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Abstract 

Appearance matching was recently demonstrated as 
a robust and eficient approach to 3 0  object recognition 
and pose estimation. Each object is represented as a 
continuous appearance manifold in  a low-dimensional 
subspace parametrized b y  object pose and illumination 
direction. Here, the structural properties of appearance 
manifolds are analyzed with the aim of making appear- 
ance representation eficient in off-line computation, 
storage requirements, and on-line recognition time. In 
particular, the effect of illumination on the structure of 
the appearance manifold is studied. It is shown that for 
an ideal diffuse surface of arbitrary texture, the appear- 
ance manifold is linear and of dimensionality 3. This 
enables the construction of the entire illumination man- 
ifold from just three images of the object taken using lin- 
early independent light sources. This result is shown to 
hold even for illumination b y  multiple light sources and 
for  concave surfaces that exhibit interreflections. Fi- 
nally, a sample but efficient algorithm is presented that 
'uses just three manifold points for recognizing images 
taken under novel illuminations. 

1 Introduction 

Appearance matching techniques are fast becoming 
popular in machine vision. Recent applications in- 
clude face recognition [Turk and Pentland 911 and the 
recognition of 3D objects [Murase and Nayar 931. A 
new representation of object appearance called the 
parametric eigenspace has resulted from this work 
[Murase and  Nayar  951. For a given vision application, 
a visual workspace is first defined as the range of visual 
appearances that result from varying the parameters 
of the task. This workspace is sampled to obtained an 
image set that is used to compute a low-dimensional lin- 
ear subspace [Oja 831, called the eigenspace, in which 
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the visual workspace is represented by one or more 
parametrized manifolds. During recognition, novel im- 
ages are projected into the eigenspace. The closest man- 
ifold and the exact location of the closest point on the 
manifold reveal the task parameters. 

The parametric eigenspace representation has found 
several applications. These include learning and recog- 
nition of 3D objects [Murase and Nayar 931, real-time 
positioning and tracking of 3D objects by a robot ma- 
nipulator [Nayar et al. 941, and illumination planning 
for robust object recognition [Murase and Nayar 941. 
Recently, a recognition system with 100 complex ob- 
jects in its database was developed that is solely based 
on appearance matching [Murase and Nayar 951. The 
sheer efficiency of appearance matching enables the sys- 
t e y  to accomplish both recognition and pose estimation 
in real-time using nothing more than a standard work- 
station equipped with an image sensor (see Figure 1). 

Figure 1: An automated recognition system with 20 objects 
in its database. A complete recognition and pose estimation 
cycle takes less than 1 second on a Sun SPARC workstation 
[Murase and Nayar 951. 

In the context of large systems, the primary bottle- 
neck in appearance matching has turned out to  be the 
learning stage which includes the acquisition of large 
image sets, the computation of eigenspaces from large 
covariance matrices, and the construction of paramet- 
ric appearance manifolds. The efficiency of the learning 
stage is determined by the number of sample images 
needed to compute an accurate appearance manifold. 
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This brings us to the following question: What is the 
smallest number of images needed for constructing the 
appearance manifold for any given object? 

The answer to the above question lies in the struc- 
tural properties of appearance manifolds. The structure 
of an object’s manifold is closely related to its geomet- 
ric and reflectance properties. In special cases, such 
as solids of high symmetry and solids of revolution, one 
can make concrete statements regarding the dimension- 
ality of the manifold. These, unfortunately, are extreme 
instances of less practical value. Under perspective pro- 
jection, the relation between object shape and manifold 
structure is complex to say the least. A general ex- 
pression that relates object pose to  manifold structure 
would be much to  hope for. 

