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Abstract 
This paper formulates an algorithm for trajectory 
generation for two robots cooperating to perform an 
assembly task. Treating the two robots as a single re- 
dundant system, this paper derives two Jacobian ma- 
trices which relate the joint rates of the entire system 
to the relative motion of the grippers with respect 
to one another. The advantage of this formulation 
over existing methods is that a variety of secondary 
criteria can be conveniently satisfied using motion in 
the null-space of the relative Jacobian. This paper 
presents methods for generating dual-arm joint tra- 
jectories which perform assembly tasks while at the 
same time avoiding obstacles and joint limits, and 
also maintaining certain constraints on the absolute 
position and orientation of the end-effectors. 

1 Introduction 
The Jacobian matrix has gained wide use for gener- 
ating trajectories of a prescribed geometry relative 
to a fixed coordinate system for redundant and non- 
redundant manipulators [1, 2, 3, 41. For redundant 
manipulators, the concepts of linear algebra have pro- 
vided a means of satisfying secondary criterion via 
motion in the null-space of the Jacobian matrix [5, 61. 
These criteria include: singularity avoidance, ma- 
nipulability optimization, and obstacle avoidance, to 
name a few. Specifying a cooperative assembly task 
for the two robots as a trajectory in the world coordi- 
nate frame reduces the kinematic control problem to 
that of controlling each robot individually [5, 7, 8, 91. 
This technique, while common, does not make use of 
the inherent flexibility of the combined system, i.e. 
it ignores a large degree of redundancy. Using this 
method, secondary criteria may still be satisfied by 
utilizing off-line path planning techniques which in 
effect choose a better specification for the task in ab- 
solute coordinates. If, however, the robots are treated 

as a single system and joint trajectories are gener- 
ated using a Jacobian which relates the velocity of 
one gripper relative to the other gripper’s coordinate 
frame, then the assembly can be described in a part 
relative frame which is much more natural and easily 
derived from the CAD model of the assembly, [lo]. 
Another advantage to treating the dual-arm system 
as a single redundant kinematic system is that the 
joint values may be optimized using null-space pro- 
jection techniques and if done on line the optimization 
can incorporate sensory data [ll]. 

This paper defines two related techniques for gener- 
ating the joint trajectories for two robots to execute 
tasks in part relative space. In the first technique, 
a relative Jacobian JR E R6xN, is defined relating 
the joint velocities to the relative motion between the 
grippers. In the second, a related Jacobian matrix, 
R m  E R4xN, is defined that relates the joint veloc- 
ities to the rate of change in the distance and the 
relative angular velocity between the end-effectors. 
From these two Jacobians and using null-projection 
techniques, algorithms are developed which can sat- 
isfy the primary assembly task, as well as secondary 
goals such as collision, obstacle and joint limit avoid- 
ance and world frame orientation constraints. 

2 Relative Jacobians 
The Jacobian for a single robot may be computed 
from the Denavit-Hartenberg parameters [4, 121. In 
this section, a similar procedure is employed to form 
the relative Jacobian, JR and the relative distance 
Jacobian J m .  Then in the next section these Jaco- 
bians are used to define algorithms to generate joint 
trajectories for dual-arm assembly tasks. 

As with computing the Jacobian for a single 
robot, the inverse of the tool transformation is con- 
structed incrementally using the link transformations, 
A;(a, d, CY, 0). Then, from each intermediate transfor- 
mation, a single column of the Jacobian is computed. 

n .  

This work was supoorted by the United 
States Deparfrnent of Energy under 
Contract DE-ACfJ4-94AL85090. 

DlSTRIBUTlON OF THIS DOCUMEN JS UNMm ~ 



J 

The tool transformation considered here, TR, relates 
vectors in the second gripper’s frame to the first grip- 
per’s coordinate frame. Its inverse can be given in 
terms of successive transformations, as: 

where, Aji is the ith link transformation of the j t h  
robot, B1 and B2 are the transformations to the 
bases of manipulators 1 and 2 respectively. Similarly 
TI1 and Tlz are the tool transformations. 

