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Abstract

We present a localization system which computes, by
extended Kalman filtering, the position and heading of a
vehicle using both odometry and the measurement of the
relative azimuth angles of known landmarks. Observa-
bility of the continuous system is studied and gives
information on situations where the performance of the
filter may deteriorate. Results of extensive real outdoor
experiments with a tyre-type robot moving on a slightly
uneven floor are reported. We show that the system
achieves a precision of a few centimeters.

1. Introduction

This paper presents a 2D mobile robot localization
system which determines the position and heading of a
vehicle by using both odometry and measurements of the
azimuth angles of known landmarks. The updating of the
odometric estimate using the angular information is
performed by and extended Kalman filter (EKF).

A good review of the general framework of sensor
integration, to which our work is related, can be found in
[11]. The techniques used are similar to those presented in
[4], [5] and [7]. But in [4] and [5], quite different sensors
are used (a range-finder and a camera respectively). In
[7], the sensor only detects landmarks at two fixed
azimuth angles, whereas our sensor is a rotating detector
and can detect beacons at arbitrary angles.

An important difference between our work and those
presented in the fore-mentioned papers is that our system
is implemented on an outdoor tyre-type robot which
moves on slightly uneven floor (a lawn in our tests). In
addition, the field of evolution is fairly large (40x30
square meters) for only three landmarks and can be
extended by adding landmarks without any modification
of the system.

Moreover, unlike in previous papers, we have also
studied the observability of the nonlinear continuous
system, independent of the technological aspects of the
sensor itself. This has allowed us to determine situations
which could generate convergence or precision problems.
We have been able to check that, although in some very

special cases the performance of the filter can be lower, it
never drifts unboundedly. The interest is that these special
cases apply to all localization systems which measure
azimuth angles, when only three landmarks are visible.

Finally, we report results of real outdoor experiments
that show that our system achieves centimeter-level
accuracy. The tests involved have been performed by
moving along paths, not just checking endpoints in a static
situation, as is often done.

2. The continuous system

2.1. System modelling

Let us consider a three-wheeled, non-holonomic
vehicle. In a two-dimensional space, the location of the
vehicle can be represented by a triplet X = (x,y,θ) where
(x,y) is the position of the middle of the wheel base
(denoted M) and θ the heading angle with respect to a
fixed frame (fig. 1). Let u1 be the translational speed and
u2 the rotational speed. The evolution model is classically
given by :
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The observations are the azimuth angles λi of the

landmarks Bi, the coordinates of which are denoted (xi,yi).
The observation equations are (fig. 1) :

λi =atan2(yi-y,xi-x)-θ=gi (X)  ∀ ∈i ( .. )1 3 (2)

y

x

B

λ1

u2

B λ

λ

2

3

1

2

B3

θ

M

u1

Figure 1 : Azimuth angles definition.
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Equation (2) requires that the reference point of the
sensor be set to M.

Three beacons (landmarks) are necessary to compute
X, in the reference frame, for a motionless vehicle. The
method is described in [1]. We will use three beacons in

the sequel. Consider [ ]λ λ λ λ= 1 2 3
T .

The observation equation can be rewritten as :

[ ]g(X) = g (X) g (X) g (X)1 2 3
t

(3)
The system  formed by the vehicle and the beacons has

the following state-space description:
( , )
( )

X f X U
g X

=
=
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2.2. System observability

In this section, we suppose that the inputs and the
outputs of the system are continuously available.

For nonlinear systems, Hermann and Krener [3] related
observability to the concept of distinguishability of states
with respect to the inputs. They derive a test, known as
"rank condition", which implies weak observability. Weak
observability intuitively means that the knowledge of the
inputs and observations over time is sufficient to
determine the initial state of the system, if not among all
possible states, at least among all states in a neighborhood
of the initial state. In practice, weak observability is
usually sufficient. Notice that, contrary to the linear case,
nonlinear observability depends on the inputs. let :
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f  is the Lie derivative of g with respect to f.

In our case, the Hermann and Krener condition can be
expressed as follows : if rank(O)=3, then the system is
weakly observable.

