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Cooperative Terrain Model Acquisition by a 
Team of Two or Three Point-Robots 

N. S. V. Rao, N. Manickam, V. Protopopescu 

ABSTRACT 

We address the model acquisition problem for an un- 
known planar terrain by a team of two or three robots. The 
terrain is cluttered by a finite number of polygonal obsta- 
cles whose shapes and positions are unknown. The robots 
are point-sized and equipped with visual sensors which ac- 
quire all visible parts of the terrain by scan operations ex- 
ecuted from their locations. The robots communicate with 
each other via wireless connection. The performance is 
measured by the number of the sensor (scan) operations 
which are assumed to be the most time-consuming of all 
the robot operations. We employ the restricted visibil- 
ity graph methods in a hierarchical setup. For terrains 
with convex obstacles and for teams of n(= 2,3)  robots, 
we prove that the sensing time is reduced by a factor of 
l/n. For terrains with concave corners, the performance of 
the algorithm depends on the number of concave regions 
and their depths. A hierarchical decomposition of the re- 
stricted visibility graph into n-connected and (n - 1)-or- 
less-connected components is considered. The performance 
for the n(= 2,3)  robot team is expressed in terms of the 
sizes of n-connected components, and the sizes and diam- 
eters of (n - 1)-or-less connected components. 

I .  INTRODUCTION 

The terrain model acquisztion problem (TMAP) deals 
with robots autonomously acquiring a complete model of 
a terrain (or environment) by systematically visiting por- 
tions of it. The motivation for this problem is a t  least 

(a) Efficiency in Future Navigation: Once the ter- 
rain model is completely acquired, the navigation al- 
gorithms of known terrains can be employed for path 
planning with two potential advantages. First, the 
sensors may be switched off (at least in theory) in fu- 
ture navigation, thereby avoiding the time-consuming 
sensor operations involved in the acquisition and pro- 
cessing of sensor data. Second, navigation paths with 
the shortest distance between the start and goal po- 
sitions may be computed using the terrain model. If 
the terrain model is not available, no algorithm can 
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always guarantee the shortest paths. Consequently, 
a robot can only recognize a dead-end corner after 
it has moved into it and explored it; of course, such 
situations can be avoided if the terrain map is a priori 
available. 

(b) Assistance to Human Model Builders: In ap- 
plications involving mobile robots in indoor environ- 
ments for repetitive operations, typically a human op- 
erator is in charge of model building (which is tedious 
and time-consuming). Robots capable of autonomous 
terrain model acquisition (even in only small parts of 
the terrain) can be employed to relieve the operator 
from part of the work. 

The focus of this paper is on algorithms that are guar- 
anteed to  converge within the assumptions of the formu- 
lation. The terrain model acquisition problem for three 
dimensional polyhedral terrains has been solved by using 
the visibility graph structure by Rao et al. [14] for the case 
of a discrete vision sensor. In the plane, the restricted visi- 
bility graph, which is obtained by removing all non-convex 
vertices from the visibility graph, is shown to suffice [13]. 
The same problem can also be solved by using a method 
based on the Voronoi diagram [16]. The TMAP in the 
case of a robot equipped with a continuous vision sensor 
has been solved by Lumelsky et al. [ll]. The same proh- 
lem when the obstacle boundaries consist of circular arcs 
and straight lines can be solved by the methods of visibil- 
ity graphs, Voronoi diagram and trapezoidal decomposition 
using discrete and continuous vision sensors [12]. A survey 
of non-heuristic algorithms for navigation in unknown ter- 
rains and terrain model acquisition can be found in Rao et  
al. [15]. 

To our knowledge, the problem of model acquisition of 
an unknown terrain by a t e a m  of robots has not been 
addressed in the formulation of non-heuristic algorithms. 
This problem, however, has been studied by a number of 
researchers using different formulations. For example, Ish- 
ioka et al. [7] describe a cooperative map generation by 
heterogeneous autonomous mobile robots (also see Dudek 
et al. [4]). A cooperative recognition system for the envi- 
ronment using multiple robots has been developed by Ishi- 
wata et al. [8]. Our orientation is more along the lines of 
the unknown terrains algorithms pioneered by Lumelsky 

On the other hand, the navigation of multiple robots in 
known and unknown terrains has been studied by a number 
of researchers. Most of the existing papers on this problem 
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&.re devoted to the case of known terrains, i .  e. a terrain 
model is supplied to  the robot (Latombe [9]). 