To compute the relative Jacobian, the following 
matrices Vi, representihg the transformations from 
the second robot’s gripper frame to each link’s frame, 
are formed 

For notational convenience, the columns of the Ui ma- 
trices are delineated as: 

ni Oi ai Pi 
0 0 0 11- ui = [ (3) 

The columns of the relative Jacobian, JR, are com- 
posed of two 3-vectors, vi, and w;, the relative h e a r  
velocity and the relative angular velocity of the sec- 
ond gripper respectively. In the second end-effector’s 
frame these vectors are given by: 

and 

O joint i prismatic 
-ai i s n l  
ai i > n l  

wi = (4) 

joint i prismatic, i > nl 
joint i prismatic, i 5 nl . 
joint i rotational 

(5) 
wi x -pi 

The relative Jacobian, JR, is obtained by multiplying 
the vi’s and wi’s by the upper 3 x 3 rotational sub- 
matrix, RotR of TR as follows: 

J R =  [y , 

The relative distance Jacobian matrix, J m  E R4xN, 
is derived from JR by projecting the linear portion 

onto the normalized distance vector and copying the 
rotational portion as follows: 

-T 
Jm = [ 0 1 x 3 ]  JR 

03x3  13x3 (7) 

where f i ~  is the normalized position vector of TR. 
Another Jacobian matrix that will be used later is 

the upper 3 x N sub-matrix of the relative Jacobian. 
The relative position Jacobian is given by: 

and relates the joint rates to the relative linear ve- 
locity of the second gripper with respect to the first 
gripper’s frame. 

The projections onto the null-space of JR, J m ,  
and J R ~  will be denoted PJR, P J ~ ,  and P J R ~  re- 
spectively. These matrices are computed efficiently 
from the singular value decompositions of their re- 
spective matrices [13]. 

3 Assembly Via Relative Mo- 
t ion 

The task of screwing a nut onto a bolt may be de- 
scribed as the alignment of the nut and bolt’s central 
axis followed by linear motion along this axis until 
they contact. The nut is then rotated around the cen- 
tral axis while continuing the linear motion at a rate 
equal to the thread pitch. Descriptions of assembly 
tasks such as this do not include any reference to the 
absolute position or orientation of either part. The 
Jacobians defined above are ideally suited for gen- 
erating joint trajectories from part-relative assembly 
descriptions such as this. The algorithms described 
here will initiate as soon as the individual parts are 
grasped by the robots and wil l  proceed in a two phase 
process. The first phase of motion is to bring the 
parts into an approach position. This phase will use 
the relative distance Jacobian to solve for the motion. 
The second phase is the mating phase, where the two 
parts are brought into contact with one another in an 
assembly. This phase will use the relative Jacobian 
to solve for the motion. 

The kinematic equations governing the mating 
phase are given by: 

(9) 

where J i  is the pseudo-inverse of the relative Jaco- 
bian and VR and W R  are the desired relative linear 
and angular velocities of the part held in the second 
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robot’s gripper with respect to the part held in the 
first robot’s gripper and 6~ is joint motion in the null- 
space of JR. The next section will discuss OH. Part 
mating tasks are typically described by a sequence of 
relative transformations and the error is used in (9) 
to iteratively find a solution. 

A typical first phase task definition includes the 
world frame transformation of each of the parts as 
they are initially grasped and a relative transforma- 
tion having the parts ready to mate. The task then 
becomes to move the objects from the initial to their 
final relative position/brientation. Equation (9) could 
also be used to generate this type of trajectory, but 
experience has shown significant drawbacks to this 
approach. In particular, a straight line in relative co- 
ordinates from the initial to the final transformation 
will often force a collision between the end-effectors. 
A simple example of this is shown in Fig. 1 where 
two objects need to be reversed before an assembly 
can be achieved. The relative distance Jacobian was 
developed to alleviate this problem. The kinematic 
equations governing the first phase are given by: 

em = JL [ 3 + PmJhzIR + iH (io) 

where J& is the pseudo-inverse of JRD, d is the de- 
sired rate of change in the distance between the grip- 
pers, w is the desired relative angular velocity, J;$ 
is the pseudo-inverse of t he - Jm,  VR is the desired 
relative linear velocity and 0, is again joint motion 
in the null-space of JR. When moving the system 
from the initial relative position/orientation to the fi- 