First, consider the sub-matrix :
[ ]O1 = dg dg dg1 2 3 (6)
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with D y y x xi i
2

i= − + −( ) ( )2 (8)
If the determinant of O1 is different from zero then

rank(O1)=3. The curve det(O1)=0 is the circle defined by
the three beacons (called (C) on fig. 2).

According to the rank condition, we can conclude that
the system is weakly observable anywhere, except,
perhaps, on (C). As a matter of fact, since we only
considered three columns of O1, we have not proved that
the continuous system is not observable on this circle.
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Figure 2 : Problematic trajectory
Consider now the Lie derivative of g with respect to f:
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If u1=0, which means the robot is motionless or rotates
around its reference point, then :

Lfgi(X)= -u2 (10)
So : dLfgi= dLf

2gi= 0    ∀ ∈i ( .. )1 3 (11)
Thus, in this case, rank(O)=rank(O1) and therefore, on

(C), rank O( ) ≤ 2 . We can't assert that the system is not
observable since the rank condition is only sufficient,
nevertheless, by simulations, we have noticed that, in this
case, our observer is not able to drive an initial estimation
error to zero.

A geometric explanation can be expressed as follows :

On figure 2, we have : 
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where the αij are constant parameters depending only
on (C). Thus, knowing λ1 we can compute λ2 and λ3. So,
on (C), when the mobile does not move, azimuth
measurements alone are not sufficient to compute the
position and heading.

We could calculate dLfgi and dLf
2gi and extract other

sub-matrices, but the computations become quickly
untractable. Since we do not know whether the system is
observable on (C) when u1 and u2 are different from zero,
what we will do (see section 5) is test our observer for a
mobile running on this possibly difficult trajectory.

3. Real system state estimation

3.1. Algorithm principle
In fact, the real system differs from the ideal one

described in section 2, in the following ways.
First, the observer will have a discrete-time form, so

that estimation will occur at discrete points in time.
Moreover, in section 2, we have supposed that the three

azimuth angles were provided simultaneously and
continuously (here continuously would be at the sampling
rate).
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In fact, the sensor is a CCD detector which rotates with
a constant speed. The landmarks (light sources) are
detected one at a time and asynchronously, since the
angular interval between two landmarks depends on the
position and movement of the mobile.

Additionally, we use incremental encoders mounted on
the wheels to measure the control vector u. Moreover,
with these encoders, we can apply the odometric
technique which is very helpful for short term location
prediction, between the time instants of the goniometric
measurements.

The principle of the algorithm presented below relies
on such a prediction and uses azimuth angles to update the
location of the robot. This multisensor approach takes
advantage of sensor redundancy and complementarity.
Different variants of this mixed solution (using range-
finders, inertial sensors...) can be found in [4] [5] [6] [7].

The last difference between the real system and the one
of section 2 lies in the fact that the projections on the XY
plane of the middle of the wheel base (M) and of the
rotation axis of the camera (denoted S) are different. See
figure 3, where the mobile frame RM and the sensor frame
RS are defined.
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Figure 3 : Notations and translation between S and M.
The rotation between RM and RS can be set to null by

an appropriate calibration procedure, so that the transform
between the two frames reduces to a translation vector
(a,b).

If we want to use odometric equations for point S, we
need to express the evolution of S as a function of the
encoder increments.

3.2. Evolution model for point S
In this part, we will express the elementary

displacements of S as a function of the elementary
rotations of the wheels, ∆ ∆q qk k1 2 and , provided by the
optical encoders attached to the right and left wheel.

Let r1 and r2 denote the radii of the wheels, which can
be a bit different from one another for tyre wheels. The
wheel base e represents the distance between the middle
of the two tyres.

First, we can compute ∆Dk, the distance travelled by
point M, and ∆θk the angle variation :

∆∆∆∆
∆∆∆∆ ∆∆∆∆D = r . q + r . q

2k
1 1k 2 2k    ∆θk

1 1k 2 2k= r . q - r . q
e

 ∆∆∆∆ ∆∆∆∆ (13)

We will use the following notations : XM and XS
correspond to time index k and , XM+1 and XS+1 to time
index k+1. Note that θS=θM=θk.

