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Abstract 

This paper proposes a coordination-based cooperation 
protocol for the Object-Sorting Task in multi-agent robotic 
systems. The protocol coordinates the agents to move ob- 
jects to destinations efficiently and effectively. Every agent 
autonomously makes subjective optimal decision, then the 
coordination algorithm resolves their conflicts by consider- 
ing the global results. Since every agent runs the same 
algorithm to obtain the common results without further 
communication, the protocol is eficient. Implementation of 
the protocol is realized on a distributed modularized agent 
architecture. Experimental results shows that the protocol 
is effective and better than a previous proposed help-based 
protocol. In addition, its performance very closes to a 
deliberate but high complexity model, genetic algorithms. 
The protocol can be applied to coordinate multiple 
autonomous robots for  dispatching and transporting corn- 
ponents in manufacturing systems. 

1. Introduction 

Parallel performance and the cooperation requirements of 
tasks are the main interests of the emerging multi-agent 
robotic systems. 

Some tasks can be executed in parallel for better per- 
formance. Tasks such as painting a wide wall or cleaning 
rooms can be partitioned into several subtasks, each of 
which is then assigned to one agent. If all agents work 
independently, i.e. no resource contention or goal conflicts, 
the performance is linearly speeded up. Otherwise, if there 
is resource contention (e.g. short of paintbrushes or brooms) 
or conflicts (e.g. agents have different favorite colors), the 
performance speedup will be sublinear. On the other hand, 
some other tasks require explicit cooperation among the 
agexts, e.g. conferences, moving a heavy equipment, etc. A 
specific multi-agent task. the Object-Sorting Task, de- 
scribed in this paper consists of both parallelism and coop- 
eration characteristics in which explicit cooperation is re- 
quired to accomplish the task. 

There has been much research in multi-agent robotic 
systems. Some of them proposed mechanism to create the 
foundation of multi-agent robotic systems. For example, 

Fukuda's CEBOT system [5] showed the self-organizing be- 
havior of a group of heterogeneous robotic agents; Asama et 
al. proposed the ACTRESS architecture [4] for connecting 
equipment, robots and computers together to compose 
autonomous multi-agent robotic systems by designing un- 
derlining communication architecture; Wang proposed sev- 
eral distributed functional primitives for distributed robotic 
systems [ 111. Other researchers worked on solving multi- 
agent tasks, e.g. Mataric addressed the problem of distribut- 
ing a task over a collection of homogeneous mobile robots 
[9]; Arkin et al. assessed the impact on performance of a 
society of robots in a foraging and retrieval task when 
simple communication was introduced [2,3]; Alami et al. 
coordinated the multiple-robot navigation with a plan- 
merging paradigm for the task of transporting containers in 
harbors [ 11; Lin and Hsu provided a fully distributed coop- 
eration protocol for the Object-Sorting Task in multi-agent 
robotic systems [7,8]. 

To solve a multi-agent task, either centralized or dis- 
tributed approaches can be employed. A centralized model 
use a powerhl agent to plan and schedule the subtasks for 
every agent. This control agent has global knowledge con- 
cerning the environment and the problems. It can deliber- 
ately plan for performance, e.g. optimal solutions. However, 
for tasks with Np complexity, the centralized approach is 
impractical. Furthermore, the control agent must be power- 
ful enough to achieve satisfactory performance. High design 
complexity, high cost and low reliability are the other 
drawbacks of centralized approaches. 

On the other hand, a distributed approach decreases de- 
sign complexity and cost, while increasing the reliability, 
Agents are autonomous and equal. An agent plans for itself 
and communicates with the others in order to accomplish 
the global task. It is reactive because every agent interacts 
directly with the environment. However, each agent has 
only local knowledge about the task and the environment. 
Hence, it cannot make the best decisions alone. Further- 
more; negotiation or social cooperation rules for conflict 
resolution are required to coordinate among them. 

To attack the drawback of local knowledge so as to ob- 
tain better performance, a coordination-based cooperation 
protocol (CCP) has been developed. It is better than the 
help-based cooperation protocol (HCP) [7] .  The Object- 
Sorting Task (OST) is used to demonstrate the approach, 
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Section 2 introduces and discusses the OST, and summa- 
rizes the HCP. The CCP and its implementation are de- 
scribed in Sections 3 and 4. Simulation and experimental 
results are shown in Section 5. 