nal one, the first term, JiD , provides motion to 

drive the end-effectors to their final separation dis- 
tance, and orientation. The second term, acting in 
the null-space of J- does not change d and provides 
motion to meet the final relative positioning require- 
ment. If the separation distance criterion is already 
satisfied this term will move the second gripper rela- 
tive to the first along the sphere having radius equal 
to that separation distance. Motion constrained to 
the sphere is essentially a rotation of the first gripper 
as seen by an observer in the world frame. 
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bolt with a washer on it may not be tipped upside 
down without the washer falling off. Also, whenever 
two robots are required to be in close proximity, as is 
true for most assembly operations, collision avoidance 
is necessary. In previous approaches these type of cri- 
teria could only be addressed by judicious placement 
of the task in world coordinates. In this paper, sec- 
ondary criteria are easily met using null-space projec- 
tion techniques commonly used with redundant sys- 
tems. Motion in the null-space of JR as seen by an 
observer in the world frame appears as though the 
two end-effectors were both gripping a large invisible 
rigid object. This type of motion is often referred 
to as self-motion. The remainder of this section will 
describe a variety of criteria and how they are com- 
bined. The technique involves solving a least squares 
solution to a scaled combination of all the secondary 
criteria constrained to lie on the tangent plane of the 
self-motion manifold. 

Using the results of [6] the desired self-motion will 
be given by: 

6 H  = P J R J I ~ H  (11) 
where Jc is a composite Jacobian that relates the 
joint rates to the composite desired beneficial motion, 
i ~ .  The composite Jacobian is formed by augmenting 
any number of sub-Jacobians. Each sub-Jacobian, Ji, 
relates the joint rates to a specific benefkid motion, 
zhi. Here, three types of beneficial motion are con- 
sidered: motion to a-.roid collisions, motion to avoid 
joint limits, and moticn to control the absolute posi- 
tion and orientation of the end-effectors. The three 
types of sub-Jacobians which make up the compos- 
ite Jacobian are the obstacle-avoidance Jacobian, the 
joint limit Jacobian and the absolute Jacobian de- 
noted Jio, J~L,  and JiA,  respectively. Similarly, the 
associated beneficial velocities are denoted iio, iiL, 
and EiA. A typical composite Jacobian equation is 
given by 

to ‘On- where the subscripts delineate the type of Jacobian. 
s t  raint s To cause a link to avoid an obstacle, it is necessary 

to solve for a particular set of joint rates which give 
the link a velocity away from the obstacle. It may 
be discerned from Fig. 2 that the absolute Cartesian 
motion of a link is affected only by joints which are 
closer to the base. Thus the obstacle Jacobian, de- 
noted Jio, associated with l i  s of the second robot 

While equations (9) and (10) generate satisfactory 
joint trajectories for some simple assembly task, other 
assembly tasks require that secondary criteria be met. 
Many assembly operations require constraints on the 
absolute orientation of the pieces. For instance, a 



Figure 1: Rotations are often preferable to linear mo- 
tion in an assembly task. 

is given by the 3 x (nl + 722) matrix 

Jio = [OlO[ O ~ V ~ ~ V ~ ~ . . - [ V ~ [ O ~ O ~ - - . ~ O ] .  c (13) 
v x  Y 

robot1 robot2 

The vectors vi are obtained from the ai and pi 
columns of the homogeneous’ transforms used to se- 
quentially build the transformation from the world 
frame to the link frame. In this case the desired 
velocity is a vector pointing away from the nearest 
obstacle given by: 

.. -ii 
zao = - d 

Figure 2: The Obstacle Avoidance Vectors 

where, d, is the distance between the obstacle and 
the link. The vector iio has a magnitude inversely 
proportional to the distance. A vector sum blends 
the effects of more than one obstacle. 

The relationship which allows a joint to avoid its 
mechanical limit is trivial. The only joint which af- 
fects the motion of the ith joint is the ith joint. There- 
fore, a joint limit avoidance Jacobian consist of a sin- 
gle row of all zeros except for the ith element which is 
a 1. The resulting 1 x (nl + nz) joint limit Jacobian 
is 

J ~ L  = [OlO[ OlllOl.--lO]. 

The desired velocity, EiL, may be derived from 
smooth functions that increase near joint limits [SI. 
Whenever i i ~  becomes small, JiL may be dropped 
from the composite Jacobian. This dropping reduces 
the computation required and also allows other more 
important criterion to be met more M y .  