In contrast, the function space associated with ob- 
ject reflectance is more concise and hence conducive 
to analysis. It is possible to establish, under certain 
reflectance assumptions, a closed-form relationship be- 
tween illumination parameters and manifold structure 
[Nayar and Murase 941. Given that the eigenspaces we 
use are linear subspaces, the class of linear reflectance 
functions [Petrov 91][Shashua 931 is of particular inter- 
est to us. We show that,  for this reflectance class, the 
structure of the illumination manifold is completely de- 
termined from a small number of samples of the man- 
ifold. In particular, for Lambertian surfaces of arbi- 
trary texture, the entire illumination manifold can be 
constructed from just three images taken using known 
illuminants. Alternatively, the dimensionality of the 
illumination manifold is exactly 3. This result is sup- 
ported by a detailed empirical investigation reported 
recently by Epstien et al. [Epstein et al. 951. We use 
the above bound on the manifold dimensionality to  
show that novel images of the object can be recognized 
from just three projections on the illumination manifold 
without the explicit construction of the manifold. In ad- 
dition, the validity of the above results for illumination 
by multiple sources and in the presence of interreflec- 
tions caused by concave surfaces is demonstrated. 

2 Linear Reflectance Models 

We will assume throughout our presentation that all 
surface properties and image brightness values corre- 
spond to a single wavelength, A. To accomodate the 
general case of colored surfaces and colored illuminants, 
we assume that all brightness values are measured us- 
ing narrow-band filters, say, narrow-band red, green, 
and blue filters. This ensures that the wavelength of 
light is, in effect, fixed for any given color band. 

A linear reflectance function may be written as: 

where, e(x) is the image irradiance or intensity at  point 
x, p(x) represents local surface properties, and q is 
an arbitrary vector ithat could depend on the illumina- 
tion and the viewpoint of the observer. If Dim(p) = 
Dim(q) = k, we have a k-order linear reflectance 
model (see [Petrov Sl][Shashua 931). 

When is the linear reflectance model valid in prac- 
tice? In general, reflectance functions can be viewed as 
the combination of surface (specular) and body (dif- 
fuse) components [Nayar et al. 91a]. Surface reflec- 
tion is a nonlinear function of viewpoint. In contrast, 
the body component is relatively less viewpoint depen- 
dent. Though the dependence can be significant in the 
case of surfaces with high macroscopic roughness (see 
[Oren and Nayar 95]), many man-made objects (for in- 
stapce, those with matte paints) as well as some nat- 
ural surfaces can be approximated by a linear model. 
The most popular and widely used approximation is the 
Lambertian model where surface radiance, and hence 
also image brightness, depend only on the irradiance of 
the surface and not the observer’s viewpoint. The image 
brightness of a Lambertian surface element illuminated 
by a point light source is: 

e(x) = n(x) . s (2) 
Here, n(x) = p(x)ii(x) is the normal vector, where p 
is the local surface albedo and n is the local unit surface 
normal. Similarly, s = b s is the source vector, where 
b represents the intensity of the source and i is a unit 
vector in the direction of the source. We are assuming 
here that the source is distant and hence its direction 
i s  independent of the location of the surface point in 
ithe scene. From the above expression, we see that the 
Lambertian model is a linear one of order 3. 

3 Images as Linear Combinations 
Given that s is a constant three-dimensional vector, 

it is clear that three non-coplanar source vectors, say 
{ a1 , a2 a3 }l can be used as a basis to represent any 
source vector. Any arbitrary source vector is simply a 
linear combination of the three basis vectors: 

s = ala1 + a2a2 + a3a3 (3) 
Let us define A = [a1 a2 a31 as the basis source matrix. 
Then, the coefficient vector 6 = [a1 a2 for any 
given source can be determined as: 

@ = A-’s (4) 
The image brightness values of a Lambertian surface 

point due to the three basis illuminants are: 

el(x) = n(x) . a1 
ez(x) = n(x) . a2 
e3(x) = n(x) . a3 (5) 
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From (3) and ( 5 ) ,  the brightness of the surface point 
due to a novel source is: 

e(x) = n(x) . s 
= aln(x) . a1 + cyzn(x) . a2 + a3n(x) . a3 (6) 

If we define I' = [ e l ,  e2, egIT, we have: 

e(x) = rT(X)@ (7) 

Note the similarity between the linear combination in 
the above expression and the one in (3). The brightness 
due to  any novel source is the same linear combination 
of the basis brightness values as the novel source is of 
the basis illuminants. This result may not seem obvi- 
ous a t  first glance. However, it turns intuitive when one 
notes that the three brightness values in r(x) and the 
three corresponding sources A contain all the informa- 
tion required to estimate the albedo p(x) and the unit 
normal vector n(x) as done in the case of photomet- 
ric stereo [Woodham 801. It is therefore not surprising 
that the three brightness values corresponding to the 
basis illuminants can be used to  predict brightness for 
any desired source vector. The linear combination of 
(7) has been used in its explicit form for the analysis of 
surface color [Petrov 911 as well as specularity detection 
and photometric recognition [Shashua 931. 