Suppose we know XM, we can calculate XM+1 by
approximating the trajectory as a sequence of constant
curvature segments of length ∆Dk. Moreover, if ∆θk is
small, then [8] :
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Considering figure 3, we have :
x = x + .cos  -  b.sin
y = y + .sin  +  b.cos
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We want to express xS+1 as a function of xS. This we
achieve by a first order Taylor expansion :
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Repeating the same operation with yS, we then find :
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This system can be rewritten as : XS+1=  (XS,∆qk)

where [ ]∆∆∆∆ ∆∆∆∆ ∆∆∆∆q q qk k k
t= 1 2  and  is a vector-valued

function : ℜ × ℜ → ℜ3 2 3

The model obtained this way is a good approximation
of reality when ∆θk is small, which requires that the
sampling period be sufficiently small with respect to the
vehicle translational and rotational speed. The simplicity
of this model makes the calculations of the Jacobian
matrices of the EKF tractable.

3.3. Discrete Kalman filtering formulation
Let us consider now the nonlinear stochastic system

with state-space description :
X = (X , q ) + 

= g (X ) + with i 1,  2,  or 3
S k k

k i S k     
S+1 F ∆∆∆∆ α

βλ =




(19)

One can note that the observation equation is now
scalar but non stationary.

αk and βk are, respectively, system and observation
noises. We suppose they are independent sequences of
zero-mean Gaussian white noise such that Var(αk)=Qα and
Var(βk)=σ λ

2.
Var(αk) represents the effects of slippage or dragging

on the ground, plus the effects of errors on robot
parameters such as r1, r2 and e.
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Step 1: Between two azimuth readings, a "high"
frequency (20 Hz as compared to the frequency of the
azimuth readings ≈0.5hz) state and error prediction
phase occurs. For updating XS, we use the previous
estimate (denoted XS S ) and the new measurement ∆qk :

X = (X , q )kS S S S+1 F ∆∆∆∆ (20)
If we suppose that the two encoders are identical and

independent, the covariance matrix of ∆qk can be written
as : Var(∆qk) = σ2 I22, where I22 is the identity matrix.

The covariance matrix Pk+1/k describes the uncertainty
related to XS S+1 . Its expression is obtained using the first

order Taylor expansion of , under the reasonable
assumption that random vectors XS and ∆qk are
independent. Thus, the three vectors XS, ∆qk and αk are
not correlated and we can apply the result given in [9] :

P A P A B B Qk k k k k k
t

k k
t

+ ≈ ⋅ ⋅ + ⋅ ⋅ +1
2

/ / σ α (21)

Where the Jacobian  A
X

  k = 





∂
∂
F and  B

q
  k =











∂
∂
F

∆∆∆∆
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evaluated respectively at XS S and ∆qk.

Step 2: When an azimuth measurement occurs
(approximately every 2s), odometry is updated : it is the
estimation phase

We first compute the Jacobian C g
Xk

i= 





∂
∂

at XS S+1 .

Then, we obtain the Kalman gain vector :

( )K = ⋅ ⋅ ⋅ ⋅ ++ +
−

P C C P Ck k k
t

k k k k
t

1 1
2 1

/ / σλ (22)

The term to invert being a scalar, the inversion is not a
problem. The updated estimate and its associated
covariance matrix are then classically given by :

( )( )X X XS S S S k i S Sg+ + + += + ⋅ −1 1 1 1K λ (23)

( )P I C Pk k k k k+ + += − ⋅ ⋅1 1 1/ /K (24)

Equation (23) shows that XS S+ +1 1  is corrected
proportionally to the difference between the measured
azimuth angle λk and the expected angle ( )gi S SX +1 .

The radii of the wheels (r1 and r2) and the wheel base
(e) are crucial parameters of the robot model. In practice,
the radii of the wheels are not easy to determine,
especially when rubber tyres are used. Furthermore, they
may even be subject to slow evolutions over time, due to
temperature, terrain modifications, tyre pressure, etc.

