematic con- 
straint given by Eq. 3.8. As with the first three body 
segments, we will control both 4 4  and $4, but now are 
forced to satisfy the constraint as well. This is easily 
done, however, by choosing to control the wheel angle, 
while inverting Eq. 3.8 to give a governing equation 
for $4. Thus, 

- (COS 8: + 2 COS(& + $4) + COS 44)t3 

- (2 coS(44 + $4) + COS 44)43) , 
- -  

where 4: = 44 + $3 + $4, i.e., 4; = 441g=e = &le,0. 
Notice that the process of solving for 4 4  yields a 
term with cos 4 4  in the denominator, which is always 
nonzero since we assume that the wheels cannot pivot 
to an angle of f 5. 

Repeating this process, we can add as many addi- 
tional segments as desired, with the guarantee that 
each of the following segments properly satisfy all of 
the constraints. One point to notice is that as we 
continue to add constraints, it is always possible to 
arrange the additional constraint equations in the fol- 
lowing form: 

where k is the total number of body segments for 
the snake. The matrix B is lower triangular, with 
det(B) = njkZ4 1 cos 4 j ,  and so is always invertible. 

41. Locomotive Gaits 

With the kinematic snake of Hirose, there is obvi- 
ously a principal gait pattern in which we are most 
interested- the undulatory gait found in common 
snakes as they slide along the ground. This gait was 
described by Hirose as being closest to a “serpenoid” 
curve, which we show below to be strikingly similar 
to the patterns generated by our theoretical model. 
We also present two other gaits not normally seen in 
nature, but which could be implemented in a snake 
robot based on Hirose’s ACM 111. 

One of the challenges in working with this model 
stems from the ]presence of singularities. These occur 
any time a pair of the wheel axes intersect at  a point. 
This occurs frequently for the gaits we are examining, 
and forces us to choose carefully the form of the input 
functions. Further work is obviously necessary, per- 
haps with extensions to include slipping of the wheels. 

The gaits presented below are only a selection of the 
more interesting gaits that have been explored. They 
are all based on integrally related frequencies of the 
shape inputs. The ratios we give relate the frequency 
of bending of the inter-segment angle $i to the fre- 
quency of the rotation of the wheels, measured by 4i. 
Thus, a 2:l gait represents the segments bending at  
twice the speed as the turning of the wheels. The rela- 
tive phasing of each of these angles will play a critical 
role in generating locomotion. 

The “serpentine” gait 
We begin the analysis by examining the serpentine 
gait arising from a 1:l frequency ratio. For this, we 
use sinusoidal inputs: 

4i = af sin(w9t + p f ) ,  

where similar values for $i are superscripted with a 
$. The parameter values chosen for the simulations 
(Figure 3) were 

a t  = af = 0.2 = -a$, af = a$ = 0.6, 

Wf = W $  = W$ = 1, W f  = W$ = 1, 

with the length of each segment set to 0.2m. 
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0 0.5 1 1.5 2 2.5 3 3.5 
x position (m) 

Fig. 3: A plot of (s,y) for the kinematic snake in 
serpentine mode 

Fig. 4: A trace of the kinematic snake in serpentine 
mode 

For the phasing, we send a traveling wave down 
the length of the snake (by incrementing the phase of 
the wheels at each segment), while forcing the inter- 
segment angle, $;, to move $rad out of phase with 
their corresponding wheels. Thus, for the simulation 
shown in Figure 3, the phases are given by 

Notice that each of the wheel angles differs by 6, 
while the joint angles are $ out of phase of their re- 
spective wheel angles. To give an idea of how this 
resembles the motion of a snake, we include a trace of 
the serpentine motion in Figure 4. 

0.1, . , I , , . , 

1 I ' " ' ' ' I  
0 0.5 1 1.5 2 2.5 3 3.5 

x posibon (in) 

Fig. 5: Three different shapes for the serpentine gait 

By varying the magnitudes of the wheel angles (or 
the inter-segment joint angles), slightly different pat- 
terns of locomotion occur. Figure 5 shows the resul- 
tant gaits for three different values of a i  = a$ = a". 
Each simulation is run for the same length of time, 

I !  . . . . . . , . I 43- 
03 012  0 lI 0 i s  Oll 09  am 02 ,  011 018 03 054 O S G O U  011 O I R O M O l  om 0 ,  on 07.078 

a* (rad) al(md) 

Fig. 6: Joint angle parameter sweeps versus "forward" 
distance traveled 

which indicates that certain parameter values will re- 
sult in a greater overall distance being traveled. This 
observation can be very useful in designing an actual 
snake robot by helping to optimize the parameters 
chosen for locomotion. In Figure 6 we present two pa- 
rameter sweeps which show obvious peaks indicating 
possible optimal parameter choices, given the phasing 
between segments (Grad)  and segment length (0.2m). 