Note that (7) holds for all points on the imaged ob- 
ject. Hence, if the basis illuminants and the novel source 
are distant and are visible to  all observed points on the 
object, the image I of the object under a novel illumi- 
nation can be expressed as a linear combination of its 
three images ll = [II, 1 2 ,  131 due to the basis illumi- 
nants. 

I = IIiD (8) 
The above linear combination holds true irrespective of 
the texture (albedo variation) of the surface. 

4 Multiple Novel Sources 

Consider a Lambertian surface simultaneously illu- 
minated by R point sources. In this case, the image 
brightness of a surface point will be the sum of the con- 
tributions of individual sources: 

R 
e(x> = n(x> . s, 

r = l  
R 

r = l  

Here, S serves are a single effective source and is simply 
the average, or center of mass, of the set of individ- 
ual source vectors. In the above derivation, the indi- 
vidual sources need not be point sources. They could 

be extended sources with arbitrary radiance functions 
and still each be replaced by an effective point source. 
The above result is well-known and has surfaced in var- 
ious guises in previous work. Its implication is that ,  for 
Lambertian reflectance, any number of novel sources 
that are all visible to  the entire imaged surface can be 
viewed as a single effective point source S .  Hence, the 
linear combination of (8) holds true for multiple novel 
sources; the coefficient vector 9 is simply that of S.  

5 Interreflections 

Next, let us consider the case of a concave Lamber- 
tian surface with arbitrary texture. We assume that 
each of the basis illuminants, and subsequent novel 
sources, are visible to all points on the observed sur- 
face. The image brightness of each surface point in this 
case is due to not only the source but also the contri- 
butions of other points on the surface that  are visible 
to  i t .  Though, in general, an infinite number of in- 
terreflections occur between any two mutually visible 
surface points, the brightness of a surface point can be 
expressed as the sum of the brightness due to  direct 
source illumination and contributions due to  the final 
radiance values of all surface points visible to i t .  Thus, 
for any given wavelength X of incident light, the bright- 
ne& image of the surface is: 

I = I, + P K I  (10) 

where, I, is the image due to  direct source illumination, 
P is the albedo matrix whose diagonal elements are the 
albedo values of individual infinitesimal elements on the 
surface, and K is the interreflection kernel that  captures 
the relative geometric configurations of pairs of surface 
elements. 

In [Nayar et al. 91b], the above brightness equation 
was analyzed t o  show that  the concave surface behaves 
exactly like a Lambertian one without interreflections, 
but with a different set of surface normals and albedo 
values. The underlying assumption is that  all points 
on the surface are visible and illuminated, i.e. no self- 
occlusions and self-shadows. This apparent surface is 
called the pseudo surface. The relation between the 
pseudo surface and the actual surface was found to be: 

F, = [I - P K ] - l F  (11) 

Here, the matrix F, = [n,', np2, ...., npn] represents the 
pse'udo surface and is composed of the pseudo normal 
vectors of all n visible surface elements. The true sur- 
face is given by the matrix F = [n', n2, ...., nn]. 

This result implies that ,  under any given illumination 
that satisfies the assumptions stated above, the image of 
a concave surface F with all its interreflections exactly 
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equals the image of its corresponding pseudo surface F, 
without interreflections. As a result, all the linear com- 
binations derived in the previous sections hold true for 
concave Lambertian surfaces of arbitrary texture. In 
general, the pseudo surface varies with the wavelength 
of incident light. This dependence on wavelength van- 
ishes in the cases on gray textured surfaces illuminated 
by white-light sources. In the general case of colored 
surfaces and colored illuminants, the linear combination 
of (8) remains valid when the images are taken using 
narrow-band filters, say, narrow-band red, green, and 
blue filters [Nayar and Gong 92][Funt and Drew 931. 