2. The Object-Sorting Task (OST) 

The OST was formally defined and discussed in /:SI, which 
showed that the OST is a NP-complete problem for finding 
the optimal performance This section addresses its defini- 
tion, problems, and a summary for the HCP 

2.1 Definition 

Let O={ol ,...,OM} be a set of stationary objects that is ran- 
domly distributed in a bounded area. Eveiy object, 
oi=(li,dj,ni), is associated with an initial location li, a desti- 
nation location d,, and the number n, of agents for move- 
ment. An object oi can be moved only if there are at least ni 
agents available to move it. Let R={rl ,... rN} be the set of 
agents and nmax be the maximal number of agents to move 
any single object, an object-sorting task can be $completed 
only if N is not less than nmax, Agents search for objects 
and move them to their destinations. When all the objects 
have been moved to their destinations, the task is h i shed .  

Typical application examples of OST are foraging and 
retrieval, explosives detection and handling, AGV dispatch- 
ing for components transportation in FMS, surveillance, etc. 

Finding an optimal solution of OST is a high complex- 

Algorithm Optimal-OST. 
1. FOR each permutation of objects ol,. . . , oM DO 

(1) Let the object sequence be s,, ... sM 
(2) FOR each si=(li,di,ni) in s I ,  ... sM DO 

a) Let Comb(r) represent all the r-combinaiions from 

b) FOR each combination of Comb(ni) DO 
Assign the agents to the object si. 

the agent set { r  l,...rN}. 

(3) Calculate the cost of s,, ... sM 
2. The optimal solution is the object sequence combined 

with the assigned agent, which has minimal cost. 

ity problem. Algorithm Optimal-OST describes this search 
process and its space. It lists all object sequences, then as- 
sign agents to the objects for each sequence. There are M! 
object sequences from A4 objects, and C(N,ni) agent as- 
signments for each object oi, where C(k,r) is the number of 
r-combinations from k.  Hence, the search space is M!(C 
C(N,ni)), 1 2 i < M. Let E(C(N,i)) be the mean of C(N,i), 1 
2 i 5 N. The search space becomes M!(E(C(N,Z))F’. 

In this research, the following assumptions were made. 
The agents are homogeneous mobile robots with the basic 
capabilities for navigation, obstacle avoidance, object rec- 
ognition and object handling. The agents have no prior 
knowledge about the environment, nor the other agents. Fi- 
nally, the agents communicate with the others by broadcast 
or point-to-point messages. 

There are many operation models associated with differ- 
ent strategies to do the task, e.g. an object is assigned to the 
agents at random, movement of the objects are controlled 
by a predefined precedence, actions of the agents and ob- 
jects are all central-controlled, etc. The performance 
evaluation is based on the time cost to accomplish the task. 
Generally speaking, an agent searches for objects, coordi- 
nates its object schedule with the other agents, and cooper- 
ates with the other agents to move objects. So, an agent 
spends its cost on search, coordination and cooperation. 
The cost of the applied operation model is the maximum 
cost among all agent’s costs. 

2.2 Problems 

To solve the OST, several problems need to be addressed , 
1. Search. All the objects must be found in order to attack 

the task. The most intuitive way is to let agents 
search the entire area so that they can find all the 
objects. How do they search efficiently? 

2. Coordination. How do the agents coordinate for assign- 
ing themselves to a found object? That is, for a given 
object, which agents should work together to move 
it ? and who makes the decision? 

3. Deadlocks. When each agent autonomously selects an 
object and none of the selected object has enough 
agents for movement, a deadlock occurs. 

4. Termination . How do every agent realize the global task 
has been accomplished? 

SEARC 
module 

Data 

I \ I Global state information 

Communication 
Control Motor- module Channel 

Fig. 1 : Agent architecture of the Object-Sorting Task 
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2.3 Help-based Cooperation Protocol (HCP) 

Our previous work proposed the help-based cooperation 
protocol for the OST [ 7 ] .  The protocol was implemented in 
a modularized, reactive agent architecture as showed in Fig. 
1. The search module, communication module and motion 
module are all finite state automata. They share the global 
state information and change the state information accord- 
ing to their state functions. The search module searches and 
identifies objects. The motion module performs the function 
of object movement alone or with other agents. The com- 
munication module communicates with the other agents in 
order to cooperate with them. 

The working area is partitioned into disjoint N subareas, 
and each subarea is assigned to an agent. Each agent ex- 
haustively searches its subarea, requests help from the oth- 
ers once it has found a large object, and selects its partners. 
After there are enough agents arriving at the found object, 
they carry the object to its destination. The cooperation 
protocol defines how and when an agent requests help, how 
and when the other agents offer help, and deadlock han- 
dling in order to coordinate the agents for accomplishing 
the task. 