In terms of the cooperative terrain model acquisition by 
two robots, the formulation that comes closest to ours is 
the maze-exploration algorithm by two pebble automata 
by Blum and Kozen [l]. The communication between the 
pebble automata is achieved by using the pebbles that are 
placed on free cells. Also, the pebble automata can recog- 
nize the pebbles but are not equipped with computational 
mechanisms to  keep track of the coordinates of the cells. 
On the contrary, we assume that the robots can store and 
transmit information with arbitrary precision. 

In terms of the terrain, the maze consisting of a two- 
dimensional arrangement of cells [l] is much simpler than 
the polygonal terrain considered here. This maze explo- 
ration problem is similar t o  the terrain model acquisition 
problem here in that the automata are required to visit all 
free cells of the maze. For unknown terrains, the recent 
study by Harinarayan and Lumelsky [6] indicates that the 
simultaneous navigation of two robots cannot be solved if 
no “cooperation” is present between them. Note that our 
overall objective is different from theirs in two ways: 

(a) we are interested in terrain model acquisition, and 
(b) we wish to  explore the cooperation mechanisms so that  

the objective can be achieved more effectively by a 
team of robots instead of a single robot. 

In “very bad ” cases, e. g. the robots are initially located 
at  one end of a “long narrow polygonal corridor”, there 
may not be any advantage in employing a team of robots: 
the robots are forced to “stay” together. However, if the 
terrain has “branches” so that the robots can explore dif- 
ferent parts of the terrain, a team is likely to acquire the 
terrain faster than one robot. 

We p r p e  that the terrain model acquisition method based 
on the Restricted Visibility Graph (RVG) method [13] can 
be advantageously implemented by a team of two or three 
robots. In particular, if all obstacles are convex, the sens- 
ing time can be essentially reduced to N,/n for n = 2 ,3 .  
The performance of the algorithm for general terrains de- 
pends on the number of concave regions and their depths. 
To tackle this situation, a hierarchical decomposition of the 
restricted visibility graph into n-connected and (n - l)-or- 
less-connected components is proposed. The performance 
for the n(= 2,3)  robot team is expressed in terms of the 
sizes of n-connected components, and the sizes and di- 
ameters of (n - 1)-or-less connected components. This 
analysis highlights the critical properties such as 2- and 
3-connectivity, depth of hierarchy, etc. that support or im- 
pede the parallel acquisition of the terrain model. 

The paper is organized as follows. Preliminaries are de- 
scribed in Section 11. The TMAP in convex polygonal ter- 
rains, and along tree and 2-connected structures are dis- 
cussed in Sections I11 and IV respectively. The TMAP in 
polygonal terrains is considered in Section V. Some varia- 
tions of the proposed methods are presented in Section VI. 
Section VI1 contains a discussion of the results. 

0 visibility polygon 

obstacle polygon 

Fig. 1.  Visibility polygon from location p .  

11. PRELIMINARIES 

We consider a finite two-dimensional terrain cluttered by 
a finite and non-intersecting set of polygonal obstacles. An 
obstacle vertex is convex if the angle included inside the 
obstacle by the edges that meet at this vertex is less than 
180 degrees; otherwise the obstacle vertex is conuive. 

Two points p and q in plane are visible to  each other if 
the line segment joining p and q ,  denoted by R, lies entirely 
outside the interior of all obstacle polygons. 

The robot, denoted by R, is point-sized and equipped 
with a vision sensor. A discrete vision sensor is character- 
ized by a scan operation: a scan operation performed from 
a position (point) p returns the visibility polygon of p that 
consists of all points in the terrain visible to p (Fig. 1). We 
assume that the most time consuming-part of the robot op- 
eration is the scan operation. In vision-based robots, each 
scan may take several minutes including the time required 
to acquire and process the sensory data. The total sensing 
l i m e  is given by the number of scan operations performed 
by the robot(s) in sequence. 

The robots communicate with each other in terms of 
finite sequences of real numbers such that a real number 
can be communicated in a small time unit via the wireless 
connection. 