6 Multispectral Images 

If the application involves the use of a color image 
sensor, as stated earlier, it is assumed that each color 
band is obtained using a narrow-band spectral filter. 
Then, the intensities of the three basis illuminants, ir- 
respective of their spectral distributions, are fixed for 
each of the narrow bands. In other words, all the results 
derived thus far remain valid in each band. Appearance 
manifolds for an object can then be constructed inde- 
pendently for each band (as in [Nayar et al. 951) and 
recognition is deemed successful if all bands of a novel 
image are found to  match the same object in the ap- 
pearance database. 

Alternatively, an image vector can be constructed 
by concatenating the multiple bands of the color im- 

analysis of the illumination manifold of an object, i.e. 
the projections in eigenspace & of images of an object 
taken under different source directions, for a fixed pose. 

Scale and brightness normalizations are applied to 
all object images before they are either used to  con- 
struct eigenspace representations or to  recognize novel 
object images [Murase and Nayar 931. The scale nor- 
malization ensures that both appearance representation 
and recognition are invariant to  the magnification of 
the imaging system under weak-perspective projection. 
The brightness normalization is used to achieve invari- 
ance to  the intensity of illumination. As a result of 
brightness normalization, all images lie on a unit ball 
in a high but finite dimensional Hilbert space. 

First, let us define the normalized basis images as 
il  = 11/m1, i 2  = I2/m2, and i3  = 13/m3, where, mi = I 1  
Ii 11.  Further, we define the magnitude matrix M to 
be a 3 x 3 diagonal matrix with the mi as its three 
diagonal elements, and the normalized image matrix as 
N = [ il i 2  i3]. Using (8), a novel image can be written 
as: 

I = alnelil + a2m2i2 + a3m3i3 

= "I@ (12) 

The magnitude of the novel image is related to  its source 
coefficient vector as: 

age. Appearance representation in subspaces is invari- 
ant to the order of concatenation since this order only 
alters the order of values in the principle vectors (di- 

The normalized novel image can now be expressed as a 
combination of the three normalized basis images: 

(14) 
mensions) of the subspace [Oja 831. However, since the 1 i = - N M O  

m linear combinations of the previous sections can be ex- 
pected to  differ between bands, a concatenated vector 
cannot be assumed to  represent any single linear combi- 
nation. Here, some of the results related to  color-rank 
in [Petrov 911 could lead to  interesting results. 

NOW, the projections of the three normalized basis im- 
age$ in a ~ - d h - u " i o d  eigensPace are: 

gl = [el e 2  .... e d I T  il  

7 Illumination Manifold in Eigenspace 

We are now equipped to  analyze the dimensionality 
of illumination manifolds in eigenspaces. An eigenspace 
E is an image subspace that is typically computed us- 
ing the Karhunen-Lo6ve transform [Oja 831. The bases 
of & are then the normalized eigenvectors of the covari- 
ance matrix computed from an image set, one that typi- 
cally includes images of a large number of objects taken 
at  different poses and illumination conditions during 
a learning (or training) stage [Murase and Nayar 931. 
Suppose the dimensionality of the eigenspace is d. The 
eigenvectors e, ,  s = 1 , 2 ,  ..... dare  those with the largest 
eigenvalues, A,, of the covariance matrix, such that,  
A1 2 A 2  2 .... 2 Ad. Our main concern here is the 

T g 2  = [elez .... e d ]  i 2  

g3 = [el e 2  .... e d I T  i3 (15) 

Likewise, the projection of a novel image is: 

g = [elea .... e d I T i  (16) 

If we define the basis projection matrix as G = 
[ gl gz g3], the above expression and (14) yield: 

1 
g = - G M @  m 

Therefore, given the three eigenspace projections cor- 
responding to the basis illuminants, we can determine 
the projection for any novel source s from its coefficient 
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vector a. If the basis and novel images are not normal- 
ized, the illumination manifold spans a linear subspace 

= g(s)  whose dimensionality is 3 for a Lambertian 
surface of arbitrary texture, irrespective of the dimen- 
sionality d of the eigenspace used. When the basis and 
novel images are brightness normalized, the illumina- 
tion manifold spans a nonlinear subspace of dimension- 
ality 2. In this case, the nonlinearity arises from the 
normalization procedure, and the reduction in dimen- 
sionality by one results from all normalized images be- 
ing constrained to lie on a unit ball in the Hilbert space. 