A solution to this type of problems is to identify these
parameters on-line, starting from an initial estimate. This
can be accomplished in the context of Kalman filtering by
adding the parameters to be identified to the state vector
[10]. The new state vector is then :

[ ]X x y r rS S k
t

k k
= θ 1 2 (25)

The evolution model for r1 and r2 is a constant. This
does not mean that states will not change. Evolution will
be made possible by adding a random noise (denoted αri)
to this model :
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Simulations [2] prove that the filter is able to
compensate for an initial error on the radii and even to
track slow variations. In [2], we have investigated the
robustness of the filter, i.e. its reaction to a calibration
error on a parameter which is not part of the state vector,
namely the wheel base. In this case, the radii converge,
but not towards the real values, yielding a (local)
"equivalent robot model".

Furthermore, we have shown the influence of radius
identification on the overall quality of the localization
process, comparing the behaviour of our filter with one
that does not perform radius identification. The output
location variables of the filter we obtain, contrary to the
filter that does not identify the radii, are unbiased and the
amplitudes of the oscillations are greatly reduced, in the
case of error-corrupted parameters.

When the sensor detects a landmark, the filter needs to
associate the angle with an observation equation, in other
words, the system needs to know which beacon has been
read. The association technique we choose relies on the
dimensionsless Mahalanobis distance, denoted D [11].

( ) ( )D C P Ck k k k
t= − ⋅ ⋅ ⋅ ++

−
λ λ σ λ/

2
1

2 1
(27)

Note that the last term has been previously computed in
(22). If D is smaller than a predefined threshold D0 then
the prediction and the observation are consistent,
otherwise the measure is rejected. In our case D0 = 5,
which corresponds to 2.24 standard deviations.

4. Real outdoor experiments

Performed with a 486 PC, real experiments have been
run on an outdoor test-track marked out with three
beacons (see fig. 4). Fifteen reference marks have been
located by surveyors, in a local frame, so that white
strings can be stretched on the grass to materialize straight
lines of known equations.

The principle of our experiments is to make the robot
track those reference paths and to compare the EKF
estimation results with reality. A CCD linear camera, at
the front of the robot, extracts the deviation between it's
optical axis and the white line to be tracked (see fig. 4).

An identification procedure, not described here, gave
us the following results for the geometrical parameters of
figure 3 : a ≈ − ±314 5 2 5. .  mm and b ≈ ±0 25.  mm . So,
after a short initial phase, we can admit that point S is
above the white line, as shown on figure 4.
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Figure 4 : Experimental setup, beacons locations and path
In the following test, the robot moves along a straight

line, which starts in the triangle formed by the beacons
and goes comparatively far outside (fig. 4).

Before the robot moves, we compute X S 0
 using a

triangulation method [1] and angles from the CCD sensor.
The initial covariance P0 is a diagonal matrix, the diagonal
of which is [ ]1 1 05 10 104 4. − − SI units.

The variances of the sensors are σλ
2=2.8.10-6 rad2 and

σ2=10-9 rad2 We have performed extensive post-
processing with real data to tune up noise variances : Qα is
a diagonal matrix, the diagonal of which is

[ ]0 0 0 10 109 9− −  SI units.

One can remark that the model noise on (x,y,θ) is equal
to zero. We have noticed that a non-zero noise on (x,y,θ)
deteriorates the radii identification process. Moreover,
setting these noises to zero is not a problem since the term
σ2 ⋅ ⋅B Bk k

t  has a similar effect as Qα on the position and
heading (see equation (21)). In addition, the error
ellipsoid generated has a variable orientation, depending
on the inputs to the system. This is much more consistent
with reality than the constant-orientation ellipsoid
generated by Qα.

As we know the equation of the real path, we can
compute the lateral error as the distance from the
estimated position to the real path (fig. 5). The heading
error is the difference between the estimated heading and
the real (here constant) heading (fig. 6). On both figures,
the signal labeled "with EKF" (resp. "without EKF")
denotes the error on the filter output (resp. the result of
odometry without using any azimuth measurement).