Let IGl denote the number of nodes of the graph G, and 
let the diameter of G, given by the number of nodes on 
the longest path of G, be denoted by d(G). We shall also 
use some terminology from graph theory, e. g. connectivity, 
condensation, decomposition, etc., whose definition can be 
found in books on graph theory (e. g. Harary [5]). 

The restricted visibil i ty graph is defined as follows [13]. 
The vertices of the RVG are the convex obstacle vertices. 
Two vertices are connected by an edge if and only if they 
are visible from each other or they are the end vertices of 
an obstacle edge (Fig. 2). The RVG is connected and sat- 
isfies the terrain-visibility property which implies that the 
union of the visibility polygons of all the vertices of the 
RVG contains the entire free-space [13]. The latter prop- 
erty implies that any graph search algorithm implemented 
by a robot will completely acquire the terrain model in a 
sequence of N, scan operations, where N ,  is the number of 
convex vertices of the terrain. 

‘Since in general a real number carries an infinite, uncompressible 
amount of information, this hypothesis may seem unrealistic. However, 
for the specific aspects of the present problem, this is not crucial. This 
hypothesis is similar in spirit to the infinite precision arithmetic often 
assumed to be available in the study of path planning problem [91. 
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111. CONVEX POLYGONAL TERRAINS 

In this section, we consider terrains composed of convex 
polygonal obstacles. The objective of the terrain model 
acquisition algorithm is to perform a scan operation from 
every node of the RVG which guarantees that the entire 
free-space is seen. 

The overall algorithm for a team of n robots is based on 
the robots executing a graph search algorithm in a coop- 
erative manner. At any step, each robot has the same 
version of an incomplete RVG. For the team of robots 
R1, Rz, . . . , Rn, let R1 have the highest priority, R2 have 
second highest priority, and so on. Each robot performs a 
scan operation and obtains the resultant visibility polygon. 
Each robot computes its own adjacency list and communi- 
cates it to the other robots. R1 sends to R2 its next desti- 
nation d l  which is one of the nodes adjacent t o  its present 
location. Then R2 marks dl as visited and computes its 
next destination d ~ .  R2 communicates dl  and d2 to R3, 
and d2 to Rl .  This process is repeated until Rn computes 
its destination. Then the robots move to their chosen des- 
tinations and repeat the algorithm. For concreteness, we 
consider the depth-first search (Corman et 01. [2]), where 
R2 chooses an unvisited vertex adjacent to its present lo- 
cation, if such vertex exists. If not, R2 backtracks along 
the path towards its starting vertex until it is located a t  
vertex with an adjacent vertex that had not been visited 
so far or has been chosen by Rt .  

Note that an adjacency list computed after a scan opera- 
tion consists of a (possibly empty) set of visited vertices and 
not yet visited vertices. The above algorithm terminates 
when all known vertices have been visited; the connectiv- 
ity property together with the terrain-visibility property 
ensure that the terrain model is completely acquired. 

A .  Two-Robot Team 
Due to the connectivity of the RVG, R1 is guaranteed 

to find a destination in each step. In order that  the above 
algorithm be executed, we need to establish that R2 can 
always find its destination. The required property is the 2- 
connectedness of the RVG which is established for convex 
polygonal terrains. 
Lemma 1 T h e  RVG of a terrain cluttered by a f i n i t e  nurn- 
ber of convex polygonal obstacles satisfies the following prop- 
erties: (a)  there i s  a path between any two  nodes u and v 
containing a node w ,  and also there i s  a path between u 
and v not containing w ,  and (b )  there are t w o  node-disjoint 

(a) I& (b) restricted visibility grapb 

Fig. 2. Restricted visibility graph. 

Fig. 3. Illustration of the inductive step for Lemma 1 .  

paths between any t w o  nodes of the R V G ,  i .  e .  RVG is 2- 
connected. 

Proof: We prove this lemma by induction on the number 
of obstacles. Both Part (a) and (b) are true for a terrain 
consisting of a single convex polygon. Assume that the 
claim is true for a terrain of k obstacles; let RVGk denote 
the RVG of the k obstacles. Now place the (k+l)th polygon 
& + I .  The edges of the RVGk that  are intersected by the 
new polygon are rerouted along the boundary of Pk+l. 