With this approach, the objects are partitioned into sev- 
eral parts. Each part of the objects is treated by a specified 
agent that requests help and determines which agents will 
offer help and become its partners so as to move every ob- 
ject in this part of objects. Since each agent is autonomous, 
simultaneous selection of partners by several agents may 
cause a deadlock. Several deadlock handling schemes were 
also provided. The protocol was realized into each agent's 
state transition function so that agents reacted and cooper- 
ated quickly. 

The above approach utilized simultaneous subarea 
search for parallel performance, and cooperation protocol 
for solving the coordination, deadlocks, and termination 
problems. Nevertheless, the performance of OST can be 
further improved. Subtask assignment and help-based 
strategies forced agents to request help and wait once find- 
ing a large object, which limited the global knowledge of 
agents. Hence, agents cannot make cost-optimal decisions. 
The CCP has been developed to address this issue. 

3. Coordination-based cooperation protocol 

As the HCP, the working area is equally partitioned into 
disjoint subareas for parallel search. Instead of requesting 
help once an object is found, the object information is 
broadcast to the others. Instead of partitioning the objects 
into subtasks, only search task is partitioned for parallel 
performance. With the overall object information, each 

agent makes its subjective optimal schedule and negotiates 
with the others for a global schedule. In order to efficiently 
resolve conflicts, social rules are employed into a 
coordination algorithm from which decisions are obtained 
by each agent independently so as to minimize negotiation 
overhead. 

3.1 Coordination algorithm 

Coordination among agents are built by coordination 
strategies. Since the OST is a NP-complete problem, there 
is no polynomial time algorithm for overall optimal object 
schedule. The utilized strategies are based on balanced cost. 
Algorithm Coordination depicts them. All agents invoke 
this algorithm to negotiate their individual object schedules. 

At first, every agent selects a locally cost-optimal object 
and broadcasts its selection. Among the selected objects, the 
best cost-optimal object is scheduled, i.e. enough agents are 
assigned to it. Finally, every assigned agent updates its cost 
and location. The process is repeated until all objects are 
scheduled. 

Algorithm Coordination. 
1. Every agent selects its current cost-optimal object, and 

broadcasts to the others. 
Let the selected objects be SI, ..., Sk , 1< k < N. 

2. Select the best cost-optimal object, Opt, among the se- 
lected objects. 
(1) FOR each object in SI.+ DO 

Let the current object be oi=(lj,di,ni). 
0 FOR each agent 9 DO 

Let CAj be the accumulated cost of 9 , and 
CRj be the cost of 7 to reach oi. 
C . . = C A .  + C R .  V J  J 

0 Mi = the ni-th smallest cost from Cil,Ci2, ..., C,N 
( 2 )  Opt = the object with minimum Mi 

3. Assign agents to Opt, and update data. 
Let Opt be op=(lp,dpnp), 
Assigned agents are the np agents with smaller cost Cpi, 
I < i < N .  
IF I am one of the assigned agents THEN 

(1) append Opt to my object schedule 
(2) accumulate my cost with ( Mp + the cost from lp to 

(3) my location = d 
dP) 

P 
4. Repeat from step 1 until all object has been scheduled. 

Obviously, this approach is cost balanced because the 
selection strategy is to choose the agents with smaller cost. 
Besides, deadlock-free is guaranteed by the two facts: there 
is a consistent object order in every agent's object schedule 
and there are enough agents assigned to every object. 
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The number of selected objects is at most N because 
every agent select one object for negotiation at a time. For 
each selected object, it requires time complexicy Om) to 
calculate all costs of agents. So, the cost for scheduling an 
object is ON2). Since there are A4 objects, the coniplexity of 
algorithm Coordination is OWN2). 

There are several differences between HCP and CCP. 
1. Task partition: HCP partitions objects and azisign each 

part to an agent while CCP partitions the search task 
only. 

2. Object assignment: An object is assigned to which 
agents is determined by requestloffer protocol in 
HCP while by coordination protocol in CCP. 

3. Object found: An agent deals with an object at a time 
(request help, select partners, then move object) in 
HCP while an agent broadcasts the object informa- 
tion in CCP when an object is found. 

4. Knowledge: HCP makes decision with local knowledge 
other than global knowledge in CCP. 

5 .  Object : CCP requires every agent keeps all the object 
data while HCP does not. 