As was predictable, the results obtained without using
angular measurements tend to drift. At the end of the
trajectory, the error is roughly one meter. On the contrary,
the output error of the filter is bounded (less than 3 cm
lateral error and less than 0.5° heading error).

At the end of the trajectory, results start to deteriorate.
This accuracy deterioration is due to the fact that beacons
are all behind the vehicle and, hence, in a bad
configuration.

These results prove that the EKF has a very good
behaviour. One should note that the accuracy of the
reference marks and beacons positioning is about one
centimeter. Moreover, it's difficult to guarantee that the
string is perfectly stretched out and the robot, when

following the line, oscillates a little (<1 cm). Finally,
because the sensor is about 1.9 m above the ground, one
degree of roll angle generates a three-centimeter lateral
error (our test-track is a lawn and not perfectly planar).
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Figure 5 : lateral errors (speed ≈≈≈≈ 0.2 m/s)
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Figure 6 : heading errors (speed ≈≈≈≈ 0.2 m/s)
On figure 7, we show the repeatability of the lateral

error for three tests performed along the same path.
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Figure 7 : repeatability of the lateral error (speed ≈≈≈≈0.2 m/s)
Considering these results, it is clear that the lateral

error is not a random signal due to measurement noise
only. Most probably, it is largely due to the terrain
generating the same roll angle at each test. Except for the
short transient phase which corresponds to the effect of
discrepancies between initial errors, the three curves fit in
a narrow one-centimeter wide region. One centimeter is
probably closer to the standard deviation of the real lateral
error, but this requires testing with a more appropriate
setup.

5. Study of the filter convergence on (C)
In section 2, the observability of the system has not

been proved on (C) for non-zero inputs.
In practice, such a trajectory is unlikely to occur. In a

typical application the robot moves in the triangle formed
by the three beacons. When out of this triangle, it typically
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uses a new set of closer beacons. Nevertheless, we will
study the behaviour of our filter on an arc of (C) (see fig.
2 where the tested trajectory is in bold).

In the following simulation, we gave an erroneous
initial estimate to the filter with position and heading
errors. Lateral error is the smallest distance between the
estimate and (C). This allows to check whether the
estimate remains on the reference path or not. We also
calculate the distance between the estimated and real
positions.

Through these experiments (fig. 8), one can see that the
filter converges quickly : after a small number of
rotations, errors have zero means. But the amplitude of the
error is larger than on any other path. Nevertheless, errors
remain bounded.

The convergence of the filter is due to the evolution
model, namely odometry.
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Figure 8 : distance to the real position
and signed distance to the circle

6. Conclusion
In this paper, we have dealt with several aspects of a

2D (position and heading) localization system.
We have applied nonlinear theory results to predict

whether an observer could converge. This a priori study is
very helpful when we can conclude the system is not
observable : the system needs more (or more appropriate)
sensors and it is useless to try to find a solution.

Nevertheless, this step cannot guarantee that there
exists an observer which computes the state when the state
is claimed to be observable.

Another interest of such a theoretical study is to
determine situations where any localizer based on the
same continuous system will undergo difficulties,
whatever the technological and algorithmical solutions.

The practical part of the work involves simulations,
post-processing of real data and real-time localization on
an outdoor tyre-type vehicle moving on uneven floor.

This last aspect is of particular interest since it
generates  model errors and other disturbances. Among
others, errors due to the terrain are evidenced by
repeatability tests. The conclusion is that our system
behaves particularly well and is robust to these types of
disturbances.

Finally, the precision we get, although difficult to
measure precisely with the current experimental setup, is
clearly centimeter-level. Considering the conditions, this
is a very encouraging result.

The next work planned is now to test the precision of
the system in more appropriate conditions. This should
involve testing our system on the special test-bed
SESSYL designed by the LCPC (Laboratoire Central des
Ponts et Chaussées, the French institution in charge of
applied research in road construction), in the framework
of an existing cooperation between the LCPC and our
laboratory.
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