First consider Part  (a). The claim is true individually 
for the sets of vertices of Pk+l and vertices of RVGk. Now 
consider the properties between the vertices of Pk+l and 
RVGk. There are a t  least two edges between the vertices 
Of  Pk+l and the vertices of RVGk+l as illustrated in Fig. 3.  
Any node u can be included in a path between 01 and v2 
of Pk+l by using the path V I ,  u1, u ,  212, v2. Similarly any 
node v can be included in a path between pair 201 and 
w2 of RvGk as follows. By Theorem 5.14 of Harary [5], 
there are two node disjoint paths joining w1 to u1 and 
w2 to u2 (since by hypothesis RGVk is 2-connected); then 
the required path is given by w1, u1, V I ,  v,  v2, 212, w2. Now 
consider a path between a vertex a of Pk+l and a vertex b 
on RVGk. By connectivity of RVGk+l, there is a path Pab 
between a and 6 .  If Pub does not include a vertex v of 9 + 1 ,  
the part of can be rerouted along the boundary of Pk+1 
to include v. If a vertex u of RVGk is not included in PCib, 
then the part of Pub the lies on RVGk can be adjusted to 
include u. An almost identical argument shows the second 
part of (a) that a chosen vertex can be excluded from the 
path between two vertices. 

To prove Part (b), we observe that the 2-connectivity 
among the nodes of pk+l is trivially satisfied. We now 
show that the required 2-connectivity among the nodes of 
RVGk is preserved since no paths are broken by Pk+l, and 
any pair of vertex disjoint paths intersected Pk+l can be 
rerouted along the two opposite sides of Pk+1 so as to pre- 
serve vertex disjointedness. First note that if two vertex 
disjoint paths are intersected by Pk+1, then it intersects 
two edges el and e2 of the paths. There are two cases. If 
el and e2 do not intersect, then the rerouting is simple as 
shown in Fig. 4(a). If e l  = ( ~ 1 1 , 2 1 2 2 )  and e2 = ( ~ 1 2 ~ ~ 2 1 )  in- 
tersect, then the intersection can be removed by switching 
the paths as shown in Fig. 4(b). Here, we connect v11 to UZI 

3 



recomputed paths 

original paths Y 1 * Y 2 

e e  
1 2  

Or ig iaa lpa ths  
- 'rerouted paths 

Fig. 4. Rerouting to ensure vertex disjoint pair of paths. 

2-connectcd component 

Fig. 5 .  Decomposition of the RVG into 2-connected parts and trees. 

as follows (the other path is similarly constructed): rotate 
e l  around v11 in the direction of v21 until 1121 is reached or 
a new obstacle vertex a is reached; in the latter case the 
process is repeated. 

Now consider the 2-connectivity between a vertex v of 
Pk+l and u of RVGk. By hypothesis, there is a path P,, 
between u1 and 112 via u going through only the vertices of 
RVGk. If the path Pu does not intersect Pk+1, then the 
paths v, V I ,  u1, u and v ,  V Z ,  212, u obtained by employing the 
pieces of P,,, are vertex disjoint. If the path Pu intersects 
Pk+I, then reroute P,, along the boundary of Pk+l so as to 
include v between u and u1 (wlog). Then the required two 
paths are given by segment of P,, between u and v ,  and the 
path u, 212, V Z ,  

Note that 2-connectivity implies that the above RVG 
cannot be disconnected by removing a single vertex. In- 
deed, let the next destination chosen by R1 at any step be 
denoted by v. By connectivity, if there is an unvisited node 
(other than v), then there is at least one unvisited node 
adjacent to the paths traced by R1 or Rz. If not, all the 
unvisited nodes can only be reached via v, which makes v 
a cut point; this in turn contradicts the 2-connectedness of 
the RVG. Thus by the time R1 performs [Nc /21  scan oper- 
ations, Rz would have performed scan operations from the 
remaining nodes of the RVG. 