3.2 Object identification 

In order to clearly identify objects, a consistent representa- 
tion of objects is necessary during negotiation. In general, 
assigning an object a unique object ID is appropriate. How- 
ever, various assignment methods should be suitably ap- 
plied under diffcrent situation. Several methods are 
discussed: 
1. Predefined attributes: Object IDS are predefin'ed so that 

it can be identified by agents. An object can be iden- 
tified from its outside look, size, symbol, or even 
initial location. For example, a two dimensional co- 
ordinate can determine the order of object IDS by 
comparing x-coordinate first then y-coordinate. 

2. Coordinator: Where there is no way to specilk prede- 
fined object IDS, this method can be applied. Every 
object found is reported to the coordinator, then the 
coordinator assigns its ID and broadcasts to the oth- 
ers. A trivial way is that object IDS are assi,gned with 
increasing sequence. 

3. The distributed algorithms [6,10] concerning the order 
of discrete events may be employed. 

3.3 A specific agent as the coordinator 

The coordination algorithm can be implemented only on a 
dedicated agent because every agent runs the same algo- 
rithm to obtain the object schedule. In this manner, every 
agent sends its decision to the coordinator instead of broad- 
cast. The coordinator runs the algorithm and sen'ds the re- 

sults to the others for updating their schedules, costs, and 
locations. 

4. Cooperation architecture 

The cooperation architecture employed to realize coopera- 
tion protocols in multi-agent robotic systems is an agent ar- 
chitecture with embedded cooperation protocol. It is reac- 
tive, modularized, and cooperative. 

The agent architecture is a finite state automaton (FSA) 
composed of several functional modules that cooperate and 
coordinate each other through the state transition function. 
The FSA implements the cooperation protocol which coor- 
dinates the multi-agent robotic system. Every agent work- 
ing on the architecture cooperates and coordinates with the 
others to achieve common goals. Every functional module 
is also a FSA which is a subset of the global FSA. Modular- 
ized decomposition simplifies the design complexity of 
each module. 

The agent architecture of the OST is showed in Fig. 1 
which have been utilized by HCP and CCP approaches. The 
transition diagram of the FSA of CCP is showed in Fig. 2 
in which circles represent states and arrows represent 
transitions. At first, agents start searching in SEARCHING 
state, broadcast found object data. After finishing search, 
agents enter SELECTING state, exchange local selections, 
coordinate to obtain the overall object schedule. In DECI- 
SION state, every agent picks up its object tasks according 
to the scheduled object sequence and changes to HELPING 
state for going toward the target object. When an agent ar- 
rives at the target object, its state becomes WAITING. If 
there are enough agents for object movement, they enter 
MOVING state and carry the object to its destination. They 
each repeat the task cycle until all assigned object tasks 
having been accomplished. Agents enter FINISH state then. 

The global FSA is further decomposed into three 
modularized FSAs. The three functional modules execute 
concurrently and take care only its own subset transition 
functions. Fig. 3 shows their transition diagram. 

/-& next-oblect ,_-- ~~ 

,Zi HELPING 

reach 1 1  

/- all-finisp 
, FINISH , = . 

-_-I' 

1 reach 1 

Fig. 2: State transition diagrams of coordination-based co- 
operation protocol 
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DECISION 
~ 

Comm module Search module Motion module 
Fig. 3: State transition of functional modules 

5. Simulation 

The object-sorting task was simulated in the simulator de- 
veloped on Sun workstation with graphic user interface 
showing task execution. The simulator is a testbed for test- 
ing different operation models on the object-sorting task. 
Fig. 4 shows the utilized experimental map. 

The performance was evaluated with the number of time 
steps. The following code fragment sketches the actions 
performed by the agent at each time step. 

for each agent i , 
do the search module of agent i; 
do the motion module of agent i; 
do the comm. module of agent i. 

Each object was randomly generated for its destination, 
initial location, and the number of required agents. This 
experiment generated 10 sets of objects for each number of 
objects Musing n,,,=10. 

The experiment was run by varying the number of 
agents N, and the number of objects M. For a given number 
A4 of objects, the execution time was the average of the exe- 
cution time run from the generated 10 object sets of M.  The 
actual execution time performed by HCP is represented by 
H. The time performed by CCP is C. There were two refer- 
ences for comparison, an ideal model as an estimated lower 
bound, L, and the time, G, obtained from the genetic algo- 
rithm developed for the OST [SI. 