The above results imply that we do not need to  take 
a large number of images by sampling the entire illu- 
mination space for each pose of each object as done in 
[Murase and Nayar 931. For any given object pose, the 
entire illumination manifold can be constructed from 
just the three basis projections. 

It is worth reiterating that the above results are 
valid only for Lambertian surfaces and not much can be 
stated regarding the dimensionality of the illumination 
manifold for surfaces with nonlinear reflectance func- 
tions. This becomes intuitive when one considers the 
extreme case of a pure specular object that  only prc- 
duces highlights for each of the basis sources. In this 
case, the image produced by any novel source cannot 
in general be expressed as a linear combination of any 
number of basis images. Fortunately, there does exist 
a class of real-world objects that  closely approximate 
Lambertian reflectance, and for such objects the above 
results prove useful as shown in the following sections. 

8 Recognition of Novel Object Images 

We have assumed thus far that  the eigenspace E 
is known a-priori. In practice, such an eigenspace 
is computed from a large image set obtained by 
varying pose and illumination in small increments 
[Murase and Nayar 931. Given the above results, it is 
possible to  dramatically reduce the number of images 
that need to  be taken during learning. We now need 
to vary object pose in small increments and take only 
three images for each pose corresponding to the inde- 
pendent basis illuminants’. All of the acquired images 
are used to compute 1. It is assumed here that € is 
less sensitive to  illumination variations than pose vari- 
ations. This is typically the case when dealing with 
objects of complex shape and textural properties (see 
[Murase and Nayar 951). 

‘The basis illuminants must be chosen with some care to en- 
sure that they are representative of appearance variations due to 
illumination. For instance, three sources that form a compact 
cluster in the physical world, even if independent, may not in 
practice be able to accurately predict appearances due to  sources 
that are distant from the cluster. 

Next, all images of an object are projected 
to eigenspace. The expression in (17) can be 
used to compute eigenspace projections correspond- 
ing to any desired number of source directions. In 
[Murase and Nayar 931, the projections due to  both 
pose and illumination variations are interpolated and 
the resulting manifold is densely resampled. The re- 
sulting points are stored in a database and serve as a 
discrete appearance representation of the object. Given 
a novel image, a segmentation algorithm is used to ex- 
tract object regions. Each object region is normalized 
in scale and brightness and projected to  eigenspace. A 
nearest neighbor algorithm is then used to identify the 
object, its pose and the illumination. 

The idea of storing each object as a large number 
of densely resampled manifold points is practical only 
when the number of objects is small. Below, we present 
an algorithm that can be used to  find the closest point 
on an illumination manifold directly from the three 
basis projections without ever constructing the illumi- 
nation manifold. The algorithm is based on the ob- 
servation that since the illumination manifold can be 
expressed in terms of three basis projections, this ex- 
pression can in turn be used to  determine if a novel 
eigtinspace projection lies on the manifold. 

Given a scale normalized novel object image 1’, it is 
first normalized in brightness to get i’ = I’/m’, where 
m’ =(( I‘ (I. If the novel image does lie on a particular 
illumination manifold, its projection g’ in eigenspace 
must satisfy: 

1 

This expression gives us d equation with just  3 un- 
knowns, namely, the source coefficients in 9. Given 
that 10 5 d 5 30 in most previous applica- 
tions of parametric eigenspaces [Murase and Nayar 951 
[Nayar et al. 951, what we have above is an overdeter- 
mined linear system that is easily solved to  obtain an 
estimate of the source coefficients 6. 