The individual robot’s world frame manipulator Ja- 
cobian equation may be used to control the absolute 
position and orientation of the grippers. A manip- 
ulator Jacobian relates the joint rates of the system 
to the absolute motion of the end-effector. As in the 
obstacle avoidance Jacobian, none of the joints of the 
opposite robot affect the absolute motion of the end- 
effector and their corresponding columns in an abso- 
lute Jacobian are zero. The remaining columns of an 
absolute Jacobian are obtained by inserting the full 
6 x n manipulator Jacobian, J,z. For absolute con- 
straints on the second robot the 5 x (nl+n2) absolute 
Jacobian denoted J i ~ 2  is 

JiA2 = [ [o] I [Jm2]]- (16) v w  
robot1 robot2 

The velocities associated with the absolute Jacobian 
contain both linear velocities 11,2 and rotational ve- 
locities wm2. In general, absolute constraints are 
specified by a time varying transform Td which spec- 
ifies the desired coordinate frame of the gripper. The 
velocity in this case is the generalized position and 
orientation error. 

5 Simulations and Results 
The algorithms described were implemented in C. 
These programs require the D-H parameters for each 
robot and the trajectory information. Unlike previ- 
ous methods the trajectories for many assembly tasks 
are easily defined. Often, the initial placement of 
the parts in the work-cell, a relative approach config- 
uration and the final assembly configuration are all 
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that is required. With this information, these tech- 
niques automatically generate trajectories in joint 
space which perform the task while avoiding colli- 
sions, joint limits and may satisfy world frame re- 
quirements. 

This technique has proven to be effective in gener- 
ating dual-robot trajectories for a variety of typical 
assembly tasks. The mating operation of two parts 
shown in Fig 3 was successfully performed. Using the 
relative distance formulation the robots first bring the 
two parts to a relative approach configuration having 
their axes aligned but separated enough to avoid col- 
lisions. In the approach phase the relative distance 
formulation was found to be very effective in achiev- 
ing the goal without causing collisions between the 
grippers. Then the relative Jacobian formulation was 
used to mate the two parts. 

To demonstrate the concept of relative motion, a 
sequence of relative task points that form a square 
was devised and the program was run for the two 
robots shown in Fig. 3. The resulting path of the 
second end-effector as viewed by the f i s t  gripper’s 
frame and as viewed in the world frame is displayed 
in Fig. 4 and Fig. 5 respectively. The relative view of 
the trajectory is a square. The world view is an open 
curve through space. If closed paths are desired ad- 
ditional self-motion may easily be added in a manner 
similar to joint limit avoidance. 

The algorithms have also proven to be effective in 
satisfying world frame criteria. Sub-assemblies that 
have gravitational dependencies, such as a washer on 
a bolt, require the world frame orientation constraint 
to be satisfied. In this case the composite Jacobian 
contains two rows pertaining to the pointing and asso- 
ciated angular velocity to maintain gravity alignment 
of the part. 

0.8 
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6 Summary 
A procedure for automatically generating the joint 
trajectories for two robots to perform assembly o p  

r\I 

erations has been presented. The method treats the 

Figure 3: Two robots working as a single 12DOF 
system may assemble mating parts while at the same 
time avoiding collisions and joint limits. 

Relative Frame Trajectory 

Figure 4 The trajectory of the second gripper is a 
square when observed in the fist gripper’s frame. 
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Absolute Frame Trajectory 

Figure 5: The trajectory of the second gripper is an 
open curve when observed in the world frame. 
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positioning requirements was accomplished through 
null-space projection techniques. 

The proposed methods combine the minimum 
norm solution to the relative Jacobian equations with 
a least squares solution to a composite Jacobian pro- 
jected into the null-space of the relative Jacobian. In 
this way a variety of secondary criteria were met. The 
algorithm was implemented and the results were pre- 
sented for two robots performing a typical assembly 
task. The composite Jacobian provided for collision 
and joint limit avoidance, and for satisfying absolute 
orientation constraints. The relative distance Jaco- 
bian formulation was shown to be advantageous for 
the approach phase of the dual-arm -assembly process 
and the relative Jacobian formulation was necessary 
for exact relative trajectories such as in part mating. 
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