I+ - $ 100 100 100 100 100 
, , , , , I  

 loo^ TheArea lli 
t 500x200 c 100 1 1 -  

-- Object i_ Base Location ~ ~ ~ ~ i ~ ~ ~ i ~ ~  

Fig. 4: The simulation inap for 5x2 partition 

The estimated lower time is the execution time under 
the operation model that the other agents are always avail- 
able for offering help when an agent finds a large object. 
The available agents are assumed to be in the central point 
of their subareas. An agent chooses its partners which are 

closer to it. The execution time of each agent is its subarea 
search time and all the processing time for the objects lo- 
cated in its subarea. 

Experimental results shows that the CCP has the same 
features of HCP, i.e. stable behavior and speedup effect. Fur- 
thermore, the performance of CCP is better than the HCP. 

120000 

1 ooo00 
.Z 80000 
2 60000 
E 
p 40000 

0 50 100 150 200 

Number of Objects 

-.- N=10 

e N=20 

N=30 -- N=40 

--t N=50 

Fig. 5:  The execution time for different number of objects 
when N=10,20,30,40, and 50 agents 

When the number of objects increases, the execution 
time increases linearly with it for all N. It shows that the 
CCP is very stable under different workloads. When the 
generated object sets are applied to N2 10, the execution 
time decreases with the increasing number of agents as 
showed in Fig. 5 .  

Table 1 lists the speedup ratio relative to the execution 
time unit of N = l O .  For most cases with M 4 0 ,  the speedup 
is linear or superlinear. There is obvious improvement on 
objects processing time because more agents make more ob- 
jects movement in parallel. It shows that the protocol can 
effectively utilize the increased agent-power. On the other 
hand, for small number of objects, e.g. M=l,  more agents 
decrease search time due to smaller subarea. But, there is 
no obvious improvement on object processing time since 
there is no significant increasing parallelism. Hence, the re- 
sults provide a useful reference when adding more agents 
for speedup. Where there is a superlinear speedup, adding 
more agents can be beneficial. In contrast, under sublinear 
speedup condition, the benefit of adding more agents is not 
as significant. 

Fig. 6 compares the four models: HCP, CCP, estimated 
lower bound, and GA under different number of objects for 
N=10 agents. The CCP is better than the HCP. Furthermore, 
its results very close to the GA. GA is a centralized, high 
computation complexity, and time consuming search proc- 
ess. On the contrary, CCP uses a distributed model to pro- 
vide efficient reactivity and good performance which very 
close to the deliberate approach. The experimental shows 
that the performance of CCP is better than the HCP as well 
when N=20,30,40, and 50 agents. 
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Table 1: The speedup effect. Each table entry is the ratio= 
(execution time unit of each N=10, 20, 30, 40, and 50) / 
(execution time unit of N=10 agents). 
/#objects I Number of agents, N 1 

100 
200 

M I 10 1 20 1 30 I 40 I 50 

2.09 3.24 4.34 
1 2.06 3.11 
1 

I I I I I 

1 1 1 1  1.62 I 2.07 I 2.40 I 2.66 
1.86 I 2.47 I 3.07 I 3.76 
2.02 I 2.85 I 3.57 I 4.26 

30 1 1 1 2.03 I 2.98 I 3.79 1 4.51 
I 

40 1 1  1 1.98 1 2.93 1 3.82 i 4.531 
150 I 1 I 2.05 I 3.01 I 3.95 I 4.83 I 
I I I I I 1 -  

,. 40000 I J"a .E 30000 I 
3 

8 2oooo 10000 p y  ,2' r> 

0 1  
0 20 40 60 

Number of Objects 

Fig. 6 :  Performance comparison of four 

-*- H 

model!; when 
N=10 agents. H: help-based protocol, C: coordination- 
based protocol, G: genetic algorithm, and L: estimated 
lower bound. 

6. Conclusion 

In this paper, we provided a coordination-based protocol for 
coordinating multi-agent robotic systems to do thle Object- 
Sorting Task. The protocol has stable behavior anti speedup 
effect. Furthermore, its performance is better than the help- 
based protocol and very close to the genetic algorithm 
which requires high computational complexity to search for 
optimal solutions. 

By combining the centralized and distributed ap- 
proaches, this paper has demonstrated a model for multi- 
agent tasks that offers efficient reactivity as well ais compa- 
rable performance with a global search algorithm. 

The CCP requires every agent to have complete infor- 
mation about all objects. The storage demand expands with 
the number of objects. In fact, the coordination foir a global 
object schedule can start during subarea search. Coordina- 
tion can be activated by a certain number of objects found, 
area searched, or the coordinator. Performing coordination 
in smaller batches can reduce storage requirements;. 
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