B. Three-Robot Team 

, U I ,  v. 0 

The extended visibility graph (EVG) is the RVG aug- 
mented as follows. Consider the convex hull of the terrain 
which is the smallest convex region that contains all ob- 
stacles. The extended hull is obtained by expanding the 
convex hull by a fixed non-zero amount. Then vertices of 
the RVG on the convex hull are connected to the corre- 
sponding vertices on the extended hull as shown in Fig. 6. 
Note that the degree of all vertices in the EVG must be a t  

Fig. 6. Definition of the EVG. 

Fig. 7 .  Illustration for the proof of Lemma 2. 

least 3. To prove the main theorem we need the following 
result. 
Lemma 2 The  EVG of a t e r ra in  cluttered b y  a finite num- 
ber of convex polygonal obstacles is 3-connected, i .  e.  there 
exist three vertex disjoint paths between any pa i r  of vertices.  

Proof: Any two vertices of u and v of the EVG fall into 
one of the situations described below: 

(i) Both u and v belong to  the RVG: Note that the RVG 
is the EVG minus the extended hull. Consider the 
convex hull of the polygons containing u and v .  Re- 
move all the obstacles that are outside this convex hull. 
Since the RVG of the resultant graph is %connected 
there must be two vertex disjoint paths between u 
and v without going through the extended hull. Then 
shrink the polygons containing u and v to point poly- 
gons and connect u and w to vertices on the extended 
hull such that the connecting edges are outside the 
above convex hull. Then there is a third vertex disjoint 
path between u and v along the periphery of the ex- 
tended hull. Now expand the point polygons at  u and 
v and restore the removed polygons. Then reroute the 
paths between u (and also v )  and the extended hull 
along the boundaries of the restored and expanded 
polygons. The resultant path between u and v will be 
vertex disjoint from the two paths on the RVG. 

(ii) Both u and v are on the extended hull: Let u' and v' 
be the vertices of the RVG corresponding to u and v 
respectively. There are two vertex disjoint paths be- 
tween u and v along the boundary of tjhe extended 
hull and the third path can be obtained by the short- 
est path between u' and v' which is guaranteed to be 
vertex disjoint from the boundary paths. 

(iii) One of u and v belongs to extended hull and the other 
belongs to the RVG: Let u be on the extended hull. 
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Fig. 8. Example of terrain (a) and the corresponding RVG (b). 

Then the shortest path on EVG between u and v pro- 
vides us with one path. We obtain two more vertex 
disjoint paths along the boundary of extended hull as 
follows. Extend the last edge of the path to the other 
side of v .  Then rotate this extended ray around v 
once to the clockwise direction and once in the anti- 
clockwise direction. Stop the rotation when first ob- 
stacle or extended hull vertex is encountered; if it is 
an obstacle vertex then rotate the segment around the 
vertex in the same direction. This process is contin- 
ued until a vertex on the convex hull is reached; then 
this vertex is connected to its corresponding vertex on 
the extended hull. I t  is easy to see that the paths ob- 
tained by clockwise and anti-clockwise rotations are 
vertex disjoint since the obstacles are convex. Then 
two paths along the boundary of the extended hull 
are easily constructed as shown in Fig. 7. 

For n = 3 ,  the 3-connectivity ensures that R1, RZ and R3 
are guaranteed to find their destinations in each step since 
the EVG cannot be disconnected by removing two vertices. 
In the actual execution of the algorithm no scan operations 
are performed from the vertices of the extended hull; these 
vertices are just computed. The following theorem is a 
straightforward generalization of the arguments of the last 
section. 
Theorem 1 The  model  of terrain cluttered by convex polyg- 
onal obstacles can be obtained by a t eam of n = 2 , 3  robots 
i n  a sequence of [ N / n l  scan operations,  where N i s  the 
t o ta l  number of obstacle vertices.  

Iv. TREE AND %CONNECTED COMPONENTS 

The RVG for a polygonal terrain can be decomposed into 
trees and 2-connected components (see Fig. 5 ) .  