Since the object in the novel image is unknown, the 
estimate 6 may or may not correspond to  a point on the 
illumination manifold. A simple test can be employed 
to verify the validity of 6 by checking if the eigenspace 
projection of the novel image matches the projection 
corresponding to &. To this end, we define the error 
measure: 

g’ = , G M @  m (18) 

1 
E = I I g ’  - - G M ~ I I  f i  (19) 

where, the magnitude rk is computed by using 6 in 
equation (13).  In theory, if the novel image does belong 
to the illumination manifold in question, we have E = 
0. In practice, a threshold is applied to  E to determine 
if the novel projection is close enough to the illumina- 
tion manifold to be assumed to belong to it.  We there- 
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fore have a simple and efficient algorithm that uses only 
three basis projections on an illumination manifold to 
check if a novel projection belongs to the manifold. 

9 Experiments 

e4 

e 

1 2 3 4 

5 6 7 8 

Figure 3: Projections of the basis images 2, 9, and 1 2  
(shown as boxes) and .the remaining 9 test images (shown 
as dots) in a 2D subspace of a IOD eigenspace. 

Figure 2: The image set used in the experiments. The 
object is primarily diffuse in reflectance, has patches with 
unknown albedo values, and includes concavities that pro- 
duce interreflections. Image 2, 9, and 12 correspond to the 
basis illuminants and were used to determine the structure 
of the illumination manifold. The remaining 9 images were 
used to test the accuracies of the theoretical manifold and 
recognition. 

Figure 2 shows 12 images of a complex object taken 
under known illumination directions. The object is 
more or less diffuse in reflectance, has surface patches 
with different albedo values, and includes concavities 
that cause interreflections. All the experiments were 
conducted in an  eigenspace that was precomputed for a 
large set of objects. The source directions are expressed 
as (Old), the azimuth and polar angles subtended by 
the source in an  object centered coordinate frame with 
its z-axis pointing towards the sensor. Three of the 12 
images, namely images 2, 9, and 12, were used to deter- 
mine the structure of the illumination manifold. T h e  
directions of these basis illuminants are (-9.l0, 8l.Oo), 
(17.7', 81.3'), and (O.Oo, 64.4'), respectively. The re- 

maining 9 images in Figure 2 were used to test the ac- 
curacy of the illumination manifold. Figure 3 shows 
projections of the 9 images in eigenspace. For display, 
the projections are shown in a 2D subspace of a 10D 
eigenspace. The known source directions for the 9 test 
images were used in expression (17) to determine theo- 

e 

0 9  
e e 

0 

0 
12 

e3 
0.00 0.02 0.04 0.06 0 08 0.10 

-0.05 

e4 

A 
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A 
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0 9  
A A 

A 

cl 
12 

-0.05 4- , . I I e3 
0.00 0.02 0.04 0 .06  0 .08  0.10 

Figure 4: Projections of the three basis images 2, 9, and 12 
(shown as boxes) and theoretical projections of the 9 test 
images (shown as traingles) determined directly from their 
known source directions (using expression 17). These pro- 
jections can be compared with the actual image projections 
in Figure 3 to evaluate the accuracy of the theoretical il- 
lumination manifold. Corresponding projections in the two 
plots appear in similar positions with respect to the basis 
projections. 

1331 



ESTIMATED IMAGE ACTUAL SOURCE 
NUMBER DIRECTION SOURCE DIRECTION 

(e.*) (e,+) 

1 ( -9.1 , 64.6) ( -8.2 , 63 3 ) 

3 ( 9.1 , 64.6) ( 9.6, 66.3 ) 

4 ( 17.7,65.4) (19.5, 69.3) 

ERROR IN 
EIGENSPACE 
PROJECTION 

0.00003 

O.GQO33 

0 00236 

5 

6 

7 

8 

Table 1: Results of illumination direction estimation using 
just three basis projections in eigenspace. 

The  second experiment involves the recognition of 
novel images and the estimation of illumination direc- 
tion using just  three basis projections. Table 1 com- 
pares the actual illumination directions used to take 
the test images with the directions estimated using the 
algorithm described in section 8. We see that the esti- 
mates are very accurate. Also shown in the table are 
the distances in eigenspace between predicted and ac- 
tual projections. 

(-9.1 , 72.5) (-7.5, 72.2 ) o.Oo011 

( 0.0, 72.3) (-0.8, 72.6) o.GQO29 

( 9.1 , 72.5 ) (7.8, 73.6 ) O.ooO22 

( 17.7,73.1 ) (15.5, 75.8) o.ooo1o 
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