0.051 , . . . . , 

0 0.5 I 1.5 2 2.5 3 3.5 
x position (m) 

Fig. 7: A comparison of the kinematic snake model 
versus the serpenoid curve 

One point of interest is to examine how this mo- 
tion compares with the serpenoid curve proposed by 
Hirose [l]. We generate this curve using the following 
parameterization: 

x = cos (CY sin(/%)) (4.9) 
$ = - sin (a  sin@)) . (4.10) 

The parameters ci and ,B can be chosen such that 
the serpenoid curve can be made to  match arbitrarily 
closely any of the serpentine patterns of the 1:l gait. 
An example of this is given in Figure 7, with CY = 0.85 
and ,6' = e 2: 4.52rad. 

Fig. 8: Traces of the 5-link kinematic snake 

As a final note on the serpentine gait, we mention 
that it appears to work well when additional segments 
are added using the methods described above. This 
is a qualitative statement based on the trace of the 
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5-segment robot given in Figure 8. Further analy- 
sis will explore the feasibility of employing additional 
segments when following other patterns of motion. 

The  ‘Lrotate” ga i t s  
Finally, there are two other types of gaits, both pro- 
ducing a net rotation, albeit using very different types 
of motion. A 2:l gait uses a more “natural” type of 
gait for a snake, characterized by forward and back- 
ward motions, reminiscent of how humans turn a car 
in tight situations, e.g., a “three-point turn.” This 
gait is shown in Figure 9 with the same parameters 
except for joint magnitudes, a f , . .  . , a $  and af,a$, 
being set to 0.4 and 0.5, respectively. 

0 -  
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4.3 

0 . 4  - 
0.5 . 

0.6 . 

0 . 7  

. 

- 

. 

. 

0.150.1 0 0 5  0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 
x (m) 

Fig. 9: A trace of the central segment for the 2:l gait 

Alternatively, a 1:2 gait exists for this type of robot. 
Although the motion does not seem practical for a 
real snake, it could be employed by a mobile robot. 
Finally, the 1:2 rotate gait, with the parameters set 
so that a@ = 3 and a@ = F, is shown in Figure 10. 
Notice that we have plotted the variation of 6,  the 
angle of the central body segment, with respect to 
time. This is because the actual (z,y) position of 
this segment moves only very insignificantly during 
the motion of this gait. 

I I 

Fig. 10: A trace of the angle 0 for the 1:2 gait 

5. Discussion and Conclusions 
We have examined a model for a snake robot based 

on the ACM I11 built by Hirose. By using the intrin- 
sic invariances of the constraints, we can realize the 
three-segment model as a principal kinematic system. 
The three wheel constraints define a kinematic con- 
nection and so fully determine the effect of internal 
shape changes on net serpentine locomotion. We uti- 
lize this fact to control additional segments which are 
constrained to “follow” the lead of the three-segment 
kinematic system. 

By formulating the motion of the system in terms of 
a connection, we can clearly highlight the important 
factors which contribute to the serpentine locomotion. 
Using sinusoidal inputs which are phase-delayed down 
the length of the snake robot, we were able to simulate 
various possible gaits, including a serpentine gait and 
two rotate gaits. We showed that the serpentine gait 
very closely approximates the serpenoid curve devel- 
oped by Hirose. 

The next logical step for this research is to begin 
to ask deeper questions regarding controllability of 
snake-like robots. We have shown here basic motions 
that can be geneirated, but can not conclude how to 
specify more genleral gait patterns (for example, we 
have yet to find a gait pattern that generates mo- 
tion transverse to the length of the snake). Kelly and 
Murray [6] have given initial constructive controllabil- 
ity tests based on taking derivatives of the connection, 
A (similar to taking Lie brackets of the input control 
vector fields). These results will need to be taken fur- 
ther, however, perhaps by examining the relationship 
between the directions given by Lie brackets and the 
corresponding gait patterns generated using integrally 
related sinusoidal inputs. 
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