First assume that the team of robots explore a tree. No- 
tice that in a worst case, d(T) is the minimum time required 
to explore a tree T by a team of two robots. The strategy is 
for both robots to stay together until the first opportunity 
occurs to move along two edges of a tree. While the robots 

are in two different branches of the tree, sensor operations 
are done simultaneously. At the same time the robots will 
not be together for more than d(T) time since the diameter 
is the longest possible distance (in terms of sensor opera- 
tions) that the robots will stay together without branching 
off. To see this, assume that it is not true, then we have 
sequences of paths (without branching ) whose total length 
is longer than d(T); since the tree is connected and has no 
cycles, the union of these paths constitutes a path of length 
larger than d(T),  which is a contradiction. Thus 17'1 -d(T) 
scan operations are performed while the robots are not to- 
gether. Hence, the sensing time required to explore a tree 
is upper-bounded by d(T)+ IT1/2-d(T)/2 = $JTl+d(T)]. 

Now consider the case of three robots acquiring a 2- 
connected graph G. The strategy is to keep Rz and R3 
together as a two-robot team, while R1 explores in par- 
allel. Using the argument above, the time robots R2 and 
R3 stay together does not exceed d(G), and R1 will not 
be forced to  be together with the other robots. Thus the 
sensing time is upper-bounded by d(G) + [IC1 - 2d(G)]/3. 
The results are summarized in the next lemma. 

Lemma 3 The  sensing t i m e  of exploring a tree T of /TI 
nodes by t w o  robots is upper-bounded by d(T)/2 + IT1/2. 
T h e  sensing t i m e  of three robots exploring a 2-connected 
graph G i s  upper-bounded by d(G)/3 + IG1/3. 

V. POLYGONAL TERRAINS 

First consider the case n = 2 in detail. We assume 
that the initial location of the robots is outside the convex 
hull of the obstacle vertices. We identify the 2-connected 
component corresponding to the initial location. This 2- 
connected component for the RVG of Fig. 8(b) is shown in 
Fig. 9(a). Then we remove this component and all the trees 
that are emanating from it and identify the 2-connected 
components of the next level as shown in Fig. 9(b). The 
same process is repeated to identify the next levels of 2- 
connected components as shown in Fig. 9(c). 

Trees of various levels are identified as follows. For any 
level, we specify the trees that emanate from the nodes of 
the 2-connected components of that level. Fig. 9(d) and (e) 
show the trees emanating from 2-connected components of 
level 1 and 2 respectively. There are two types of trees. 
The first type are the trees that connect the nodes of one 
level with nodes at another level, and the second type are 
the trees that strictly belong to  one level. In Fig. 9(d), 
the left and right trees belong to the former type and the 
middle one belongs to the second type. 

We obtain a hierarchy tree from the RVG by condensing 
each 2-connected component of the hierarchical decompo- 
sition to a node and removing the trees of second kind. The 
resultant tree is denoted by TO. An example of hierarchy 
tree is shown in Fig. 10 where the hollow circles represent 
nodes obtained by the condensation of 2-connected com- 
ponents. 

The overall strategy for solving the TMAP by two robots 
is to avoid keeping two robots in the same tree T, to the 
maximum extent possible, Using this strategy, the rob& 
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of two robots is upper-bounded by 

Fig. 9. Illustration of hierarchical decomposition of RVG of Fig. 6 .  

will explore different trees until there is at  most one tree left 
to be (possibly partially) explored concurrently at  the cur- 
rent level of hierarchy. This strategy can be implemented 
as follows. Notice that the end points of trees can be rec- 
ognized by a local concavity, but a local concavity does not 
necessarily indicate the presence of a tree. The strategy is 
to delay sending the robots into the same local concavity 
until this becomes the only available option at that partic- 
ular level. 

Let us analyze the performance of the above method. Let 
the 2-connected components and the trees of this decompo- 
sition be denoted by {Cl,C2,. . .,Cnc} and {Tl,Tz,. . .,Tn,} 
respectively. Since the terrain is unknown, the order in 
which the individual trees are explored is unknown. We 
carry out a worst case analysis for each of the 1 levels of 
the hierarchy. Consider the level IC with 2-connected com- 

and Ttl, Ttz, . . . , TZ",:, of first and second type respectively. 
Also let 

ponents C ? I ~ , C , ~ ~ ~ , .  . . ,e:$, and the trees T / ~  ,T&,. . . ,~~,.,:k k 

The size of the tree that is left to  be explored last is upper- 
bounded by 

where the maximum is taken over all sets I and J such 
that I U J = T k ,  I n J = r$,1111- lJll = 1. Now note that 
this quantity is upper-bounded by max lTl, which in turn 
implies, from Lemma 3, that  the sensing time is upper- 
bounded by 3 max[d(T) + 12'11. For the level k, the number 
of scan operations that are performed simultaneously by 
the two robots is at least IT1 - 1 max[lTl+ d(T)].  

Thus the total sensing time for level E required by a team 

T€Tk 

T€Tk 

T€Tk T€Tk 

The summation of above quantity over all levels yields an 
upper-bound on the sensing time of the team. The summa- 
tion of the first two quantities yields 3 111.1 
respectively. The summation of the third term is handled 
as follows. At every level only one tree (if any) either of 
type one or two is last explored by the two robots (in a 
worst case). Thus the contribution to  the upper-bound by 
the trees of type two is no more than $ max[d(l;) + lnl], 
and the contribution to the upper-bound by the trees of 
first type is upper-bounded by $[d(To) + IToI]. 

We now turn to  the case n = 3. The EVG can be de- 
composed into 3-connected components C!, C;, . . . , C:,, 
2-connected components C:, Ci, . . . , C& and trees T I ,  
Tz, . . . , Tni . The C:'s can be assigned to 1 different lev- 
els in a hierarchical decomposition of EVG (see Section 5 
for precise definitions). Some q l s  and Cf's connect C:'s 
of different levels while some are attached to a C: of a 
single level. Then the hierarchy To is obtained by con- 
densing each of C:'s and Ct's to a node and removing the 
2-or-less connected components that do not connect Ci's 
of different levels. By using above approach and Lemma 3 
to estimate the sensor time corresponding to 2-connected 
components, the sensing time achieved by a team of three 
robots is upper-bounded by 

n, n r  
lCil and 3 

i=l j = 1  

a 

1 1 
+z[d(To) + IT011 + - max [d(Z) + IZI]. 4 i € { l ,  ..., ni} 

Note that the number of two connected components for 
the decomposition for two-robot team (n,) is different from 
that for a three-robot team (nz).  
Theorem 2 The sensing time for n = 2 ,3  robots to ac- 
quire the model of a terrain of polygonal obstacles is  upper- 
bounded by  

and 
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Fig. 11. Navigation course based on Voronoi diagram. 

Fig. 10. Illustration of hierarchy tree. 

for  n = 2 and n = 3 respectively. 

single robot, based on the RVG method, is given *by 
For a comparison, note that the total sensing time for a 

i= l  j=1  

based on the decomposition for n = 2 or by 

i=l  i=l  j = 1  

for the case n = 3. 
Notice that for terrains with convex polygonal obstacles, 

RVG and EVG consist of only one 2- and 3-connected com- 
ponent respectively. Thus this theorem subsumes Theorem 
1. If the RVG is a single tree T ,  then TO = T ;  for this case, 
since Theorem 2 yields a weaker upper-bound, it does not 
precisely subsume Lemma 3. The performance is decided 
(in a worst case) by the depth 1 of the hierarchy described 
above. For typical office indoor environments 1 is of the 
order 2. On the other hand, deeply nested mazes can gen- 
erate large values for 1. 

VI. VARIATIONS 

We now consider two geometric structures that are used 
for terrain model acquisition in unknown terrains. 
(a) Voronoi Diagram: The Voronoi diagram correspond- 

ing to a set of line segments and circular arc segments 
has been studied by Yap [17]. The distance d(p,s) 
between a point p in free-space and a boundary edge 
s is defined as inf{d(p,q)lq E s } .  The clearance of a 

’It is possible to  “see” the entire terrain boundary by performing less 
than the stated number of scan operations, but, we are unaware of any 
algorithm that is guaranteed to acquire the terrain model with less number 
of scan operations. 

Fig. 12. Navigation course based on trapezoidal decomposition. 

point p in free-space with respect to 0 is the minimum 
of d(p, s) for some obstacle edge (segment or an arc) 
s of 0. For x E G!, we define N e a r ( x )  as the set of 
points that belong to  the boundaries of obstacles Oi, 
i = 1,2,  ..., n and are closest (among all points on the 
obstacle boundaries) to  x in terms of the metric d. The 
Voronoi diagram, Vor(O),  of the terrain populated by 
0 is the set {z 6 G!INeur(z )  is a disconnected set }, 
(i. e. for each x E V o r ( 0 )  the set N e a r ( % )  contains 
more than one topologically connected components or 
equivalently z E V o r ( 0 )  is nearest two at least two 
distinct points on the obstacle boundary). See Fig. 11 
for an example. 

(b) Dual graphs based on trapezoidal decomposi- 
tion: First, we decompose the free-space into trape- 
zoids by sweeping a line (for example, moving a hori- 
zontal line from top to bottom) such that whenever the 
line passes through a vertex, extend a sweep-line seg- 
ment  from this vertex into free-space until it touches 
an obstacle boundary or extends to infinity as shown 
in Fig. 12. For each sweep-line segment we have one of 
the two following cases: (a) if the segment is finite, the 
dual graph node corresponds to the mid-point of the 
segment , or (b) if the segment is not finite, the dual 
graph node corresponds to a point on the segment at 
a distance 6 from the vertex. Two nodes belonging to 
the boundary of the same trapezoid are connected by 
an edge of the dual graph. See Fig. 12 for an example. 

In terms of the sensing time for a single robot, the Voronoi 
diagram method could require a larger number of scan op- 
erations, whereas trapezoidal decomposition method yields 
about the same number as required by the RVG method. 
The RVG method requires that the robots be capable of 
navigating along the obstacle boundaries, whereas Voronoi 
diagram method keeps them as much away from the ob- 
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stacles as possible. The trapezoidal decomposition method 
could require that the robot navigate close to  obstacles, 
but less frequently than the RVG method. 

Notice that both structures can be decomposed into con- 
nected components and trees and thus results along the 
lines of Theorem 2 can be derived for the case of two or 
three robots. In particular, the structure of the hierarchy 
tree for these two will be similar to  that of the RVG. 

The strategy of Section IIIA can be in principle replaced 
by several other methods. A possible algorithm for a team 
of two robots can be outlined as follows: Consider the con- 
vex hull of the terrain. The boundary of the terrain is 
called the outer path which consists of polygonal obstacle 
boundaries separated by straight line segments. Then ob- 
tain the inner  path by (a) identifying the alternative paths 
for the non-obstacle parts of the outer path, and (b) replac- 
ing each obstacle chain of the outer path by the other path 
around the obstacle. An illustration is shown in Fig. 13. 
Then all obstacles that are part of the paths at  this level 
are removed, and the procedure is recursively carried out. 
As a result we obtain layers of inner and outer paths. The 
algorithm for TMAP is to  have the two robots move along 
different layers as long as possible. 

VII. DISCUSSION 

This paper focuses on TMAP where it would be bene- 
ficial to  employ a team of robots to perform a task rather 
than a single robot. Only the sensor time is considered 
here as a measure of performance, and the main discussion 
is based on the visibility graph methods. In this context, we 
have identified the parts of the terrain that can be advanta- 
geously explored in parallel and the parts in which having 
more than one robot may be ineffective or even wasteful (in 
a worst case). The estimates for the sensing time derived 
here are conservative. We believe that alternative charac- 
terizations and better performance estimates are possible. 
Also the method discussed is restricted to one particular 
way of solving the TMAP, namely, using a graph search 
on a navigation course [12]. In general these methods do 
not guarantee that the sensing time or the distance tra- 
versed by a single robot is close to  the optimal achievable 
if the terrain model is known. The recently studied class 
of competitive algorithms for the TMAP by Deng et  al. 

Fig. 13. Illustration of inner and outer layers. 

[3] guarantee that the distance traversed by a single robot 
is bounded within a factor of the minimum possible value 
achieved if the terrain model is available. Improving the 
performance of the algorithms of this type by employing a 
team of robots will be of future interest. 

The effectiveness of employing a team of robots for the 
TMAP might be judged by other measures of performance 
such as distance traversed, total time of sensor operations, 
travel time, etc. For example in the RVG method for a 
single robot, the distance traversed in solving the TMAP 
is a function of the search algorithm employed, whereas the 
sensor operations is given by Nc (fixed for a terrain). The 
analysis of the parameter such as the distance appears to 
be significantly difficult even for the case of the RVG and 
warrants further research. 
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